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Abstract--In the present study, simu1atioIf of turbulent buoyancy-driven flow in an annulus bounded by 
concentric, horizontal cylinders and adiabatif end walls has been carried out. Time-averaged equations of 
turbulent fluid motion and heat transfer were solved using a wall function approach coupled with the 
standard k-8 model. Discretization of the governing equations was achieved using a finite element scheme 
based on the Galerkin method of weighted residuals. Using a two-dimensional analysis, results were 
obtained for Rayleigh numbers ranging from lo6 to lo9 and the effects of Prandtl number and radius ratio 
on the flow and heat transfer characteristics were thoroughly examined. A wide range of parameters 
(lo6 < Ra -C 109, 0.01 i Pr < 5000, 1.5 i R i 11) was considered in the present study. A comprehensive 
comparative analysis establishing a unified treatment of previous experimental and computational results 
is presented. A good agreement was found between the results from this investigation and previous works. 
Results obtained from a three-dimensional model are also presented to describe more realistic three- 
dimensional flow characteristics. It is shown that, if the annulus is sufficiently long, there exists a core 

region over a substantial length of the cavity, which can be approximated by a two-dimensional model. 

INTRODUCTION 

NATURAL convection in annular cavities bounded by 
co-axial, horizontal cylinders has been investigated 
widely in the past owing to the number of practical 
applications associated with this geometry such as 
heat transfer and fluid flow in nuclear reactors, ther- 
mal storage systems, electrical transmission cables, 
and electronic component cooling among others. A 
detailed literature review of early research pertinent 
to. this geometry can be found in Kuehn and Goldstein 
[ 11. In their work, a thorough two-dimensional inves- 
tigation was carried out covering the range of Ray- 
leigh numbers from pure conduction to the laminar 
boundary layer regime. Transient results for this 
geometry were presented by Tsui and Tremblay [2]. 
Results for two-dimensional, laminar, buoyancy- 
induced flows have been established to an extent that 
this configuration is used as a source of comparison 
for validating relevant numerical codes. The effect of a 
constant heat flux on the inner cylinder as compared 
to an isothermal inner cylinder has also been studied 
(Kumar [3] and Castrejon and Spalding [4]). 

It is known that, due to the viscous shearing effects 
at the end walls, a three-dimensional analysis of buoy- 
ancy-induced flow and heat transfer is necessary when 
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the annulus has a finite length. Takata et al. [S] per- 
formed an analytical and experimental investigation 
of natural convection in an inclined cylindrical annu- 
lus with a heated inner and cooled outer cylinder. 
Their results revealed the existence of a co-axial 
double helical flow pattern inside the cavity. However, 
their results were obtained only for a high Prandtl 
number fluid (Pr = 5000) and therefore limited their 
range of practical applicability. A three-dimensional 
analysis for air (Pr = 0.7) was presented by Fusegi 
and Farouk [6] for a differentially heated annulus. 
The small cylinder length considered by them ensured 
that the end-wall effects were evident in the fluid 
motion. In a recent study, Vafai and _Ettefagh [7] 
carried out a numerical study of the transient, three- 
dimensional natural convection process in a hori- 
zontal annulus. A detailed explanation of the d?vel- 
opment of the flow and temperature fields is presented 
in their work. To accurately detect the two-dimen- 
sional nature of the flow field in the core region, an 
annulus with a length-to-outer radius ratio of at least 
4 was used. Their results show that for the aspect ratio 
considered, the temperature distribution within the 
core region of the annulus remains unchanged. 

Experimental studies (Kuehn and Goldstein [l]) 
using air as a working fluid suggested the transition 
from laminar to turbulent flow when the Rayleigh 
number (based on gap width) approaches lo6 for a 
radius ratio of 2.6. The transition Rayleigh number 
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NOMENCLATURE 

k turbulent kinetic energy Greek symbols 
L gap width, R, - R, thermal diffusivity 
L, length of the annular enclosure ; volume expansion coefficient 
n outward normal from the surface A height of the wail element 
Pr Prandtl number, v/cl & dissipation of turbulent K.E. 
Pr, turbulent Prandtl number EP turbulent dissipation at the first grid 
P pressure point away from the wall. 
R radius ratio, RJR, Von Karman constant 
Ra Rayleigh number, g/IATL3/va x thermal conductivity 
R, radius of the inner cylinder 3 turbulent thermal conductivity 
& radius of the outer cylinder Zff effective thermal conductivity 
T temperature F dynamic viscosity 
T+ temperature obtained from the & turbulent viscosity 

universal near-wall profile F&K effective viscosity 
T, temperature of the inner cylinder V kinematic viscosity 
T0 temperature of the outer cylinder 
u characteristic velocity, (a/L) m Subscripts 
u+ velocity obtained from the universal 1 laminar 

near-wall profile. t turbulent. 

depends on the radius ratio of the annular geometry 
and the Prandtl number of the working fluid. Theor- 
etical studies to simulate turbulent processes are 
extremely difficult owing to the fact that resolution of 
the small-scale eddies (to capture the details of the 
flow) poses a massive computational task. The com- 
plete simulation of a turbulent flow problem could 
involve the solution of the unsteady Navier-Stokes 
equations (direct numerical simulation-DNS). How- 
ever, the mesh size and the time-step size required to 
capture the details of the flow field must be very small 
thus necessitating the need for large amounts of com- 
puter memory and CPU time. Modeling approaches 
therefore rely on solutions for the time-averaged 
values of the turbulent quantities. 

While the study of forced convection turbulent 
flows has advanced to some extent, theoretical 
research involving simulation of turbulent natural 
convection processes is still in a premature stage. A 
major portion of the research pertinent to turbulent 
buoyancy-induced flows is limited to flow near hot, 
vertical walls. A comprehensive literature review of 
the studies carried out for flow near a vertical, heated 
wall is mentioned elsewhere [8]. To date, reported 
results on turbulent natural convection in cavity type 
configurations have been very limited. Markatos et al. 
[9] developed a computational procedure for cal- 
culating natural convection flows in enclosures con- 
taining a fire source. The k-c model of Launder and 
Spalding [lo] was used to obtain results in their study 
which was motivated by the need to investigate buoy- 
ancy-induced smoke flow in enclosures. In another 
study, Markatos and Pericleous [ 1 l] studied turbulent 
natural convection in a square cavity with differ- 
entially heated side walls. Results were presented for 

air up to Rayleigh numbers of 1016. Their study also 
included a thorough grid-independence study includ- 
ing the use of a very fine mesh in near wall regions for 
higher Rayleigh numbers. Ozoe et al. [ 121 also utilized 
the k-c turbulence model to compute turbulent natu- 
ral convection of water in rectangular channels. The 
Nusselt number and flow field results obtained by 
them agreed well with available experimental and 
numerical data. It appeared that a more refined tur- 
bulence model and finer grid divisions were required, 
particularly for high Rayleigh numbers. Their study 
included sensitivity tests to examine the effects of 
changing some of the constants of the k--E model. Hum- 
phrey and To [13] predicted steady free and mixed 
convection in open rectangular cavities of several rec- 
tangular cross-sections and orientations by extending 
the low Reynolds number approximation proposed 
by Jones and Launder [14]. Essentially, this involved 
calculations all the way down to the viscous sublayer. 
Damping of turbulent fluctuations in the near-wall 
region were simulated by using a Van Driest relation 
for variation of turbulent viscosity. Henkes et al. [ 151 
studied natural convection in a square cavity with 
three different turbulent models : (i) the standard k-c 
approach with wall functions ; (ii) the low Reynolds 
number model of Chien [16] ; and (iii) the low Reyn- 
olds number model of Jones and Launder [ 141. Com- 
parisons against experimental data showed that the 
low Reynolds number models gave better predictions 
than the standard k-c model with wall functions. 

Relatively little amount of experimental work has 
been done to study buoyancy-induced annular flow in 
the turbulent regime. Kuehn and Goldstein 1171 have 
presented some experimental data for natural con- 
vection in concentric and eccentric annuli. Most of 
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their data, however, lie in the laminar regime though bulent regime. In the present study, simulations of 
some results have been presented in the turbulent turbulent natural convection in a horizontal annulus 
regime (Ra > 106). More recently, an experimental have been investigated. Results were obtained using 
study of turbulent natural convection of helium in both a two-dimensional (infinitely long annulus) and a 
a horizontal annulus at cryogenic temperatures was three-dimensional model (annulus with finite length). 
performed by Bishop [ 181. He presented results show- The standard k-c turbulence model combined with 
ing time-averaged temperature profiles and overall specialized wall elements to account for the low Reyn- 
heat transfer rates for gap-width Rayleigh numbers olds number effects in the near-wall region was used. 
ranging from 6 x lo6 to 2 x 109. The expansion number Results presented here have been obtained using a 
(BAT) ranged from 0.25 to 1.0 for a constant program based on the Galerkin method of weighted 
Pr = 0.688 and diameter ratio of 3.36. They con- residuals [29]. A wide range of Rayleigh numbers has 
cluded that the heat transfer results are significantly been considered in the present study. Furthermore, 
affected by the value of the expansion number as well the role played by the radius ratio and the ther- 
as the Rayleigh number. McLeod and Bishop [19] mophysical properties of the working fluid in enhanc- 
used the same experimental set-up of Bishop [18] for ing or decreasing heat transfer rates in the annulus 
a radius ratio of 4.85 and gap-width Rayleigh numbers have been considered. These are important aspects 
ranging from 8 x lo6 to 2 x 109. The nature and extent from an engineering design point of view. Detailed 
of the turbulence in the convective flow was preented 
by means of the fluctuations in temperature. Their s!udy 

grid-independence and parametric studies were 
implemented using the two-dimensional model. The 

further verified the conclusions derived by Bishop three-dimensional analyses reveals some of the impor- 
[ 181 that a higher expansion number implies a lower core tant features of the flow and temperature fields similar 
temperature, resulting in higher heat transfer rates. to those in the laminar regime. 

To the best of the authors’ knowledge, the works of 
Farouk and Guceri [20], Fukuda et al. [21, 221 and 
Morita et al. [23] are the only reported theoretical 
results pertinent to turbulent natural convection in 
an annular geometry. Using a two-dimensional 
approach, Farouk and Guceri [20] obtained numerical 
solutions of the steady-state, buoyancy-induced flow 
in an annulus. They used a k--E turbulence model pro- 
posed by Launder and Spalding [lo] for forced con- 
vection flows. Turbulent flow results were presented 
for Rayleigh numbers of lo6 and 107. A radius ratio 
of 2.6 was used to obtain the results, which were 
also compared with some of the experimental data 
presented by Kuehn and Goldstein [ 11. Fukuda et al. 
[21] carried out a direct numerical simulation (DNS) 
of turbulent natural convection in a horizontal annu- 
lus using an explicit leap-frog scheme. A radius ratio 
of 2 was used. Both oscillatory and turbulent flow 
were realized for Rayleigh numbers up to 6 x 10’. They 
found that DNS simulated the flow pattern and iso- 
therms fairly well. All results were verified by measure- 
ments of the velocity and temperature fields and their 
turbulent characteristics measured with a hot wire 
anemometer and thermocouples, respectively. 
Fukuda et al. [22] obtained three-dimensional results 
for Rayleigh numbers up-to 1.18 x 109, using DNS 
and large eddy simulation (LES). Comparison with 
experimental data showed good agreement. Morita et 
al. [23] also simulated three-dimensional, unsteady 
turbulent natural convection in an annulus to dem- 
onstrate the validity of DNS for this category of prob- 
lems. 

This study thus provides useful data on turbulent 
natural convection in an annular geometry. The wide 
range of Rayleigh numbers, thermophysical proper- 
ties and annulus dimensions examined make the pre- 
sented information in this work very useful from an 
application point of view. To the best of the authors’ 
knowledge, these are the first documented results on 
three-dimensional turbulent natural convection along 
with information on axial effects. Even though three- 
dimensional simulations (Fukuda et al. [21,22], Mor- 
ita et al. [23]) of this problem have been carried out 
in the past, the influence of the axial end-walls on the 
flow and temperature fields has not been studied at 
all. Virtually nothing has been mentioned to explain 
the three-dimensional characteristics of the various 
flow variables in the turbulent regime. The three- 
dimensional results documented in the present work 
attempts to enhance the understanding of this aspect 
of the problem. It is also shown that, for a sufficiently 
long annulus, the variable field in the core region 
of the cavity can be calculated accurately by a two- 
dimensional analysis. An additional contribution of 
this work is the detailed investigation of various ther- 
mophysical and geometric characteristics-of the two- 
dimensional turbulent natural convection which has 
not been done before. Therefore, these results should 
serve as a stepping stone toward the study of more 
complicated turbulent buoyancy-induced processes in 
the future. 

ANALYSIS 

Both two-dimensional and three-dimensional simu- 
lations related to turbulent natural convection in 
annular cavities are very rare. There is a need to model 
high Rayleigh number natural convection processes 
because a significant number of real-life problems 
involving natural convection are indeed in the tur- 

Gotlerning equations 
The physical model used in the present study 

(shown in Fig. 1) comprises of an annular gap 
enclosed between two concentric, horizontal cylinders 
of radii R, (inner cylinder) and R, (outer cylinder). 
The length of this annular enclosure is L, and it is 
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FIG. 1, A schematic sketch of the annular cavity considered 
in the present study. 

closed at both its axial ends. The natural convection 
flow is driven by the temperature difference between 
the hot inner cylinder (T = T,) and the cold outer 
cylinder (T = T,). The axial end walls of the annulus 
are assumed to be adiabatic. 

Using the Boussinesq approximation for the density 
variation in the buoyancy term, the time-averaged 
Reynolds equations governing turbulent natural con- 
vection in the annular enclosure, using indicial 
notation are written as : 

continuity : 

momentum : 

IA /.J = 0, (1) 

= -p.t- 

energy : 

K.E. : 

J=G T, = GeffqJ’ (3) 

dissipation : 

All variables in the above equations are non-dimen- 
sionalized as follows (superscripts have been dropped 
for convenience) : 

x, ,y* = - u* =; T* = 

’ L ’ 

k* =,rr E* =F: 0 a,’ = __ 
V/L I/2/L? 

Further : 

A* -KPr /I$*= 1+1:, 
’ - Pr, 

and L = the gap width of the annulus = R,- Ri, and 

U = (a/L) V/%6, are the characteristic length and 
velocity, respectively. The values of the constants that 
appear in the governing equations are : c, = 1.44, 
c2 = 1.92, cj = 1.44, cp = 0.09, Pr, = 1.0, crk = 1.0 
and crE = 1.3. These values are based on the turbulence 
model proposed by Fraikin er al. [24]. Excluding c3, 
all the above constants are well-established from data 
obtained for turbulent forced convection flows. 
Hence, we have not made an attempt to change these 
constants even though preliminary studies showed 
that these constants had a negligible influence on the 
present results. Therefore, the same constants were 
used throughout our study and for all the compari- 
sons. A sensitivity analysis of c, alone was carried out 
since this constant influences the buoyancy term in 
the E equation. The results of this analysis revealed 
very little change in the Nusselt number and flow 
variables with a significant variation of c3. 

Turbulence model 
The main challenge associated with the simulation 

of turbulent flows using the k-6 model is the resolution 
of sharp gradients of the flow variables in the near- 
wall region. A large number of grid points would be 
required in the viscous sublayer close to solid bound- 
aries. This leads to a tremendous increase in CPU time 
and storage. Another difficulty stems from the fact 
that the standard k-8 approach (essential to model 
the high Reynolds number flow in the core region) 
cannot be used to model the effects of viscosity on 
the turbulence field in the viscous sublayer (the low 
Reynolds number effects on turbulence). 

Ciofalo and Collins [25] have presented a critical 
review of different wall treatments presented in con- 
junction with the k--E model. Traditionally, the basic 
approaches to the near-wall modeling are: (i) wall 
functions to match the viscous sublayer with the outer 
turbulent flow; (ii) low Reynolds number k-8 model 
to compute the turbulent viscosity in the near-wall 
region ; and (iii) multizone modeling, i.e. using a one- 
equation model near the wall and a two-equation 
model away from it. 

In the scheme used in the present work, the fully 
turbulent outer flow field and the physical boundary 
are “bridged” by using a single layer of specialized 
wall elements. The interpolation functions in these 
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wall elements are based on universal near-wall 
profiles. They are functions of the characteristic tur- 
bulent Reynolds numbers which accurately resolve the 
local flow and temperature profiles. The turbulent 
diffusivity in the near-wall region is calculated by 
using Van Driest’s mixing length approach. The stan- 
dard k--E equations are solved in the part of the com- 
putational domain excluding the wall element region. 
The elliptic form of the mean conservation equations 
are solved throughout the computational domain. 
However, the k--E model is applied only up to and 
excluding the wall elements. The application of the 
present approach to complicated forced flows involv- 
ing strong and subtle flow reversal has already been 
demonstrated by Haroutunian and Engelman [26]. 
The resulting model was found to be more accurate 
and computationally more effective than the k-c: 
model using standard wall functions. A brief *s;rip- 
tion of this model is given below. 

As mentioned before, the viscosity-affected region 
between the wall and the fully turbulent region away 
from the wall is represented by means of a single layer 
of special elements. These specialized shape functions 
which are based on universal near-wall velocity pro- 
files accurately resolve the velocity profiles near the 
wall. The functional form used for the wall element is 
that given by Reichardt [27] : 

u+ = fa(y+) = k In (1+0.4y+) 

+7.8[1-exp(-:.7));;exp(-0.331+)]. (6) 

The univeral profile used for temperature takes the 
following form : 

T+ = ji(y’, Pr, Pr,) = PrD,u+ 

+Pr,(l -DT)(uf +PT), (7) 

where 

(8) 

R’+ t 
and PT, based on the Jayatilleke correlation [28], is 
given by : 

PT = 9.24(R:75 -1)[1+0,28exp(-O.O07R,)]. 

(10) 

The interpolation functions in the specialized 
elements are constructed using a tensor product of the 
one-dimensional basis functions corresponding to the 
local coordinate directions in the element. The basis 
functions in the direction along the wall are the. same 
as the elements in the rest of the computational 

domain. In the direction normal to the wall, the inter- 
polation functions are based on equations (6))(10). 

Boundary conditions 
Since the flow is expected to be symmetric about 

the vertical plane of the annulus, only one-half of the 
annulus in the angular direction was considered in the 
present simulation. To allow sufficient resolution in 
the axial direction, only half the length of the annulus 
was considered. The flow field and temperature dis- 
tribution are expected to be symmetric about the mid- 
axial symmetry plane. The validity of this assumption 
about the mid-axial plane was further verified by simu- 
lating the entire annular domain. It was observed that 
the symmetry condition is justified. No exchange of 
energy occurs across the symmetry planes. The bound- 
ary condition applied here therefore requires that the 
normal velocity, i.e. the angular velocity for the angu- 
lar symmetry plane and the axial velocity for the mid- 
axial symmetry plane be zero. Gradients of the 
remaining variables : radial velocity, axial velocity, 
temperature, kinetic energy and dissipation are 
assumed to be zero at the symmetry planes. At all solid 
walls of the cavity, the no-slip boundary condition for 
velocity is applied. The inner and outer cylinders are 
isothermal whereas the axial end walls are insulated. 
As mentioned earlier, in the wall elements immediately 
next to the solid walls of the cavity, the k and E equa- 
tions are not solved. Hence, boundary conditions for 
these variables are applied at the first grid point away 
from the wall. These are : 

ak -_=O 
an 

Ep _ (e,k)‘.5 
KA 1 

at the first grid point away 
from the wall. 

This boundary condition fork plays an important role 
in the approach used here. It allows the value of k to 
adjust in response to the turbulence processes in both 
local and neighboring regions. 

Numerical scheme 
The discretization of the set of governing equations 

(l)-(5) along with the boundary conditi&s was car- 
ried out by using a finite element formulation based 
on the Galerkin method of weighted residuals.‘Yhis 
results in a highly non-linear, coupled system of 
algebraic equations. This system of equations was 
then solved by using an iterative solution scheme 
based on the segregated solution algorithm. Basically, 
this scheme involves decomposition of the entire sys- 
tem of equations into smaller subsystems. Each sub- 
system is then solved by using an iterative solver. 
Convergence was assumed to have been reached when 
the relative change in variables between consecutive 
iterations was lo- 3. In addition, heat imbalance 
allowed between the inner and outer cylinders was 
found to be negligible for each case. Computations 
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were carried out on the Cray YMP Supercomputer 
and Silicon Graphics IRIS (R4000) workstation. 

Heat transfer results 
Heat transfer results are presented in terms of the 

Nusselt number which is defined as the ratio of the 
actual heat transfer rate to the pure conduction heat 
transfer rate. Thus the expressions for the Nusselt 
number over the inner and outer cylinders, respec- 
tively, are given by : 

A second-order accurate three-point differencing 
scheme was used to calculate the Nusselt number 
results. The mean Nusselt number is obtained by inte- 
grating the local Nusselt number over the inner or 
outer cylinders. 

RESULTS AND DISCUSSION 

In the present work, results obtained using both a 
two-dimensional as well as a three-dimensional model 
are described. Detailed parametric studies were made 
using the two-dimensional model. The effects of the 
governing dimensionless parameters, namely the Ray- 
leigh number and Prandtl number, on the flow and 
temperature distributions in the annulus were 
thoroughly examined. The influen& of geometric par- 
ameters such as the radius ratio was studied in detail. 
Majority of the results presented here are for an inner 
cylinder temperature of T, = 1, an outer cylinder tem- 
perature of T, = 0, radius ratio equal to 2.6 and using 
air (Pr = 0.7) as the working fluid. These values were 
chosen so as to facilitate comparisons with available 
experimental data. For each case studied here, the 
characteristic velocity scale based on Ra = lo6 and 
Pr = 0.7 was used to present the non-dimensional 
results. Heat transfer results are presented by means 
of plots showing the Nusselt number variation with 
the angular position, where the angle (degrees) is mea- 
sured from the bottom angular position of the annu- 
lus. For the three-dimensional results, the axial 
location was measured from the solid wall of the annu- 
lus. i.e. z = 0 at the solid wall. 

As part of the solution strategy, results were first 
obtained for the laminar regime up to a Rayleigh 
number of IO’. The laminar results had already been 
validated in a previous study [30]. These results have 
been compared with previous experimental and 
numerical data of Takata et al. [5] and Vafai and 
Ettefagh [7]. To obtain the results for Ra = 10h and 
higher, the turbulence model discussed in the previous 
section was utilized. The flow and temperature fields 
obtained for Ra = lo5 were used as an initial estimate. 
For the turbulence variables, i.e. the turbulent kinetic 

energy and turbulent dissipation, it was found that 
some amount of experimentation was required to pro- 
vide a good initial guess. The initial guess had a crucial 
effect on the time required in achieving converged 
solutions. It should be noted that non-zero values of 
these variables were essential in initiating the tur- 
bulent flow calculations. An under-relaxation factor 
of 0.5 and streamline upwinding was used for all the 
variables. However, it should be noted that the initial 
guess had no effect on the final converged result. 

Grid-size independence and comparison against exper- 
imental results 

The two-dimensional model was based on the 
assumption that the annulus is long enough so that 
axial effects can be neglected. Hence motion is confined 
to the radial plane and the z-direction dependence is 
removed from the problem. A detailed grid inde- 
pendence study was carried out on the two-dimen- 
sional model. Preliminary results were obtainedusing 
a 41 x 41 mesh comprised of linear elements. A vari- 
able mesh grading was used in both the angular and 
radial directions for all grid distributions, such that 
the mesh size at the boundaries was half of the mesh 
size at the center of the computational domain. To 
confirm that the mesh used was sufficiently fine, results 
were then obtained by increasing the grid points to 61 
in both directions. A comparison of magnitudes of 
velocity, turbulent kinetic energy and turbulent vis- 
cosity showed that these values changed by less than 
1%. The temperature fields were also in good agree- 
ment. However, a comparison of the Nusselt numbers 
from the two cases showed some change. Since this 
was not acceptable, another run was made using a 
8 1 x 8 1 mesh. It was observed that the flow and tem- 
perature fields remained unchanged and further, the 
maximum change in the Nusselt number was approxi- 
mately lo!, thus indicating that results were now in- 
dependent of the grid size. The Nusselt number vari- 
ation over both cylinders as a function of the angular 
position for different mesh sizes is shown in Fig. 2. 

Since no experimental data under standard pressure 
conditions were available for the present configur- 
ation, a rough comparison of the present results with 
some experimental results corresponding to a high 
pressure system were made. To this end, the inner and 
outer cylinder Nusselt number results were compared 
against some of the experimental results of Kuehn and 
Goldstein [17], as shown in Fig. 3. Nusselt numbers 
over the inner and outer cylinders compared against 
their experimental data are shown in Fig. 3. The Nus- 
selt number values obtained by Farouk and Guceri 
[ZO] are also shown in this figure. The 61 x 61 mesh 
with 3-point differencing (represented by the solid line 
in the graph) is used to determine the Nusselt number 
values in the present study. Numerical results for 
Ra = lo6 were compared against the experimental 
results of Kuehn and Goldstein [17] for 
Ra = 8.02 x lo6 and 2.51 x 106. The 61 x61 mesh 
using 3-point differencing (solid line in Fig. 3) was 
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FIG. 2. Grid-size Independence of Nusselt number values-Ra = 106, Pr = 0.7 and RJR, = 2.6 : (a) inner 
cylinder; and (b) outer cylinder. 

used to present the heat transfer results. As seen from of Kuehn and Goldstein [17] were carried out for 
the figure, the numerical results obtained in the pres- pressurized nitrogen. Though the Prandtl number is 
ent study over-predict the heat transfer rates over the the same in both cases, it should be noted that the 
experimental results. This difference (9?4 maximum) high pressure during the experiments could change 
could be as a result of the fact that the experiments the physical processes underlying this phenomenon. 
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Frc;. 3. Comparison of present results using different methods against experimental‘data of Kuehn and 
Goldstein [17] and Farouk and Guceri [20]--Ra = 10”. Pr = 0.7 and R,/R, = 2.6 : (a) inner cylinder; and 

(b) outer cylinder. 

Furthermore, the energy equation in the present form presented by them showed good qualitative agreement 
is valid only for gases at low pressures. with our results. We have used a 3-point differencing 

Farouk and Guceri [20] have presented a similar scheme for obtaining the Nussselt number results at 
comparison of iheir numerical results against the both the inner and outer cylinders. Farouk and Guceri 
experimental data of Kuehn and Goldstein [17]. Their [20] do not discuss the method used to determine 
results showed better agreement with the experimental the Nusselt number values. In addition, there is no 
data. This was puzzling since the temperature field mention of grid-size independence being established 
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in their work, where they used a relatively coarser 
mesh (41 x 51) to obtain their results. We therefore 
experimented with different methods and different 
mesh sizes to study the influence of the differencing 
scheme on the Nusselt number results. The best com- 
parison with the experimental results was obtained 
when a 41 x 41 mesh with a 2-point differencing was 
used to obtain the Nusselt number results. However, 
it was observed that grid-size independent Nusselt 
number values could not be obtained when 2-point 
differencing was used. Further, the magnitude of the 
truncation error is much lower when 3-point diff- 
erencing is used. All Nusselt number values presented 
here are therefore obtained using the 3-point diff- 
erencing scheme. 

It was observed that heat transfer rates increase 
gradually from the bottom of the inner cylinder up to 
about 60”. The Nusselt number value reaches 9 peak 
and then decreases continuously till the top of the 
inner cylinder. This behavior can be explained as 
follows. At high Rayleigh numbers, the center of 
rotation of the recirculating eddy moves upward in 
the annular cavity. Hence, the stagnation point on the 
inner cylinder moves to 60” from the bottom angular 
plane. This is the reason for the increase in the Nusselt 
number along the inner cylinder initially in the bottom 
portion. The minimum heat transfer rate is at the 
top angular position because of the boundary-layer 
separation. The heat transfer rates along the outer 
cylinder, on the other hand, show a continuous in- 
crease from the bottom to the top angular position. 

As a further test of the accuracy of the numerical 
results obtained in the present study, the time-aver- 
aged temperature distribution within the cavity was 
compared for a radius ratio of 2.6, Pr = 0.7 and 
Ra = 2.51 x lo6 against the experimental results of 
Kuehn and Goldstein [17]. Results for the same case 
were also compared with the numerical results of 
Fukuda et al. [22]. These comparisons are shown in 
Fig. 4a. The time-averaged temperature profiles are 
shown at three angular locations for clarity of pres- 
entation. The numerical results obtained in the present 
study show very good agreement with these previously 
published experimental results. As mentioned in the 
paper, the discrepancies can be attributed to the fact 
that the experiments were not carried out under stan- 
dard pressure conditions. Further, the numerical 
modeling is based on the assumption of constant 
thermophysical properties. At high Rayleigh numbers, 
the temperature differences involved in the process 
are significant. In reality, thermal conductivity of air 
increases with an increase in temperature. In the 
numerical model, a constant thermal conductivity 
based on the film temperature (T,,+ T,)/2 was used. 
Hence, the numerical model uses a higher thermal 
conductivity in the lower region (where the actual tem- 
peratures of the fluid are lower) of the annulus and a 
lower thermal conductivity in the upper region of the 
annulus. This explains the higher temperatures pre- 
dicted by the numerical model in the lower region of 

the annulus and lower temperatures in the upper 
region of the annulus when compared with the exper- 
imental data. 

An additional source of comparison is the exper- 
imental study of tutbulent natural convection of 
helium in a horizontal annulus at cryogenic tem- 
peratures performed by Bishop [ 181 and McLeod and 
Bishop [ 191. Numerical runs were carried out to simu- 
late the conditions under these experiments. Wherever 
possible, comparisons are also presented with results 
from the numerical simulations of Fukuda et al. [22]. 
Figure 4b and c shows comparisons of time-averaged 
temperature profiles against these previous exper- 
imental and numerical results. It is apparent from 
these figures that the results obtained using the present 
model are in good agreement with the experimental 
results. As mentioned above, the minor discrepancies 
could arise from the fact that the constant property 
assumption is not a very accurate one at high Rayleigh 
numbers due to the high temperature differences 
involved. 

Ejyect of Rayleigh number 
Figures 5-7 depict the streamlines, isotherms, tur- 

bulent kinetic energy contours and dissipation con- 
tours for Ra = 106-10’ for the nominal radius ratio 
(2.6) and Pr = 0.7. As seen from these figures, the 
time-averaged mean flow field exhibits the recir- 
culating kidney-shaped pattern at these higher Ray- 
leigh numbers. The basic structure of the flow field is 
found to be composed of: the increase in the thickness 
of the thermal boundary layer along the inner cyl- 
inder ; the rise of the hot buoyant plume toward the 
top of the outer cylinder ; entrainment of the buoyant 
plume into the thermal boundary layer along the outer 
cylinder; and finally the separation of the boundary 
layer from the outer cylinder to complete the recir- 
culation pattern inside the cavity. The turbulent kin- 
etic energy contours indicate high turbulence levels 
near the top of the outer cylinder and near the center 
of rotation of the recirculating flow. For the Rayleigh 
numbers considered, the turbulent viscosity is found 
to be maximum near the center of rotation indicating 
that the Reynolds stress assumes a large value in this 
region. 

As the Rayleigh number increases, the separation 
point of the inner cylinder boundary layer moves 
upward causing the isotherms to cluster to a grqter 
extent around the inner cylinder circumference. The 
center of rotation of the recirculating flow pattern 
moves toward the vertical symmetry plane and the 
boundary layers along the inner and outer cylinders 
are much thinner. From the values of the turbulent 
viscosity and turbulent kinetic energy within the 
cavity, it can be seen that, as expected, the turbulence 
intensities within the cavity increase with an increase 
in Rayleigh number. 

The increased strength of the convective flow in the 
cavity is expected to manifest itself into increased heat 
transfer rates inside the cavity. This can be seen from 
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(b) 

W 
FIG. 5. Time-averaged turbulence variables--Ra = 106. Pr = 0.7 and RJR, = 2.6: (a) streamlines; (b) 

isotherms ; (c) turbulent K.E. ; and (d) turbulent viscosity. 

the graphs presented in Fig. 8, where Nusselt number 
results are presented for the range of Rayleigh num- 
bers considered here. It can be observed that the 
delayed boundary-layer separation at the inner cyl- 
inder surface causes the heat transfer rates to be more 
uniform at higher Rayleigh numbers except in the 
region at the top where the buoyant plume separates 
from the inner cylinder. The heat transfer rates at the 
outer cylinder maintain the increasing trend from the 
bottom to the top of the outer cylinder. However, the 
magnitudes are considerably higher because of the 
stronger convective flow at higher Rayleigh numbers. 

Effect qf Prandtl number 
Flow of air (Pr = 0.7) in an annulus with 

RJR, = 2.6 becomes turbulent at approximately 

Ra = 106. The results for this geometry and fluid have 
aleady been presented in the previous sections. 
Additional calculations were made for a9 annulus 
with the same dimensions and containing fluids v@h 
Pr = 0.01,7, 100, 1000 and 5000 to study the effect of 
this thermophysical property on the flow and heat 
transfer characteristics. The transition to turbulence 
is expected to occur at a later stage for fluids having 
higher Prandtl numbers. Results are presented for a 
radius ratio of 2.6 at Ra = 108, i.e. at the higher end 
of the Rayleigh number spectrum. The variable field 
at the lower Prandtl number was used as an initial 
guess to obtain the solution for the higher Prandtl 
numbers. The turbulent viscosity was found to 
decrease with an increase in Prandtl number, thus 
indicating lower levels of turbulence at the same Ray- 
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(b) 

FIG. 6. Time-averaged turbulence variables--Ra = IO’, Pr = 0.7 and RJR, = 2.6 : (a) streamlines ; 
(b) isotherms ; (c) turbulent K.E. ; and (d) turbulent viscosity. 

leigh number (e.g. the maximum turbulent viscosity 
was found to be 2944 for the Pr = 0.01 case and 4.2 
for the Pr = 100 case). 

An interesting phenomenon was observed for the 
Pr = 0.01 case. The natural convection flow field 
within the cavity was found to be a combination of 
two recirculation loops of equal strength which com- 
bine with each other at approximately the 90” angular 
position of the cavity. Basically, as fluid rises along 
the inner cylinder, part of it separates at the mid- 
angular (90”) position of the inner cylinder and gets 
entrained into the outer cylinder boundary layer. 
whereas the rest of the fluid continues on its upward 
path, separates near the top of the inner cylinder and 
impinges on the top of the outer cylinder (not shown 
here for brevity). The early separation is due to the 

fact that the fluid inertia is not enough to withstand 
the adverse pressure gradient due to the curvature 
of the inner cylinder. This bicellular flow was more 
apparent at lower Rayleigh numbers. At Ra = lo*, 
these two cells have combined to form a single loop 
within the cavity (Fig. 9a). Furthermore, a weak cell 
(rotating opposite to the global recirculation loops) 
was observed at the bottom of the cavity. The for- 
mation of these cells is consistent with observations 
from previous experimental and numerical results per- 
taining to liquid metal natural convection flow in rec- 
tangular cavities (Wolff et al. [3 11). The isotherms in 
Fig. 9a indicate the influence of this flow field structure 
on the temperature distribution within the cavity. The 
temperature gradients are found to be lowest at the 
top of the inner cylinder and at the bottom of the 
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F~ti. 7 

outer cylinder 

(a) r , 

Time-averaged turbulence variables--Ra = 108, Pr = 0.7 and R,/R, = 2.6 : (a) streamlines ; 
(b) isotherms; (c) turbulent K.E. ; and (d) turbulent viscosity 

Due to the weak recirculation at the 
bottom of the cavity, the gradients are also quite low 
at the bottom of the inner cylinder. The isotherms are 
clustered around the inner cylinder at approximately 
the 30’ angular position. Also, temperature gradients 
are found to be high at the 90” angular position for 
the outer cylinder. 

For 0.01 < Pr < 100, comparison of streamlines at 
different Prandtl numbers (Figs. 9 and 10a) shows 
that the strength of the natural convective flow field 
increases as the Prandtl number increases, since the 
buoyancy parameter (gp/ctv) is higher for higher 
Prandtl number fluids. Hence, the boundary layer sep- 
aration along both surfaces (near the top of the inner 
cylinder and at the bottom of the outer cylinder) gets 
delayed. Comparison of isotherms in Fig. 9 and Fig. 

10 indicates the existence of a thinner thermal bound- 
ary layer along the inner and outer cylin’ders for the 
higher Prandtl number cases. The core temwrature of 
the fluid reduces considerably as the Prandtl number 
increases since the thermal boundary layers are more 
confined around the inner and outer cylinders. Hence, 
temperature gradients along the inner and outer cyl- 
inders increase as the Prandtl number increases. 

Figure 11 clearly shows the effect of Prandtl number 
in enhancing the heat transfer rates from the inner 
and outer cylinders for 0.01 < Pr < 100. The inner 
and outer cylinder Nusselt numbers continuously 
increase with an increase in Prandtl number in this 
range. For Pr = 1000, the heat transfer rates are found 
to be less than for Pr = 100 at this Rayleigh number 
(108) because the fluid is in the laminar regime. The 
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FIG. X Nusselt number distribution as a function of Rayleigh number-l+ = 0.7 and &JR, = 2.6: 
(a) inner cylinder; and (b) outer cylinder. 

Nusselt number for Pr = 5000 is only slightly higher numbers results in a temperature inversion very close 
than for Pr = 1000. A decrease in the inner cylinder to the inner cylinder (Fig. 10b and c) thus causing the 
Nusselt number was observed at approximately the heat transfer rates to drop at these locations. For 
6fMO” angular position for these fluids. The high Pr = 0.01, the low Nusselt numbers at the bottom of 
strength of the recirculating flow field at high Prandtl the inner cylinder are due to the presence of the weak 
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FIG. 9. Streamlines and isotherms at Ra = IO* and RJR, = 2.6: (a) Pr = 0.01 ; (b) Pr = 0.7; and 
(c) Pr = 7. 

recirculation cell in the bottom of the cavity. For 
0.01 < Pr < 100, the heat transfer rates are con- 
siderably uniform over the circumference of the inner 
cylinder except at the top where the boundary layer 
separates. This decrease is observed over a shorter 
length for the higher Prandtl number cases, because 
of the delayed separation of the plume from the inner 
cylinder. For the outer cylinder, the boundary-layer 
effect causes an increase in the heat transfer rates at 
high Prandtl numbers. In addition, as observed from 
the Nusselt number distribhtion for Pr = 100, heat 
transfer from the bottom of the outer cylinder is not 
negligible, because of the thinner boundary layer 
along the outer cylinder. 

At the top of the outer cylinder, the cross-over 
observed in the Nusselt number distribution can be 
explained as follows. Since the bulk temperature of 
the fluid is higher for the lower Prandtl number case, 
the buoyant plume rising toward the outer cylinder 
has a higher mean temperature. This hot fluid rises 
vertically and impinges on the outer cylinder. Hence 
the temperature drop experienced by the cavity fluid 
at the top of the outer cylinder is higher for the lower 

Prandtl number fluid, resulting in higher heat transfer 
rates at this location. However, as the fluid moves 
downward along the outer cylinder boundary layer. 
the lower bulk fluid temperature causes the Nusselt 
number to be greater for the higher Prandtl number 
case. For Pr = 0.01, the outer cylinder Nusselt num- 
ber is found to be higher than for Pr = 0.7 and 7 
because of the bicellular nature of the flow explained 
above. The thermal boundary layer along the outer 
cylinder is thin except in a small region at ths bottom 
of the annulus where fluid separates and moves towqd 
the inner cylinder. For Pr = 1000 and 5000, heat 
transfer from the outer cylinder is negligible in the 
bottom portion because of the presence of stagnant 
fluid in this region. The high temperature gradients in 
the annulus cause the heat transfer rates to be higher 
at other locations of the outer cylinder. Beyond the 
90” angular position in the annulus, the Nusselt num- 
ber for Pr = 100. 1000 and 5000 follow almost ident- 
ical trends. 

Effect of radius ratio (RJR,) 
In addition to the Rayleigh number and Prandtl 

number, which are primary parameters affecting natu- 
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FIG. 10. Streamlines and isotherms at Ra = 10’ and RJR, = 2.6: 
(c) Pr = 5000. 

(a) Pr = 100; (b) Pr = 1000; and 

ral convection in any geometry, another parameter 
which is critical in buoyancy-induced flows in annuli 
is the radius ratio of the annulus. This was dem- 
onstrated in the experimental studies of Powe et al. 

[33] who classified annular natural convection flow 
into different regimes based on the value of an inverse 
gap-width ratio in addition to the Grashof number. 
In the present study, results were obtained for 
RJR, = 1.5,2.6, 3.5,6,9 and 11 to cover a wide range 
of geometries. 

The isotherms for the cases studied here are shown 
in Fig. 12 at Ra = lo* and Pr = 0.7. The gap-width 
has been maintained constant in all cases and the radii 
of the inner and outer cylinders have been changed to 
obtain the necessary radius ratio. However, for clarity 
of presentation, the cavity has been scaled to the same 
outer cylinder radius. From the temperature dis- 
tribution within the cavity, it is apparent that the 
temperature gradients at the inner cylinder increase as 
the radius ratio increases. The core temperature of the 
cavity fluid is found to decrease with an increase in 
the radius ratio. The temperature distribution along 
the horizontal plane of the annulus is plotted in Fig. 
13. The dependence of the core temperature of the 

annulus on the radius ratio can be clearly seen from 
this figure. For the same gap-width L, when the radius 
ratio decreases, the fluid has to travel a greater dis- 
tance in the cavity to complete the natural convection 
loop. Hence more heat is transferred to the fluid caus- 
ing its bulk temperature to rise. This effect is clearly 
seen in Fig. 13. The core temperature is found to be 
maximum for R = 1.5 and keeps decreasing con- 
tinuously as the radius ratio increases. Hence, the 
temperature gradients at the inner cylinder are lowest 
for the lower radius ratio case. The temperature gradi- 
ents along the inner cylinder were calculated and this 
fact was confirmed. However, since Nusselt number 
is also influenced by the heat transfer area, the Nusselt 
number for the inner cylinder was higher for the lower 
radius ratio cases. The Nusselt number distribution 
for the inner cylinder is shown in Fig. 14a. Therefore, 
it should be noted that, while the temperature gradient 
is lowest for the lowest radius ratio, the Nusselt num- 
ber which is affected by the heat transfer area also is 
lowest for the highest radius ratio. 

For the outer cylinder (Fig. 14b), the same behavior 
was observed, i.e. the Nusselt number was found to 
increase with a decrease in the radius ratio except in 
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FIG. I I. Nussdt number distribution as a function of Prandtl number---Rn = 10’ and &if?, = 2.6: 
(a) inner cylinder: and (b) outer cylinder. 

a very small region near the top of the outer cylinder. 
The reason for this anomaly can be explained as 
follows. The buoyant plume rising above the inner 
cylinder is hotter for the lower radius ratio case, the 
fluid experiences a greater drop in temperature when 
it impinges on the outer cylinder. Hence, the tem- 
perature gradients at the outer cylinder are greater for 
the lower radius ratio case. However. the geometry 

factor (which is found to be more dominant in the 
lower radius ratio case) causes a slight decrease in the 
Nusselt number in a small region near the top of the 
outer cylinder. For R = 2.6, 3.5 and 6, the Nusselt 
number is found to decrease continuously with an 
increase in radius ratio. The temperature gradients 
at the outer cylinder decrease continuously with an 
increase in the radius ratio. This seems to be the more 
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FIG. 12. Temperature distribution at different radius ratios-Ra = 10” and Pr = 0.7:.(a) RJR, = 1.5; 
(b) R,/R, = 2.6; (c) RJR, = 3.5; (d) R,,‘R, = 6; (e) RJR, = 9: and (f) RJR, = 11. 

- Fk1.5 
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FI<;. Ii. Temperature distribution in the horizontal plane of the cavity at different radius ratios- -Ra = 10” 
and I+ = 0.7. 
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FIG. 14. Nusselt number distribution as a function of radius ratio- Ru = IO’ and PI = 0.7 : (a) inner 
cylinder ; and (b) outer cylinder. 

influential factor than the geometry factor. causing a 
decrease in the Nusselt number as the radius ratio 
increases. 

For R = 9 and R = 11, there is virtually no heat 
transfer over the lower 45 of the annulus. Since the 
cylinder dimensions are very small, the energy sup- 
plied in the fluid at the inner cylinder is not sufficient 
to maintain the boundary layer along the entire cir- 
cumference of the outer cylinder. Hence. the fluid in 

the lower region is almost stagnant and there is no 
heat transfer by convection. Beyond 45”, however. 
heat transfer rapidly increases due to the presence 
of the thin thermal boundary layer along the outer 
cylinder. Beyond the horizontal plane, the Nusselt 
numbers for these cases are higher than for R = 6, 
thus indicating that the geometry factor has a greater 
influence than the temperature gradient for the cases 
with R=9andR= 11. 
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Three-dimensiond results 
As mentioned before, very few three-dimensional 

analyses of the turbulent natural convection flow in 
horizontal annuli have been made in the past. More- 
over, none of the three-dimensional solutions to this 
problem (Fukuda e/ ul. [21. 221, Morita et al. [23]) 
have presented the effects of the axial end wall in 
inducing the three-dimensional behavior within the 
cavity. Understanding the variation of the Nusselt 
number over the surfaces of the inner and outer cyl- 
inders is very vital from a heat transfer point of view. 
These issues have not been addressed in previous 
wporks. The details of the three-dimensional analysis 
covered in the present work are somewhat limited 
due to the tremendous computational effort involved. 
However, the validity and accuracy of the three- 
dimensional analysis is amply demonstrated by: (i) 
the excellent agreement with the corresponding two- 
dimensional model; and (ii) good agreement with the 
experimental results. 

The wall-function approach used with the two- 
dimensional study is extended to the three-dimen- 
sional model. For the three-dimensional simulations, 
symmetry about the mid-axial plane was assumed. 
This was necessary to provide sufficient resolution of 
the flow and temperature fields without prohibitively 

(a) 

expensive computations. The mid-axial symmetry 
condition was verified by obtaining preliminary com- 
putational results for the entire length of the annulus. 
The mesh was made finer near the walls where steeper 
gradients were expected to occur and relatively coarse 
in the core region of the cavity. Eight-noded brick 
elements with trilinear interpolation and a variable 
mesh density were used in the entire computational 
domain. 

The first geometry considered for the three-dimen- 
sional analysis has a radius ratio of 2.6 (Kuehn and 
Goldstein [17]). A length to gap-width ratio of 3 was 
considered for the analysis in order to verify the 
existence of a core region where the flow is essentially 
two-dimensional. The calculations were carried out 
on a mesh containing 33 points in the radial direction, 
33 points in the angular direction and 17 points in 
the axial direction. It is expected that the flow and 
temperature fields in the axial end-wall region will 
have a strong three-dimensional behavior because of 
the viscous shearing effect of the end wall. To study 
this effect, the temperature distribution within the cav- 
ity is presented in Fig. 15. A comparison of isotherms 
in this core region (Z = LJ2 ; Fig. 15a) against the 
temperature distribution obtained using the two- 
dimensional model shows excellent agreement, thus 

I-‘Ic;. 15. Temperature distribution at different axial locations--R,, R, = 2.6. Tn = IO6 and Pr = 0.7: 
(a) : = f., 2 (mid-axial symmetry plane); (b) z = L,<‘?: (c) z = L/6; (d) : = L, 12; (e) : = L,!24; and 

(f) : = 0 (axial end uall). 
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Comparison with Mcleod and Bishop [ 191 (Experimental) 
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FIG. 17. Comparison of results from the three-dlmensional model agamst previous experimental and 
numcr~cal rebults XLI 1 I.72 x IO-. Pr = 0.688 and R,, R, = 4.85 

further confirming that the assumption of two-dimen- 
sionality in the core region is valid. However, at 
z = L,ilZ. L,,i24 and 0 (end wall). the temperature 
distribution changes remarkably. The reduction in the 
strength of the convective flow causes the temperature 
gradients around the inner and outer cylinders to 
decrease. 

An examination of the flow field within the cavity 
showed the existence of a spirally rotating flow which 
is characteristic of annular cavity natural convection 

flows as shown in the work of Vafai and Ettefagh [7]. 
The heat transfer rates in the mid-section of the cavity 
followed the same trend as demonstrated by the two- 
dimensional results presented earlier. The Nusselt 
numbers in the core region approach the turbulent 
two-dimensional results. As was anticipated from the 
temperature distribution, the core region in which the 
axial variations were negligible was found to persist 
for approximately 314 times the length of the annulus. 
The Nusselt number decreases drastically in the region 
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FIG. 18. Comparison of the velocity profiles in the mid-axial symmetry plane (Z = 0) of the three-ditnen- 
sional model against the two-dimensional model&Ra = I .22 x lo’, Pr = 0.688, RJR, = 4.85 : (a) angular 

velocity at 4 = 90 : and (b) radial velocity at 4 = I80 

very close to the end wails because of the decrease of 
the strength of the convective flow in the near-wall 
region. 

Another set of calculations was performed for an 
annulus with a radius ratio of 4.85. McLeod and 
Bishop [ 191 have presented detailed experimental 
results for this geometry. Results were obtained for a 
Rayleigh number of 1.22 x 10’ and a Prandtl number 
of 0.688. A sufficient amount of experimentation was 

done to determine the length of the annulus which 
would provide a core region in which the results can 
be approximated by using a two-dimensional model. 
It was concluded that an annulus length to gap-width 
ratio of at least 7.5 was necessary for this purpose. 
Since we also wanted to establish the collapse of the 
three-dimensional solution to the corresponding two- 
dimensional results in the mid-axial plane of the annu- 
lus, it was necessary to use the same number of grid 
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(b! 

(4 
FIG. 19. Comparison of isotherms in different axial planes of th,e cavity (left-hand side) against the mid- 
axial symmetry plane (right-hand side)- Ra = 1.22 x I CIT. Pr = 0.688, R,/R, = 4.85 : (a) : = 7L,/ 16, L,*/2 ; 

(b) I = 3L,/8, L,i2; (c) z = 5L,{Jl6, L,,:2; and (d) z = LJ4, LJ2. 

points in the radial and angular directions for both 
models. A 41 x41 grid was employed for the two- 
dimensional study while a 41 x 41 x 31 grid was used 
for the three-dimensional study. As mentioned before, 
the 41 x 41 grid with a mesh grading ratio of 2 was 
adequate to give flow field and temperature results 
that were independent of the mesh size. However, to 
give grid independent Nusselt number results, a finer 
mesh was required. Hence, for the present three- 
dimensional runs, we used a mesh grading ratio of 4, 
i.e. the mesh size near the wall was l/4 times the mesh 
size in the interior region of the domain, to capture 
the steep gradients near the solid boundaries, giving 
accurate Nusselt number results. With this method 
of grading, it was observed that all results showed 
negligible variation with further reduction in mesh 
size. 

Figure 16 shows a comparison of the temperature 
distribution at the mid-axial symmetry plane (Z = 0) 
obtained from the three-dimensional model against 
the results from the two-dimensional solution. A com- 
parison of the temperature distributions at six differ- 
ent angular locations showed excellent agreement. 
The maximum difference between the temperatures 
predicted by the two models is less than 3%. Both 
models succeeded in capturing the steep gradients near 
the walls of the cavity. The temperature distribution 
was also compared against the experimental results of 
McLeod and Bishop [19] and the LES simulations of 
Fukuda et al. [22] and were found to be in good 
agreement (Fig. 17). As mentioned previously, the 
discrepancies between the experimental and numerical 
results is because of the fact that constant fluid proper- 
ties have been used in the present analysis. Due to the 
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Fro. 20. Comparison of isotherms in different axial planes of the cavity (left-hand side) against the mid- 
axial symmetry plane (right-hand side)-Ra = 1.22 x IO’. Pr = 0.688. RJR, = 4.85 : (a) r = 3L,,il6, L,,‘2; 

(b) z = LJ8. L,* 2 ; (c) c = L‘, 16. L, 2; and (d) z = 0, L/2. 

high temperature differences involved in the present 
case, this assumption could lead to some inaccuracies. 
Another reason for the discrepancy is due to the tem- 
perature measurements. Since probes of some kind 
are introduced within ths flow for performing the 
temperature measurement, this induces errors due to 
the perturbation of the natural convection flow field. 
To establish the two-dimensionality of the flow field 
in the core region of the annulus, the velocity profiles 
obtained from the two models were compared. This 
was done by comparing the angular velocity profiles 
in the horizontal plane of the annulus (90’) and the 
radial velocity profiles in the top vertical plane (1 80U) 
from the two models. As can be seen from Fig. 18, 
the flow fields obtained from the two models are in 
excellent agreement with each other. 

The existence of the core region within the annulus 

was verified by comparing the isotherms at different 
axial locations of the cavity with the isotherms in 
the mid-axial symmetry plane (z = 0) OF the cavity. 
Figures 19 and 20 show this comparison. In,each case. 
the right-hand side represents the isotherms in,the 
mid-axial plane whereas the left-hand side represents 
the isotherms in selected axial planes of the cavity one- 
sixth of the annulus length apart. From z = L,,/16 to 
;= 3LJ8, the temperature distribution in the cavity 
is identical to the temperature distribution 
in the mid-axial symmetry plane of the annulus. 
This is apparent from the temperature distribution 
shown in Figs. 19 and 20a and b. Hence. in this region 
of the annulus, the temperature field is essentially 
invariant in the axial direction and can therefore be 
approximated by the use of a two-dimensional model. 
Beyond z = 3L,/8, the temperature distribution devi- 
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(a) 

Cc) (4 

(b) 

FIG. 2 1. Flow field in different anal planes of the annulus Ru = 1.22x lo”‘, Pr = 0.688, R,,R, = 4.85: (a) 
: = L,/X; (b) 2 = 3L,g/32: (c) : = L,+:l6: and (d) -I = L,/32. 

atcs from the core region temperature distribution as 
shown in Fig. 2Oc and d. The gradients around the 
inner and outer cylinders reduce drastically because 
of the reduction in the strength of the convective flow 
in the radial planes of the annulus. 

in Fig. 21, the three-dimensional structure of the 
flow field is presented as a combination of plots show- 
ing the velocity vector fieid in the radial plane (on the 
left-hand side) and contours of axial velocity (on the 
right-hand side). Only four locations very close to the 
solid end wall were chosen for presenting these results, 
since the axial velocity values beyond this location 
are very small. The velocity vector field follows the 
crescent shaped recirculation pattern in each radial 
plane of the annulus. Flow occurs in the positive axial 
direction, I.e. toward the axial end walls in the top 
and bottom region of the annulus and close to the 
outer cylinder. This is balanced by an axial flow in the 
opposite direction in the remaining portion of the 

radial plane. The axial velocities are found to be very 
low in the core region and increase continuously 
toward the solid wall, thus showing the existence of 
strong three-dimensionality effects in the near-wall 
region. The maximum values of the velocity vector in 
the four locations shown in the figure are, respectively, 
I .3955, 1.3948, 1.3934 and 1.3466. thus showing that 
the viscous shearing effect of the axial end-wall causes 
a reduction in the velocity. 

A comparison of the inner and outer cylinder Nus- 
selt numbers in the mid-axial plane of the annulus and 
the corresponding two-dimensional model is shown 
in Fig. 22. The Nusselt numbers in the mid-axial plane 
of the annulus agreed very well with the results from 
the two-dimensional analysis (a maximum difference 
of 2% was observed). The average Nusselt number 
(equivalent conductivity) was compared with the 
value obtained from the correlation of McLeod and 
Bishop [19]. The present study gave an average Nus- 
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FIG. 72. Comparison of local Nusselt numbers in the mid-axial symmetry plane (-_ = 0) of the three- 
dimenslonal model ‘agamst the twc)-dimenslonal model Rrr = 1.22 x 107. Pr = 0.688. R,, R, = 4.85 : 

(a) inner cylinder; and (b) outer cylinder. 

selt number value of 13.04 while the value predicted 
by McLeod and Bishop [ 191 was 12.84, which differed 
by only 1.53%. The local Nusselt number distribution 
over the inner and outer cylinder surfaces is shown in 
Fig. 23. As expected. the Nusselt number distribution 
over the inner and outer cylinders remains unchanged 
in the core region of the annulus, thus demonstrating 
the validity of the two-dimensional assumption over 
a significant portion of the core region. Near the end- 

walls of the annulus, however, the Nusselt number 
distribution changes significantly. As reduction in the 
strength of the convective flow causes the heat transfer 
rates over the inner and outer cylinder surfaces to 
decrease considerably. Very close to the axial end 
walls, the heat transfer from both the inner and outer 
cylinders is virtually negligible. For the outer cylinder, 
however, a local peak in the Nusselt number dis- 
tribution was observed near the top of the annulus 
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FIG. 2.1 Nusselt number dlstrlbutlon over the Inner and outer cylinders Ru = I .27 x IO-‘. Pr = 0.688, 

R,, R, = 4.85 (a) inner cylinder: and (b) outer cylinder. 

and very’ close to the axial end wall. The reason for 
this high value of the heat transfer rate is the presence 
of high axial velocities in this region. 

CONCLUSIONS 

A comprehensive investigation of turbulent natural 
convection between concentric, horizontal cylinders 
has been successfully carried out. Both two- and three- 
dimensional models have been used to obtain results 

in the present study. An in-depth study of the ther- 
mophysical and geometric characteristics has been 
carrried out using the two-dimensional model. The 
contours of turbulent kinetic energy and turbulent 
viscosity indicate highest turbulence intensities in the 
upper portion of the annulus and also in the region 
near the inner cylinder where boundary-layer sep- 
aration occurs. The heat transfer results obtained in 
the present study are summarized in Table 1. These 
results show the effect of Rayleigh number. Prandtl 
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IO2 
I 0” 
IO' 
iOX 
I 0” 
IOX 
IO" 
iOX 

Parameter 
Pr G‘l 

0.01 10"' 
0.7 
0.7 
0.7 

100 IO” 
1000 10’ 
5000 2x IOJ 

Table I. Mean cavity Nusselt numbers for the various cases studied 

R,, R, = 1.5 R,,;R, = 2.6 R/R, = 3.5 R, R, = 6 R,,: R, = 9 R,/R, = 11 
~ ~~~ _~~. 

I I .9527 
9.1541 

15.484 
26.761 22.214 21.733 18.074 14.2789 12.9664 

28.425 
32.31 
28.4236 
29.053 1 

number and radius ratio on the heat transfer 
coefficients associated with the natural convection 
flow. Heat transfer rates are found to be substantially 
higher than those in the laminar regime. The Iksults 
show a decrease in heat transfer rates from the inner 
and outer cylinders with an increase in radius ratio 
for the same Rayleigh number based on the gap-width. 
The effect of Prandtl number was also investigated. 
The turbulent viscosity was found to decrease for flu- 
ids with higher Prandtl numbers, thus indicating lower 
levels of turbulence. The transition to turbulence gets 
delayed for high Prandtl number fluids. The three- 
dimensional simulations were carried out to study the 
effect of the end walls on the natural convection 
process. It was observed that the Nusselt number 
undergoes a drastic decrease at the end walls. The 
decrease in Nusselt number at the end walls is sub- 
stantial in the turbulent regime because of the more 
prominent damping effect of the end walls at high 
Rayleigh numbers. 

This work provides informative data for turbulent 
natural convection in annular geometries of two and 
three dimensions, different aspect ratios and con- 
taining fluids with a wide range of properties. The 
two-dimensional approach has been extended to a 
three-dimensional model to provide more realistic 
insight into the structure of the flow and temperature 
fields. To the best of the authors’ knowledge, these 
are the first documented results on detailed three- 
dimensional flow and temperature characteristics as 
well as detailed investigation of various ther- 
mophysical and geometric characteristics of two- 
dimensional more complic?ted geometries. 
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