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Abstract

The effects of both external squeezing and internal pressure pulsations are studied on flow and heat transfer inside

non-isothermal and incompressible thin films supported by soft seals. The laminar governing equations are non-di-

mensionalized and reduced to simpler forms. The upper plate displacement is related to the internal pressure through

the elastic behavior of the supporting seals. The following parameters: squeezing number, squeezing frequency, fre-

quency of pulsations, Fixation number (for the seal) and the thermal squeezing parameter are found to be the main

controlling parameters. Accordingly, their influences on flow and heat transfer inside disturbed thin films are deter-

mined and discussed. It is found that an increase in the Fixation number results in more cooling and a decrease in the

average temperature values. Also, it is found that an increase in the squeezing number decreases the turbulence level at

the upper plate. Furthermore, fluctuations in the heat transfer and the fluid temperatures can be maximized at relatively

lower frequency of internal pressure pulsations.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Various engineering applications such as lubrication,

heat pipes and fluidic cells of many chemical and bio-

logical detection systems require deeper understanding

of flow and heat transfer inside thin films. In certain

applications, external disturbances such as unbalances in

rotating machines or pulsations in external ambient

pressures due to many disturbances can result in an

oscillatory motion at the boundary. Not only external

disturbances can produce these motions, but also inter-

nal pressure pulsations such as irregularities in the

pumping process can produce similar effects. Even small

disturbances on the plates of the thin film can have a

substantial impact as the thickness of thin films is very

small. This fact is more pronounced if the thin film is

supported by soft seals. Accordingly, the dynamics and

thermal characterization of thin films will be altered.

The chambers for chemical and biological detection

systems such as fluidic cells for chemical or biological

microcantilever probes [1] are an important example for

thin films. Small turbulence levels that can be introduced

into these cells by either flow pulsating at the inlet or

external noise that may be present at the boundaries

which result in a vibrating boundary can produce flow

instabilities inside the fluidic cells. These disturbances

have a substantial influence on the measurements of the

biological probes specially those utilizing microcantile-

vers as these detecting elements are very sensitive to flow

conditions.

Several authors have considered flow inside squeezed

thin films like Langlois [2] who performed an analytical

study for flow inside isothermal oscillatory squeezed
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films with fluid density varying according to the pres-

sure. However, only few of them have analyzed heat

transfer inside squeezed thin films such as Hamza [3],

Bhattacharyya et al. [4] and Debbaut [5]. In these works,

the squeezing was not of oscillatory type. Recently,

Khaled and Vafai [6] and [7] considered flow and heat

transfer inside incompressible oscillatory squeezed thin

films. The effects of internal pressure pulsations have

been investigated before on flow and heat transfer inside

channels (see [8,9]). However, the literature lacks an

investigation of the effects of both internal and external

pressure pulsations on flow and heat transfer inside thin

films. In this case, the gap thickness will be a function of

both pulsations.

In this work, the upper plate of a thin film is con-

sidered to be subjected to both external squeezing effects

and the internal pressure pulsations. The influence of

internal pressure pulsations on the displacement of the

upper plate is determined by the theory of linear elas-

ticity applied to the seal supporting the plates of an in-

compressible non-isothermal thin film. The laminar

governing equations for flow and heat transfer are

properly non-dimensionalized and reduced into simpler

equations. The resulting equations are then solved nu-

merically to determine the effects of external squeezing,

internal pressure pulsations and the strength of the seal

on the turbulence inside the disturbed thin films as well

as on thermal characteristics of these thin films.

2. Problem formulation

Consider a two dimensional thin film that has a small

thickness h compared to its length B. The x-axis is taken

in the direction of the length of the thin film while y-axis

is taken along the thickness as shown in Fig. 1. The

width of the thin film, D, is assumed to be large enough

such that two dimensional flow inside the thin film can

be assumed. The lower plate of the thin film is fixed

while the vertical motion of the upper plate is assumed

to have sinusoidal behavior when the thin film gap is not

charged with the working fluid. This motion due to only

external disturbances is expressed according to the fol-

lowing relation:

h ¼ h0ð1� b cosðcxtÞÞ ð1Þ

Nomenclature

B thin film length

cp specific heat of the fluid

ds characteristic dimension of the seal

E modulus of elasticity for the seal’s mate-

rial

Fn Fixation number

H, h, h0 dimensionless, dimensional and reference

thin film thickness

hc convective heat transfer coefficient

k thermal conductivity of the fluid

NuL, NuU lower and upper plates Nusselt numbers

PS thermal squeezing parameter

p fluid pressure

q reference heat flux at the lower plate for

UHF

T, T1 temperature in fluid and the inlet tempera-

ture

T2 temperature at the lower and the upper

plates for CWT

t time

V0 reference axial velocity

U, u dimensionless and dimensional axial veloci-

ties

V, v dimensionless and dimensional normal ve-

locities

X, x dimensionless and dimensional axial coor-

dinates

Y, y dimensionless and dimensional normal co-

ordinates

Greek symbols

a thermal diffusivity for the fluid

b, bp dimensionless squeezing motion and pres-

sure pulsation amplitudes

e perturbation parameter

c, cp dimensionless squeezing motion and pres-

sure pulsation frequencies

l dynamic viscosity of the fluid

h, hm dimensionless temperature and dimension-

less mean bulk temperature

hW dimensionless temperature at the lower plate

(UHF)

q density of the fluid

s dimensionless time

r squeezing number

x reciprocal of a reference time (reference

squeezing frequency)

g variable transformation for the dimension-

less Y-coordinate

H dimensionless heat transfer parameter

(CWT)

P dimensionless pressure

Pi, P0 dimensionless inlet pressure and dimen-

sionless mean pressure
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where c is the dimensionless frequency and b and x are

the dimensionless upper plate motion amplitude and a

reference frequency, respectively. It is assumed that the

fluid is Newtonian with constant properties.

The general two-dimensional continuity, momentum

and energy equations for the laminar thin film are given

as
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where T, q, p, l, cp and k are the fluid temperature,

density, pressure, dynamic viscosity, specific heat and

the thermal conductivity of the fluid, respectively.

Eqs. (2)–(5) are non-dimensionalized using the fol-

lowing dimensionless variables:

X ¼ x
B
; Y ¼ y

h0
; s ¼ xt; U ¼ u

ðxBþ V0Þ
;

V ¼ v
h0x

; P ¼ p � pe
l x þ V0

B

� �
e�2

; h ¼ T � T1
DT

ð6Þ

where T1 and V0 are the inlet temperature of the fluid

and a constant representing a reference dimensional

velocity, respectively. DT is equal to T2 � T1 for constant
wall temperature (CWT) conditions, T2 will be the

temperature of both lower and upper plates, and it is

equal to qh0=k for uniform wall heat flux (UHF) con-

ditions pe is a constant representing the exit pressure.

The variables X, Y, s, U, V, P and h are the dimen-

sionless forms of x, y, t, u, v, p and T variables, re-

spectively. The above transformations except for

dimensionless temperature have been used by Langlois

[2] along with the perturbation parameter e, e ¼ h0=B.

Most flows inside thin films are laminar and could be

creep flows especially in lubrications and biological ap-

plications. Therefore, the low Reynolds numbers flow

model is adopted in here. The application of this model

to Eqs. (2)–(5) results in the following reduced non-di-

mensionalized equations:
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where r and PS are called the squeezing number and the

thermal squeezing parameter, respectively. They are

defined as

r ¼ 12

1þ V0
xB

; PS ¼
qcph20x

k
ð11Þ

The inlet dimensionless pulsating pressure is consid-

ered to have the following relation:

Pi ¼ P0ð1þ bp sinðcpxt þ upÞÞ ð12Þ

where bp, Pi and P0 are the dimensionless amplitude in

the pressure, inlet dimensionless pressure and the mean

dimensionless pressure, respectively. The parameters cp
and up are the dimensionless frequency of the pressure

pulsations and a phase shift angle respectively. Due to

both pulsations in internal pressure and external dis-

turbances, the dimensionless film thickness H,

(H ¼ h=h0), can be represented by the next equation by

noting the principle of superposition:

H ¼ 1� b cosðcxtÞ þ Hp ð13Þ

where Hp is the dimensionless deformation of the seals

resulting from pulsations in the internal pressure. It is

assumed that the lower plate is fixed and that the upper

Fig. 1. Schematic diagram for a thin film.
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plate of the thin film is rigid such that the magnitude of

the deformation in the seals is similar to displacement of

the upper plate. The dimensionless deformation in the

seals due variations in the external pressure is the second

term of Eq. (13) on the right. The dimensionless fre-

quency c is allowed to be different than cp.
The dimensionless pressure gradient inside the thin

film as a result of the solution to the Reynolds Eq. (9) is

oP
oX

¼ r
H 3

dH
ds

X
�

� 1

2

�
� P0ð1þ bp sinðcps þ upÞÞ

ð14Þ

The reference velocity, V0, that is used to define the di-

mensionless pressure, axial dimensionless velocity and

the squeezing number are taken to be related to the

average velocity, um, inside the thin film at zero b and bp

and the dimensionless thickness of the thin film that

results from the application of the corresponding inlet

mean pressure, Hm, through the following relation:

V0 ¼
um
H 2

m

ð15Þ

The previous scaled reference velocity is only function of

the mean pressure, viscosity and the reference dimen-

sions of the thin film and it results in the following re-

lation between the inlet mean dimensionless pressure to

the squeezing number:

P0 ¼ 12� r ð16Þ

Accordingly, the dimensionless pressure gradient, the

dimensionless pressure and the average dimensionless

pressure PAVG inside the thin film are related to the

squeezing number through the following equations:

oPðX ; sÞ
oX

¼ r
H 3

dH
ds

X
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2
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12H 3

dH
ds

þ ð12� rÞ
2

ð1þ bp sinðcps þ upÞÞ

ð19Þ

The displacement of the upper plate due internal

pressure pulsations is related to the PAVG through the

theory of linear elasticity by the following relation:

Hp ¼ FnPAVG ð20Þ

where Fn is equal to

Fn ¼
lðV0 þ xBÞ

Ee2ds
ð21Þ

The parameters E and ds in the previous equation are the

modulus of elasticity of the used seals and a character-

istic dimension for the seal, respectively. The quantity ds
is equal to the effective diameter of the seal’s cross sec-

tion times the ratio of the length of the seals divided by

the thin film width. The effective diameter for seals

having square cross section is equal to h0. The term Fn

will be called the Fixation number of the thin film.

The Fixation number Fn represents a ratio between

shear stresses inside thin films to the modulus of elas-

ticity of the used seals. Moreover, Eq. (20) is based on

the assumption that transient behavior of the seal’s de-

formation is negligible. The values of Fn are of order

0.001–0.1 for long thin films supported by soft seals.

The first set of dimensionless boundary conditions

that will be used is for CWTs at both the lower and the

upper plates while the second set is by assuming that the

lower plate is at UHF conditions and the upper plate is

insulated. As such the dimensionless boundary condi-

tions can be written as

CWT

hðX ; Y ; 0Þ ¼ 0; hð0; Y ; sÞ ¼ 0; hðX ; 0; sÞ ¼ 1

hðX ;H ; sÞ ¼ 1;
o

oX
1� hð1; Y ; sÞ
1� hmð1; sÞ

� �
¼ 0

ð22Þ

UHF

hðX ; Y ; 0Þ ¼ 0; hð0; Y ; sÞ ¼ 0;
ohðX ; 0; sÞ

oY
¼ �1

ohðX ;H ; sÞ
oY

¼ 0;
ohð1; Y ; sÞ

oX
¼ r

12Um

1

PSH

�
� ohð1; Y ; sÞ

os

�

ð23Þ

The last condition of Eq. (22) is based on the assump-

tion that the flow at the exit of the thin film is thermally

fully developed. Moreover, the last thermal condition of

Eq. (23) is derived based on an integral energy balance

at the exit of the thin film realizing that the axial con-

duction is negligible at the exit. The calculated thermal

parameters that will be considered are the Nusselt

numbers at the lower and upper plates, and the dimen-

sionless heat transfer from the upper and lower plates,

H, for CWT conditions. They are defined according to

the following equations:

CWT

NuUðX ; sÞ � hch0
k

¼ 1

1� hmðX ; sÞ
ohðX ;H ; sÞ

oY

NuLðX ; sÞ � hch0
k

¼ �1

1� hmðX ; sÞ
ohðX ; 0; sÞ

oY

HðX ; sÞ ¼ ohðX ;H ; sÞ
oY

�
� ohðX ; 0; sÞ

oY

�
ð24Þ

UHF

NulðX ; sÞ � hch0
k

¼ 1

hðX ; 0; sÞ � hmðX ; sÞ
ð25Þ
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where hm and Um are the dimensionless mean bulk

temperature and the dimensionless average velocity at a

given section. They are defined as follows:

hmðX ; sÞ ¼
1

UmðX ; sÞH

Z H

0

UðX ; Y ; sÞhðX ; Y ; sÞdY

UmðX ; sÞ ¼ 1

H

Z H

0

UðX ; Y ; sÞdY

ð26Þ

Due to symmetric flow and thermal conditions for

CWT, it is expected that Nusselt numbers at lower and

upper plates to be equal.

3. Numerical methods

The dimensionless thickness of the thin film was de-

termined by solving Eqs. (19), (20) and (13) simulta-

neously. Accordingly, the velocity field, U and V, was

determined from Eqs. (7) and (8). The reduced energy

equation, Eq. (10), was then solved using the alternative

direction implicit (ADI) techniques by transferring the

problem to one with constant boundaries using the fol-

lowing transformations: s� ¼ s, n ¼ X and g ¼ Y =H .

Iterative solution was employed for the n-sweep of the

energy equation for CWT conditions so that both the

energy equation and the exit thermal condition, last

condition of Eq. (22), are satisfied. The values of 0.008,

0.03, 0.002 were chosen for Dn, Dg and Ds�.

4. Discussions of the results

4.1. Effects of pressure pulsations on the dimensionless

film thickness

Figs. 2 and 3 describe the importance of the Fixation

number Fn on the dimensionless film thickness H and

the dimensionless normal velocity at the upper plate

V ðX ;H ; sÞ, respectively. It is noticed that as Fn increases,

H and absolute values of V ðX ;H ; sÞ increase. It is worth
noting that Soft fixations have large Fn values. Increases

in the viscosity and flow velocities or a decrease in the

thin film thickness, perturbation parameter and the

seal’s modulus of elasticity increase the value of Fn as

Eq. (21) predicts.

The effects of pressure pulsations on H are clearly

seen for large values of Fn as shown in Figs. 2 and 3. At

these values, the frequency of the local maximum or

minimum of H is similar to the frequency of the pressure

pulsations as seen from Fig. 2. Further, the degree of

turbulence at the upper plate is increased when Fn in-

creases as shown in Fig. 3. The fluctuations and the

number of local maximum and minimum in V ðX ;H ; sÞ

are meant by the degree of turbulence at the upper plate.

This is also obvious when the values of cp increase as

shown in Fig. 4. The increase in turbulence level at the

upper plate may produce back flows inside the thin film

at large values of cp. This affects the function of the thin

film especially that used as a chamber for detection

purposes.

For r ¼ 12 where the time average of the average

gage pressure inside the thin film is zero, the variation in

Fig. 2. Effects of Fn on H.

Fig. 3. Effects of Fn on V ðX ;H ; sÞ.
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H decreases as Fn increases. This effect can be seen from

Eqs. (19) and (20) and will cause reductions in the flow

and in the cooling process. However, the mean value of

PAVG is always greater than zero for other values of r
which causes an increase in the mean value of H as Fn

increases resulting in an increase in the mean value of

the flow rate inside the thin film.

Fig. 5 shows the effects of the squeezing number r on

H. Small values of r indicates that the thin film is having

relatively large inlet flow velocities thus it has large

pressure gradients and large values of P0. Accordingly,

H increases as r decreases as seen in Fig. 5. Further, it is

noticed that the degree of turbulence at the upper plate

increases as r decreases. This is shown in Fig. 6. The

changes in the pressure phase shift results in similar

changes in the dimensionless thin film thickness phase

shift as shown in Fig. 7.

Fig. 6. Effects of r on V ðX ;H ; sÞ.

Fig. 7. Effects of up on H.

Fig. 4. Effects of cp on V ðX ;H ; sÞ.

Fig. 5. Effects of r on H.
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4.2. Effects of pressure pulsations on heat transfer

characteristics of the thin film

Figs. 8 and 9 illustrate the effects of Fn and PS on the

dimensionless mean bulk temperature hm and the aver-

age lower plate temperature hW, average of hðX ; 0; sÞ, for
CWT and uniform heat flux UHF conditions, respec-

tively. As Fn increases when softer seals are used, the

induced pressure forces inside the thin film due to in-

ternal pressure pulsations will increase the displacement

of the upper plate as shown before. This enables the thin

film to receive larger flow rates since all the cases pre-

sented in these figures have similar values for the di-

mensionless pressure at the inlet. Thus, more cooling to

the plates results as Fn increases resulting in a decrease in

the hm and average hW values and their corresponding

fluctuations for CWT and UHF conditions, respectively.

The effect of the thermal squeezing parameter PS on the

cooling process is also shown in Figs. 8 and 9. It is

Fig. 8. Effects of Fn and PS on hm (CWT).

Fig. 9. Effects of Fn and PS on hW (UHF).

Fig. 10. Effects of Fn on NuL (CWT).

Fig. 11. Effects of Fn on NuL (UHF).
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shown that the cooling at the plates is enhanced as PS

increases.

Figs. 10 and 11 show the effects of Fn on the Nusselt

number at the lower plate NuL for CWT and UHF

conditions, respectively. It is noticed that the irregularity

in NuL decrease as Fn decreases. This is because the

upper plate will not be affected by the turbulence in the

flow if the used seals have relatively large modulus of

elasticity. In other word, the induced flow due to the

upper plate motion is reduced as Fn decreases resulting

in less disturbances to the flow inside the thin film. This

can be seen in Fig. 12 for UHF conditions where NuL
reaches a constant value at low values of Fn after a

certain distance from the inlet. The values of NuL and

the corresponding fluctuations are noticed to decrease as

Fn increases.

Figs. 13 and 14 illustrate the effects of dimensionless

frequency of the inlet pressure pulsations cp on the av-

erage dimensionless heat transferred from the plates H
and the average hW for CWT and UHF conditions, re-

spectively. The figures show that the mean value of H

Fig. 13. Effects of cp on average H (CWT).

Fig. 14. Effects of cp on average hW (UHF).

Fig. 15. Effects of cp on DH and DhW.

Fig. 12. Effects of Fn on the development of NuL (UHF).
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and hW are unaffected by cp and that the frequency of the

average values of H and hW increase as cp increases. Fig.
15 describes the effects of cp on the fluctuation in the

average H and hW, half the difference between the

maximum and the minimum values of the average H and

hW. The effects of cp on the fluctuation in the average H,

DH, and the fluctuation in the average hW, DhW, are

more pronounced at relatively lower values of cp.

5. Conclusions

Flow and heat transfer inside externally oscillatory

squeezed thin film supported by soft seals in the presence

of inlet internal pressure pulsations have been analyzed

in this work. The governing laminar continuity, mo-

mentum and energy equations were properly non-di-

mensionalized and reduced to simpler forms for small

Reynolds numbers. The reduced equations were solved

by the ADI method. It was found that the turbulence

level at the upper plate increases by increases in both

the Fixation number and the frequency of the inter-

nal pressure pulsations. However, an increase in the

squeezing number decreases the turbulence level at the

upper plate. The fluid temperatures and the corre-

sponding fluctuations were found to decrease when the

Fixation number and the thermal squeezing parameter

were increased for both CWT and UHF conditions.

Finally, fluctuations in the heat transfer and the fluid

temperatures are more pronounced at relatively lower

frequency of internal pressure pulsations. This study can

lead the way for further investigations on the effects

internal pressure pulsations on thin films having rela-

tively large Reynolds numbers.
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