
HEAT TRANSFER AND HYDROMAGNETIC CONTROL OF
FLOW EXIT CONDITIONS INSIDE OSCILLATORY
SQUEEZED THIN FILMS

A.-R. A. Khaled
Department of Mechanical Engineering, The Ohio State University,
Columbus, Ohio, USA

K. Vafai
Department of Mechanical Engineering, University of California,
Riverside, California, USA

The influence of fluids inertia and the effects of the presence of a magnetic field normal to

the direction of the flow of an electrically conducting fluid are studied on flow and heat

transfer inside a nonisothermal and incompressible thin film undergoing oscillatory

squeezing. The governing equations have been nondimensionalized and solved numerically.

Further, the influence of the squeezing Reynolds number, thermal squeezing number,

Hartmann number, and the squeezing frequency are determined. It is shown that flow in-

stabilities appear at large squeezing Reynolds numbers and that the Nusselt number is

affected by inertia effects as a result of increased squeezing Reynolds number. Further, it is

found that flow instabilities are reduced when the magnetic field is introduced.

INTRODUCTION

Flow and heat transfer inside thin films has received a lot of attention in recent
years because it is widely used in engineering applications such as in lubrication, heat
pipes, and microchannels. In certain applications, external disturbances such as
unbalances in rotating machines and increased noise levels from the surroundings
can result in an oscillatory motion at the boundary. Even small oscillating motion
can have a substantial impact, as the thickness of thin films is very small. Accord-
ingly, the dynamics and thermal characterization of thin films will be altered.

The chambers for chemical and biological detection systems such as fluidic cells
for chemical or biological microcantilever probes (Lavrik et al. [1]) are an important
example for thin films. Small turbulence levels that can be introduced into these cells
by either flow pulsating at the inlet or external noise that may be present at the
boundaries, which results in a vibrating boundary, can produce flow instabilities
inside the fluidic cells. These disturbances have large influence on the measurements
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of the biological probes, especially those utilizing microcantilevers, as these detecting
elements are very sensitive to flow conditions. Therefore, a special design for these
fluidic cells is needed in order to transport the target proteins to the probes with
minimum effects of turbulence or thermal disturbances.

Many researchers have analyzed flow in hydrodynamic or squeezed thin films
like Langlois [2], who solved analytically hydrodynamic pressure in isothermal
squeezed films with fluid density varying according to the pressure. Later, toward the
end of the twentieth century, interest in studying flow inside squeezed thin films
increased. For example, Damodaran et al. [3] considered the effect of a moving
boundary on pulsatile flow of incompressible fluid. Further, Bhattacharjee et al. [4]
analyzed the flow of dusty fluids inside squeezed thin films. To the authors’ best
knowledge there are very few studies that considered heat transfer inside squeezed
thin films.

Among those studies that considered effects of squeezing on the temperature
distribution inside the thin film are those of Hamza [5] and Bhattacharyya et al. [6].
Although they considered thermal aspects in their analysis, their work addressed
other aspects not considered in this work. For example, Hamza [5] considered the
external squeezing velocity to have a certain function in order to have similarity
solutions, and he also assumed that temperature is only a function of the coordinate
normal to the axis of the thin film. Bhattacharyya et al. [6] considered a constant
squeezing velocity at one boundary; they assumed also that the temperature field is
one dimensional. Moreover, both works were concerned with flow between two

NOMENCLATURE

B thin film length

Bm magnetic field strength

cp specific heat of the fluid

H dimensionless thin film thickness

Ha Hartmann number

h thin film thickness

hc convective heat transfer coefficient at the

lower plate

h0 reference thin film thickness

k thermal conductivity of the fluid

NuL local Nusselt number at the lower wall

Pr Prandtl number

PS thermal squeezing parameter

p fluid pressure

q0 heat flux at the lower plate

RL lateral Reynolds number

RS squeezing Reynolds number

t time

T temperature in fluid

T1 inlet fluid temperature

Tm mean bulk temperature

U dimensionless velocity in the x-direction

u velocity in the x-direction

v velocity in the y-direction

V dimensionless velocity in the y-direction

x x-coordinate

X dimensionless x-coordinate

y y-coordinate

Y dimensionless y-coordinate

O vorticity

O* dimensionless vorticity

C stream function

C* dimensionless stream function

b dimensionless squeezing motion ampli-

tude

e perturbation parameter

g dimensionless frequency

Z variable transformation for Y-coordinate

m dynamic viscosity of the fluid

y dimensionless temperature in flow field

ym dimensionless mean bulk temperature

r density of the fluid

s squeezing number

sm electrical conductivity of the fluid

t dimensionless time

u kinematic viscosity

o reciprocal of a reference time (reference

squeezing frequency)

x variable transformation for the dimen-

sionless x-coordinate
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parallel disks, and this simplified their flow formulations as the reduced transformed
momentum equations tended to be one dimensional.

Recently, Debbaut [7] considered in his work the influence of external
squeezing on temperature distribution inside thin films. However, in his analysis he
considered a constant squeezing velocity and a fixed volume of squeezed fluid. Later
on, Khaled and Vafai [8] considered heat transfer in incompressible squeezed thin
films with sinusoidal squeezing, but they did not include the inertia effects.

In the literature, Chamkha [9], among many others, considered the effects of
the presence of a magnetic field on the flow and heat transfer inside channels, yet few
of them, including Bhattacharyya and Pal [10], considered the applications of a
magnetic field inside squeezed thin films. As such, the magnetic field effects on both
flow and heat transfer are discussed in this study.

Here we transform into dimensionless forms the vorticity-stream function
formulation and the energy equation for a thin film with its upper plate having
oscillatory motion. The transformed equations have been solved numerically, and
the influence of squeezing Reynolds number, Hartmann number, and squeezing
frequency are determined on both flow and heat transfer characteristics inside the
thin film.

PROBLEM FORMULATION

Consider a two-dimensional thin film that has a small thickness h compared
with its length B. The x-axis is taken in the direction of the length of the thin film,
while the y-axis is taken along the thickness as shown in Figure 1. The lower plate of
the thin film is fixed, while the vertical motion of the upper plate is assumed to have
sinusoidal behavior according to the following relation:

h ¼ hoð1� b cosðgotÞÞ ð1Þ

where ho, b, and o are the reference thin film thickness, upper plate motion ampli-
tude, and a reference frequency, respectively. g is the dimensionless frequency. It is
assumed that the fluid is Newtonian and has constant properties. Further, the fluid is

Figure 1. Schematic diagram.
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assumed to be electrically conducting and that the magnetic Reynolds number is very
small so that the induced magnetic field and the Hall effect of magnetohy-
drodynamics are negligible.

General Model

The general two-dimensional continuity, momentum, and energy equations,
including magnetic field effects for the laminar thin film, are given as

qu
qx

þ qv
qy

¼ 0 ð2Þ

r
qu
qt

þ u
qu
qx

þ v
qu
qy

� �
¼ � qp

qx
þ m

q2u
qx2

þ q2u
qy2

� �
� smB2

mu ð3Þ

r
qv
qt

þ u
qv
qx

þ v
qv
qy

� �
¼ � qp

qy
þ m

q2v
qx2

þ q2v
qy2

� �
ð4Þ

rcp
qT
qt

þ u
qT
qx

þ v
qT
qy

� �
¼ k

q2T
qx2

þ q2T
qy2

� �
ð5Þ

where T, r, p, m, cp, and k are the fluid temperature, density, pressure, dynamic
viscosity, specific heat, and the thermal conductivity of the fluid, respectively.
Further, sm and Bm are the electric conductivity of the fluid and the applied mag-
netic field strength normal to the flow of the fluid inside the flat thin film, respec-
tively.

It is convenient to transform Eqs. (2) through (4) to vorticity stream function
formulations for cases with large inertia effects. These equations are listed below in
dimensional form:

qO
qt

þ u
qO
qx

þ v
qO
qy

¼ u
q2O
qx2

þ q2O
qy2

� �
þ smB2

m

r
qu
qy

ð6Þ

q2C
qx2

þ q2C
qy2

¼ �O ð7Þ

where O and C are the dimensional vorticity and stream functions, respectively. The
vorticity and stream functions are related to the velocity components through the
following:

O ¼ qv
qx

� qu
qy

ð8Þ

u ¼ qC
qy

v ¼ � qC
qx

ð9a; bÞ
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Equation (6) can be approximated as the following for thin films:

qO
qt

þ u
qO
qx

þ v
qO
qy

¼ u
q2O
qx2

þ q2O
qy2

� �
� smB2

m

r
O ð10Þ

This is because the last term in Eq. (6), qu=qy, has a higher order of magnitude than
qv=qx. Therefore, it can be approximated by the negative of the vorticity O.

Boundary Conditions

The dimensional boundary conditions for this problem are listed below:

Cð0; y; tÞ ¼ Voy
q2CðB; y; tÞ

qx2
¼ 0

Cðx; 0; tÞ ¼ 0 Cðx; h; tÞ ¼ Voh� hooxbg sinðgotÞ

Cðx; y; 0Þ ¼ 0 ð11Þ

uð0; y; tÞ ¼ Vo uðx; 0; tÞ ¼ 0 uðx; h; tÞ ¼ 0

vðx; 0; tÞ ¼ 0 vðx; h; tÞ ¼ hoogb sinðgotÞ

Oð0; y; tÞ ¼ �e2
q2Cð0; y; tÞ

qx2

q2OðB; y; tÞ
qx2

ffi 0

Oðx; 0; tÞ ¼ � quðx; 0; tÞ
qy

Oðx; h; tÞ ¼ � quðx; h; tÞ
qy

ð12Þ

Tðx; y; 0Þ ¼ T1 Tð0; y; tÞ ¼ T1 � k
qTðx; 0; tÞ

qy
¼ q0

qTðx; h; tÞ
qy

¼ 0

qTðB; y; tÞ
qx

¼ q0
rcpumðB; tÞhðB; tÞ

� 1

umðB; tÞ
qTmðB; tÞ

qt

ð13Þ

where T1 is the inlet and initial temperatures. qo is a constant representing the heat
flux prescribed at the lower plate, whereas the upper plate is assumed insulated. It is
assumed in Eqs. (11) that the fluid inside the thin film is initially at rest and for t> 0
the inlet velocity is kept constant, which is equal to Vo. The axial gradient of the
normal component of the velocity is considered zero at the exit. Further, the lower
plate is fixed and is assumed to have zero value for the stream function. Accordingly,
the stream function at the upper plate includes the inlet flow rate as well as the flow
rate induced by the motion of the upper plate. Note that this flow has linear dis-
tribution, with x as predicted from the continuity equation. Accordingly, Eq. (7)
suggests that the exit condition for the dimensionless vorticity can be approximated
by the second condition in Eqs. (12).

The thermal boundary conditions and the initial condition are found in
Eqs. (13). The exit condition is derived using an integral energy balance. When the
energy balance is applied, axial conduction is assumed negligible at the exit, and the
axial gradient of the mean temperature at the exit is taken to be similar to axial
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gradients of temperatures there. For highly convective applications, the axial dif-
fusive terms appearing in Eqs. (5) and (6) can be neglected. Therefore, solutions to
these equations will be less dependent on the exit conditions. The terms um and Tm,
defined below, are the exit average axial velocity and the exit mean bulk temperature,
respectively:

Tmðx; tÞ ¼
1

umðx; tÞh

Zh

o

uðx; y; tÞTðx; y; tÞdy ð14Þ

Dimensionless Governing Equations

The following set of dimensionless variables is suggested:

X ¼ x

B
Y ¼ y

ho
ð15a; bÞ

t ¼ ot ð15cÞ

O� ¼ O
ðVo þ oBÞ=ho

C� ¼ C
hoðVo þ oBÞ ð15d; eÞ

y ¼ T� T1

ðqohoÞ=k
ð15fÞ

where O� and C� are the corresponding dimensionless values of O and C, respec-
tively. The introduction of variable (15e) in Eqs. (9a, b) results in the following
dimensionless velocity components:

U ¼ u

Vo þ oB
V ¼ v

eðVo þ oBÞ ð16a; bÞ

The dimensionless vorticity-stream function formulations for the flow inside
the thin film and the dimensionless energy equation are

RS
qO�

qt
þ ðRS þ RLÞ

qC�

qY
qO�

qX
� qC�

qX
qO�

qY

� �
¼ e2

q2O�

qX2
þ q2O�

qY2

� �
�H2

aO
� ð17Þ

e2
q2C�

qX2
þ q2C�

qY2

� �
¼ �O� ð18Þ

Ps
qy
qt

þ 1þ RL
RS

� �
qC�

qY
qy
qX

� qC�

qX
qy
qY

� �� �
¼ e2

q2y
qX2

þ q2y
qY2

ð19Þ

where e ¼ ho=B. Further, RS, RL, PS and Ha are the squeezing Reynolds number,
lateral Reynolds number, thermal squeezing parameter, and the Hartmann number,
respectively. They are defined as follows:

RS ¼ rh2oo
m

RL ¼ rVoho
m

ho
B

� �
ð20a; bÞ
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PS ¼ RS Pr Ha ¼
ffiffiffiffiffiffiffi
sm
m

r
Bmho ð20c; dÞ

where Pr ¼ rcpu=k and it is the Prandtl number of the working fluid.

Dimensionless Boundary Conditions

The dimensionless boundary conditions for the flat thin film that will be
implemented are

C�ð0;Y; tÞ ¼ VoY

Vo þ oB
q2C�ð1;Y; tÞ

qX2
¼ 0

C�ðX; 0; tÞ ¼ 0 C�ðX;H; tÞ ¼ VoHðtÞ � oBXbsinðgÞ
Vo þ oB

Figure 2. Effects of RS on U profiles (low RS).
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C�ðX;Y; 0Þ ¼ 0

Uð0;Y; tÞ ¼ Vo
ðVo þ oBÞ UðX; 0; tÞ ¼ 0 UðX;H; tÞ ¼ 0

VðX; 0; tÞ ¼ 0 VðX;H; tÞ ¼ oBgbsinðgtÞ
Vo þ oB

ð21Þ

O�ð0;Y; tÞ ¼ �e2
q2C�ð0;Y; tÞ

qX2

q2O�ð1;Y; tÞ
qX2

ffi 0

O�ðX; 0; tÞ ¼ � qUðX; 0; tÞ
qY

O�ðX;H; tÞ ¼ � qUðX;H; tÞ
qY

ð22Þ

Figure 3. Effects of RS on U profiles (high RS).
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qyðX; 0; tÞ
qY

¼ �1
qyðX;H; tÞ

qY
¼ 0

yðX;Y; 0Þ ¼ 0 yð0;Y; tÞ ¼ 0

qyð1;Y; tÞ
qX

ffi 1

ð1þ Vo=oBÞUm

1

PSH
� qymð1; tÞ

qt

� �
ð23Þ

where H tð Þ ¼ h=ho. ym is the dimensionless mean bulk temperature. It is equal to

ymðX; tÞ ¼
1

UmðX; tÞH

ZH

0

UðX;Y; tÞyðX;Y; tÞdY ð24Þ

Figure 4. Effects of Ha on U.
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It is suggested to express Eqs. (21) in terms of the following parameter:

s ¼ 12

1þ Vo=oB
ð25Þ

This number is called the squeezing number. Accordingly, Eq. (21) reduces to the
following:

C�ð0;Y; tÞ ¼ 1� s
12

� �
Y

q2C�ð1;Y; tÞ
qX2

¼ 0

C�ðX; 0; tÞ ¼ 0 C�ðX;H; tÞ ¼ 1� s
12

� �
HðtÞ � s

12

� �
Xbg sinðgtÞ

C�ðX;Y; 0Þ ¼ 0

Uð0;Y; tÞ ¼ 1� s
12

� �
UðX; 0; tÞ ¼ 0 UðX;H; tÞ ¼ 0

Figure 5. Effects of Ha on V.
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VðX; 0; tÞ ¼ 0 VðX;H; tÞ ¼ s
12

� �
bg sinðgÞ ð26Þ

The appropriate dimensionless heat transfer parameter is the local Nusselt
number defined at the lower plate, which is defined as follows:

NuLðX; tÞ �
hcho
k

¼ 1

yðX; 0; tÞ � ymðX; tÞ
ð27Þ

where hc is the convective heat transfer at the lower plate.

NUMERICAL ANALYSIS

Equations (17) through (19) are transformed from the X, Y, and t domains into
new computational domains, x¼X, Z ¼ Y=H, and t*¼ t. The transformed equa-
tions are

Figure 6. Effects of Ha on U profiles (high RS).
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RSH
2 qO

�

qt�
þ ðRS þ RLÞUH2 qO

�

qx
þ ðRS þ RLÞV� RSZ

dH

dt�

� 	
H
qO�

qZ

¼ e2H2 q
2O�

qx2
þ q2O�

qZ2

� �
�H2

aH
2O�

ð28Þ

e2H2 q
2C�

qx2
þ q2C�

qZ2

� �
¼ �O�H2 ð29Þ

Ps H2 qy
qt�

þ 1þ RL
RS

� �
UH2 qy

qx
þ 1þ RL

RS

� �
V� Z

dH

dt�

� 	
H

qy
qZ

� �

¼ e2H2 q
2y

qx2
þ q2y
qZ2

ð30Þ

Figure 7. Effects of Ha on O�ðx; 1Þ:
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Equations (28) and (30) were solved using an alternating direction implicit (ADI)
method. Center differencing in space was used for discretizing the dimensionless
vorticity and temperature differential terms, and forward differencing was used to
approximate time differential terms. After each half step of time, Eq. (29) was solved
using the method of successive overrelaxation (SOR).

The axial thermal condition at the exit, the last condition in Eq. (23), and the
differential term qym 1; tð Þ=qt are reducible to qym 1; t�ð Þ=qt�, which in turn can be
approximated by qy 1;Z; t�ð Þ=qt� because the thickness of the used films is small.
Further the dimensionless velocities in Eq. (28) as well as the dimensionless vorticity
at the plates of the thin film, seen in Eqs. (22), were calculated initially at previous
half time steps, and they are corrected later using an iterative procedure for Eqs. (28)
and (29) every half time step. The dimensionless velocities in the reduced energy
equation were evaluated at the present time step.

The value of g in Eq. (1) was chosen to be 3.0 in the developed figures. Note
that other values of g will result in similar physical behavior. Based on extensive
numerical experimentation, the values of 0.0125, 0.05, 0.001, and 1075 were chosen

Figure 8. Effects of RS on NuL.

HEAT TRANSFER AND HYDROMAGNETIC CONTROL 251



for Dx, DZ, Dt*, and the maximum error for stream functions in Eq. (28), respec-
tively. These values resulted in grid and time independence solutions.

DISCUSSION OF RESULTS

Figures 2 and 3 show the effects of the squeezing Reynolds number RS on the
axial velocity profiles at t*¼ 3p=2 when the upper plate reaches its maximum speed
in a relief stage. It is noticed that inlet effects convect large distances from the inlet as
RS increases. This is shown in Figure 3, where the core of the velocity profile be-
comes flatter at x¼ 0.25 as RS increases. Further, it is observed that the vorticity at
both boundaries decreases as RS increases while it increases during squeezing stages.
Flow instabilities start to appear at large RS values as shown in Figure 3. It is worth
noting that the values of RS can be increased either by increasing the film thickness
or by decreasing the fluid viscosity and that the frequency of the disturbance is kept
constant since the squeezing number s is kept constant.

Figure 9. Effects of Ha on NuL.
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Figures 4 and 5 show the influence of the square of Hartmann number Ha2 on
dimensionless axial and normal velocity profiles at the exit, respectively. Imposition
of a magnetic field normal to axial flow produces a resistive force. This force is called
the Lorentz force, which has a tendency to suppress the movement of the fluid. This
suppression is noticed in Figure 4, where the core of the velocity profiles decreases
as Ha increases. However the uniformity of the velocity profiles increases as Ha
increases. With regards to normal velocities, increases in the values of Ha increase
the variations in the dimensionless velocity profiles near the lower plate, yet these
variations are small compared with the variations in the values of Ha. This can be
noticed from Figure 5.

Figure 6 shows the effects of Ha on axial dimensionless velocity profiles for a
relatively large value of squeezing Reynolds number RS at t*¼ 3p=2. The increased
uniformity in the velocity profile that resulted from the imposition of the normal
magnetic field caused the fluid near the lower plate to have enough kinetic energy to
overcome the instabilities due to increases in the pressure during relief stages.

Figure 10. Effects of o on average yW.
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Figure 7 describes the effects of Ha on the axial distribution of the vorticity
evaluated at the top surface O*(x,1) of the thin film at two different times. It is
noticed that O*(x,1) increases as Ha increases due to increases in the Lorentz re-
sistive force. This implies that surface stresses increase as Ha increases since the wall
shear stress is proportional to O*(x,1). Note that wall shear stresses increase as di-
mensionless axial distance x increases during squeezing periods while they decrease
during relief stages as seen in Figure 7. While a magnetic field resulted in a reduction
in flow instabilities inside the thin film at large RS values, it introduced larger flow
resistances. As such, more pumping power is required to maintain a constant average
velocity or a constant flow rate at the inlet.

Figure 8 represents the effects of RS on the history of the local Nusselt number
at the lower plate NuL at the exit of the thin film. Variations in Nusselt numbers are
significant in relief stages where the fluid inertia, thermal transient effects, and
thermal convections are maximum due to increases in flow rates as the volume inside
the thin film increases. Figure 9 illustrates the effects of Ha on the Nusselt number.
Increasing the magnetic strength when Ha increases results in increasing the flow

Figure 11. Effects of o on axial distribution yW.
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near the plates of the thin film, resulting in an increasing convective heat transfer
coefficient at the lower plate; thus Nusselt numbers increase as Ha increases for thin
films with similar average flow rates.

Figure 10 illustrates the effects of varying the squeezing frequency on the
average lower plate temperature yW. The reference frequency for cases 2 and 3 is twice
and three times the frequency of case 1, respectively. It is noticed that the average yW
and its fluctuations decrease as the squeezing frequency increases since this causes
enhancements in thermal convections. Further, a phase shift is recognized between
the different plots due to increases in both inertia and thermal transient effects as
squeezing frequency increases. The axial behavior of the wall temperature yW under
two different squeezing frequencies is shown in Figure 11. When the frequency is
increased by a factor of three, the fluctuations are reduced as shown in Figure 11. This
is because changes that happen to the flow occur at a fast rate as the frequency in-
creases, causing inefficient heat diffusion. In the presence of a magnetic field normal to
the flow direction, increases in Ha cause increases in a convective heat transfer coef-
ficient, which decreases the lower plate temperature as shown in Figure 12.

Figure 12. Effects of Ha on axial distribution yW.
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Figure 13 displays the axial development of the dimensionless temperature
profile at the maximum relief velocity. We can see from this figure that the axial
gradient of this newly defined dimensionless temperature reaches almost negligible
values far from the inlet as shown in Figure 13. Consequently, the following can be
considered as the exit thermal boundary condition inside squeezed thin films, and it
was utilized in developing Figures 10 and 11 to avoid singularities associated with
the exit thermal condition during backflows:

q
qX

yw � y
yw � ym

� �
¼ 0 ð31Þ

Figure 14 shows the effects of the squeezing number s on the Nusselt number
NuL. It is noticed that the Nusselt number is almost unaffected by the squeezing
number, especially at larger values of s. That is because the flow reaches its ther-
mally fully developed conditions at shorter distances for larger s values than for
smaller s values. Accordingly, the Nusselt number is mainly affected by s only if the
inlet velocity is much greater than the maximum induced axial squeezed velocity.

Figure 13. Axial development of temperature profiles.
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Based on the presented results, application of the magnetic field is re-
commended in order to reduce flow instabilities. These can be due internal dis-
turbances such as thin films having pulsating flows or due to external disturbances
such as for oscillatory squeezed thin films. Further, isolating the existing thin films
against vibrations with a lower squeezing frequency will produce a more thermally
stable thin film.

CONCLUSIONS

The flow and heat transfer effects during the squeezing and relief stages for an
incompressible thin film at a wide range of squeezing Reynolds numbers have been
considered in the presence of a magnetic field. Although flow inside thin films has
been studied in the past, the heat transfer characteristics of thin films with oscillating
squeezing boundaries have received less attention especially in the presence of a
magnetic field. In this study, the proper voticity stream function formulations and
the energy equation were nondimensionalized. It was found that flow instabilities

Figure 14. Effects of s on NuL.
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increase as the squeezing Reynolds number increases. These instabilities were found
to decrease as the Hartmann number increases. In addition, the average wall tem-
perature and the corresponding fluctuations in this temperature were found to de-
crease as the squeezing frequency increases. The Nusselt number was found to be
affected by variations in the squeezing Reynolds number, and also the Nusselt
number was found to increase as the Hartmann number increases.
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