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Buoyancy-driven flow in a narrow-gap annulus formed by two concentric horizontal
cylinders is investigated numerically. The three-dimensional transient equations of
fluid motion and heat transfer are solved to study multiple supercritical states occur-
ring within annuli having impermeable endwalls, which are encountered in various
applications. For the first time, three-dimensional supercritical states are shown to
occur in a narrow-gap annulus and the existence of four such states is established.
These four states are characterized by the orientations and directions of rotation of
counter-rotating rolls that form in the upper part of the annulus owing to thermal
instability, and exhibit (i) transverse rolls, (ii) transverse rolls with reversed direc-
tions of rotation, (iii) longitudinal rolls in combination with transverse rolls, and (iv)
longitudinal rolls with reversed directions of rotation in combination with transverse
rolls, respectively. Simulations are performed at Rayleigh numbers approaching and
exceeding the critical value to gain insight into the physical processes influencing
development of the secondary flow structures. The evolution of the supercritical flow
fields and temperature distributions with increasing Rayleigh number and the inter-
action between the secondary and primary flows are thoroughly investigated. Factors
influencing the number of rolls are studied for each supercritical state. Heat transfer
results are presented in the form of local Nusselt number distributions and overall
annulus Nusselt numbers. Two-dimensional natural convection occurring early in the
transient evolution of the flow field is also examined. Results obtained for a wide
range of annulus radius ratios and Rayleigh numbers are shown to be in excellent
agreement with results from previous experimental and numerical studies, thereby
validating the present numerical scheme.

1. Introduction
Natural convection in the annular region between concentric cylinders has been

extensively studied because of its many technological applications such as solar
receivers, electrical transmission cables, nuclear reactors, cooling of electronic equip-
ment, and aircraft brakes. Depending on the outer to inner cylinder radius ratio R
and the Rayleigh number, various types of laminar flow structures can arise in the
core region of a sufficiently long horizontal annulus. These structures were identified
in some of the earlier experimental treatments of the problem using air as the working
fluid. At lower Rayleigh numbers for a two-dimensional flow field, Liu, Mueller &
Landis (1961) observed a unicellular flow with nearly stagnant regions at the top and
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bottom of the annulus for small R. As the Rayleigh number was increased above
a critical value, multiple counter-rotating cells arose in the upper portion of the
annulus. With further increase in Rayleigh number, the angular extent of the cells
became greater. In flow and temperature field visualization experiments performed
by Grigull & Hauf (1966), a three-dimensional spiral type of fluid motion was found
to emerge in the upper region of an annulus of moderate R at increased Rayleigh
number. Using photographic techniques, Bishop & Carley (1966) identified two types
of unicellular flow which set up in horizontal annuli at lower Rayleigh numbers. For
R up to 2.45, a crescent-shaped flow pattern was observed, whereas a kidney-shaped
pattern appeared for the largest R studied of 3.69. Powe, Carley & Bishop (1969)
conducted experiments for a wide range of R. Based on their results and those of
prior investigators, they classified various types of laminar natural convective regimes
in horizontal cylindrical annuli as (i) a unicellular steady regime for small Rayleigh
numbers at any value of R, (ii) a multicellular regime for higher Rayleigh numbers
and R < 1.24 (narrow-gap annulus), (iii) a spiral flow regime for higher Rayleigh
numbers and R between 1.24 and 1.71 (moderate-gap annulus), and (iv) an oscillating
regime for higher Rayleigh numbers and R > 1.71 (large-gap annulus). Our results
for narrow-gap annuli and the results obtained by Dyko, Vafai & Mojtabi (1999)
for moderate- and large-gap annuli are consistent with the classifications by Powe et
al. (1969). The occurrence of cellular instabilities in the nearly horizontal fluid layer
formed locally by the upper part of a narrow-gap annulus is clearly demonstrated in
the experimental studies and the present work. It was shown in the stability analysis
of natural convective flow in narrow-gap annuli conducted by Walton (1980) that
Pr = 0.24, which is less than that of air, is the critical value of the Prandtl number.
For Pr > 0.24, the inception of instability occurs at the top of the annulus and is
therefore thermal in nature, whereas for Pr < 0.24, it can arise elsewhere, indicating
that it is partially hydrodynamic in origin.

Most of the prior studies of buoyancy-induced convection between horizontal
concentric cylinders have dealt with two-dimensional flow in annuli with large length
to gap-thickness ratios. There are relatively few studies of three-dimensional flow,
which arises owing to the presence of the endwalls or the onset of instabilities at higher
Rayleigh numbers. Previous numerical investigations of three-dimensional natural
convection in large-gap annuli have focused on the effect of annulus inclination
(Takata et al. 1984), flow patterns in a very short annulus (Fusegi & Farouk 1986),
transient formation of the flow and temperature fields (Vafai & Ettefagh 1991),
turbulent flow (Desai & Vafai 1994), and high-Rayleigh-number laminar flow for air
and larger-Prandtl-number fluids (Dyko et al. 1999). To our knowledge, only two
numerical studies of three-dimensional supercritical flow in a horizontal annulus are
available in the literature. Rao et al. (1985) analysed spiral natural convection in
a moderate-gap annulus. They considered only a fluid with a Prandtl number of
5000, which limits the range of practical applicability of their results. Dyko et al.
(1999) investigated the development of spiral flow in air-filled moderate-gap annuli,
its interaction with the primary flow, and factors influencing the number and size
of spiral vortex cells. There are no previously published studies of three-dimensional
supercritical or subcritical natural convection in narrow-gap cylindrical annuli. It
was therefore the aim of the present work to investigate three-dimensional natural
convective flow structures and temperature fields in narrow-gap annuli at Rayleigh
numbers approaching and exceeding the critical value Rac for thermal instability,
including the effects of varying R and annulus length.

Experimental and numerical evidence in the literature indicates the presence of a
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multiplicity of solutions (known as the bifurcation phenomenon) in natural convection
problems which occurs at higher Rayleigh numbers and is related to thermal or
hydrodynamic instability. In the limited two-dimensional numerical studies of natural
convection in narrow-gap annuli containing air conducted previously, two or more
solutions are shown to occur for a given combination of R and supercritical Rayleigh
number, depending on initial conditions. Only two-dimensional models were employed
in these studies and therefore neither three-dimensional supercritical flows nor the
effects of solid endwalls could be analysed. Rao et al. (1985) analysed flow patterns
of buoyancy-induced convection in air-filled narrow-gap annuli. They calculated a
steady multicellular flow for a Rayleigh number immediately above the critical value,
which changed to an oscillatory flow as the Rayleigh number was increased to higher
values. Fant, Rothmeyer & Prusa (1991) obtained steady bicellular and tricellular
solutions for R = 1.2 and R = 1.1, respectively. Kim & Ro (1994) extended the
results for R = 1.2 to include the tricelluar bifurcating solution, and Yoo (1996)
later confirmed the bicellular and tricellular solutions for R = 1.2. A two-dimensional
analysis of multicellular natural convective flow of air in narrow-gap annuli was also
performed by Cadiou, Desrayoud & Lauriat (1998). They calculated two branches
of supercritical solutions corresponding to an upward and downward radial velocity,
respectively, at the upper vertical centreline (opposite directions of cell rotation).
At very high Rayleigh numbers, secondary shear-driven instabilities were found to
appear within the crescent base flow for R < 1.15. Chung et al. (1999) obtained a
tetracellular solution at very high Rayleigh numbers for R = 1.2. A few authors have
studied natural convection in narrow-gap annuli numerically for very small Prandtl
numbers or the limiting case of zero Prandtl number (Fant et al. 1990, 1991; Yoo,
Choi & Kim 1994). For these cases, hydrodynamic-type instabilities originate in the
two side regions of the annulus, similar to natural convection in a vertical cavity of
large aspect ratio.

In the present work, three-dimensional natural convection in a narrow-gap annulus
with solid endwalls is investigated for the first time. Multiple supercritical states
exhibiting either transverse rolls (axes of the rolls oriented in the angular direction) in
the upper portion of the annulus or longitudinal rolls (axes parallel to the common
axis of the inner and outer cylinders) in the highest part of the annulus in combination
with transverse rolls located between the longitudinal rolls and primary flow (seen as a
crescent-shaped recirculation pattern on each side of the annulus when viewed in any
axial plane) are studied. Owing to the presence of the transverse rolls, none of these
states can be simulated using a two-dimensional model. The governing equations are
formulated in terms of vorticity and vector potential. The parabolic equations are
solved by a three-dimensional three-level time-splitting ADI method and the elliptic
equations are solved by the extrapolated Jacobi scheme. Three-dimensional numerical
solutions for a wide range of annulus radius ratios and Rayleigh numbers as well as
different Prandtl numbers are shown to be in excellent agreement with results from
previous experimental and numerical studies. The manifestation of thermal instability
as the formation of three-dimensional secondary flows and the effects of Rayleigh
number and annulus geometry on the flow and temperature fields are elucidated.

2. Problem formulation and solution
A fluid layer is bounded by two concentric horizontal cylinders of length l with inner

and outer radii ri and ro respectively, and two vertical endwalls. The temperature of
the inner cylinder is greater than that of the outer cylinder (Ti > To) and the endwalls



4 M. P. Dyko and K. Vafai

To

Ti

l

z

ro

ri

φ

Figure 1. Geometry and coordinate system.

are impermeable and adiabatic. The non-dimensional radius ratio R = ro/ri and gap
aspect ratio A = l/(ro− ri) are used to characterize the narrow gap annulus geometry,
which is illustrated in figure 1. The dimensionless axial length is defined by L = l/ri.
As shown in figure 1, a cylindrical coordinate system (r, φ, z) is employed where
the angular coordinate φ is measured with reference to the upward vertical. The
computational domain was chosen to encompass the full radial (1 6 r 6 R), angular
(−π 6 φ 6 π), and axial (0 6 z 6 L) extent of the annulus for all of the numerical
simulations.

2.1. Governing equations

The non-dimensional governing equations of transient, three-dimensional, laminar,
buoyancy-induced flow of an incompressible, Newtonian fluid using the Boussinesq
approximation are

∇ · V = 0, (1)

∂V

∂t
+ (V · ∇)V = −∇P + Pr∇2V − PrRarkΘ, (2)

∂Θ

∂t
+ (V · ∇)Θ = ∇2Θ, (3)

where k = − cosφ e1 + sinφ e2 is a unit vector in the direction of the gravitational
force and e1, e2 and e3 are the unit vectors in the r, φ and z directions, respectively.
The above equations are non-dimensionalized using the scaling factors ri for length,
α/ri for velocity, r2

i /α for time and ρα2/r2
i for pressure, with α and ρ denoting the

thermal diffusivity and density, respectively. The dimensionless temperature is defined
by Θ = (T − To)/∆T , where ∆T = Ti − To, and the dimensionless parameters,
Rayleigh number Rar and Prandtl number Pr, are defined as

Rar =
gβr3

i ∆T

αν
, P r =

ν

α
, (4)

where g is the acceleration due to gravity, β the coefficient of thermal expansion, and
ν the kinematic viscosity. The Rayleigh number based on annular gap width ro − ri,
which is employed later to facilitate comparison of the results to those from previous
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studies, is defined as

Ra =
gβ(ro − ri)3∆T

αν
. (5)

The pressure term is eliminated by taking the curl of the momentum equation (2),
which yields the dimensionless vorticity transport equations

∂Ωr

∂t
+ Vr

∂Ωr

∂r
+
Vφ

r

∂Ωr

∂φ
+ Vz

∂Ωr

∂z
− Ωr ∂Vr

∂r
− Ωφ

r

∂Vr

∂φ
− Ωz ∂Vr

∂z

= Pr

(
1

r

∂Ωr

∂r
+
∂2Ωr

∂r2
+

1

r2

∂2Ωr

∂φ2
+
∂2Ωr

∂z2
− Ωr

r2
− 2

r2

∂Ωφ

∂φ

)
+ PrRar sinφ

∂Θ

∂z
, (6)

∂Ωφ

∂t
+ Vr

∂Ωφ

∂r
+
Vφ

r

∂Ωφ

∂φ
+ Vz

∂Ωφ

∂z
− Ωr ∂Vφ

∂r
− Ωφ

r

∂Vφ

∂φ
− Ωz ∂Vφ

∂z
+
VφΩr − VrΩφ

r

= Pr

(
1

r

∂Ωφ

∂r
+
∂2Ωφ

∂r2
+

1

r2

∂2Ωφ

∂φ2
+
∂2Ωφ

∂z2
− Ωφ

r2
+

2

r2

∂Ωr

∂φ

)
+ PrRar cosφ

∂Θ

∂z
, (7)

∂Ωz

∂t
+ Vr

∂Ωz

∂r
+
Vφ

r

∂Ωz

∂φ
+ Vz

∂Ωz

∂z
− Ωr ∂Vz

∂r
− Ωφ

r

∂Vz

∂φ
− Ωz ∂Vz

∂z

= Pr

(
1

r

∂Ωz

∂r
+
∂2Ωz

∂r2
+

1

r2

∂2Ωz

∂φ2
+
∂2Ωz

∂z2

)
− PrRar

(
sinφ

∂Θ

∂r
+

1

r
cosφ

∂Θ

∂φ

)
, (8)

where the vorticity vector is defined by Ω = ∇× V .
The vector potential Ψ is introduced, where V = ∇×Ψ. Note that the continuity

equation (1) is satisfied automatically by this expression. Imposing the solenoidal
condition ∇ · Ψ = 0, the following equations relating vector potential and vorticity
are obtained

1

r

∂Ψr

∂r
+
∂2Ψr

∂r2
+

1

r2

∂2Ψr

∂φ2
+
∂2Ψr

∂z2
+

2

r

∂Ψr

∂r
+
Ψr

r2
+

2

r

∂Ψz

∂z
= −Ωr, (9)

1

r

∂Ψφ

∂r
+
∂2Ψφ

∂r2
+

1

r2

∂2Ψφ

∂φ2
+
∂2Ψφ

∂z2
− Ψφ

r2
+

2

r2

∂Ψr

∂φ
= −Ωφ, (10)

1

r

∂Ψz

∂r
+
∂2Ψz

∂r2
+

1

r2

∂2Ψz

∂φ2
+
∂2Ψz

∂z2
= −Ωz. (11)

From the definition of vector potential, the components of dimensionless velocity are

Vr =
1

r

∂Ψz

∂φ
− ∂Ψφ

∂z
, (12)

Vφ =
∂Ψr

∂z
− ∂Ψz

∂r
, (13)

Vz =
Ψφ

r
+
∂Ψφ

∂r
− 1

r

∂Ψr

∂φ
. (14)

The energy equation (3) is written in final form as

∂Θ

∂t
+ Vr

∂Θ

∂r
+
Vφ

r

∂Θ

∂φ
+ Vz

∂Θ

∂z
=

1

r

∂Θ

∂r
+
∂2Θ

∂r2
+

1

r2

∂2Θ

∂φ2
+
∂2Θ

∂z2
. (15)

Equations (6)–(15) are the final form of the non-dimensional governing equations
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which comprise a system of ten coupled partial differential equations for ten un-
knowns: Ωr , Ωφ, Ωz , Ψr , Ψφ, Ψz , Vr , Vφ, Vz , and Θ.

2.2. Boundary and initial conditions

The temperatures of the annulus inner and outer cylinders are maintained at Θ = 1
and Θ = 0, respectively. The components of velocity are zero at the cylinder surfaces,
and the components of vorticity are obtained from Ω = ∇× V . The vector potential
boundary conditions are consistent with the work of Hirasaki & Hellums (1968),
with the normal gradient of the normal component of vector potential and the
components of vector potential tangential to the surface specified as zero. Therefore,
the dimensionless boundary conditions at r = 1 and r = R (over −π < φ < π and
0 < z < L) are as follows

Θ = 1 at r = 1, (16)

Θ = 0 at r = R, (17)

Vr = Vφ = Vz = 0 at r = 1, R, (18)

Ωr = 0, Ωφ = −∂Vz
∂r

, Ωz =
∂Vφ

∂r
at r = 1, R, (19)

∂

∂r
(rΨr) = Ψφ = Ψz = 0 at r = 1, R. (20)

All of the numerical simulations were performed over the full radial, angular, and
axial extent of the annulus. Simulations were first conducted using periodic boundary
conditions at the lower vertical angular plane φ = π(−π) (to join the computational
domain) to rigorously demonstrate that the flow is symmetric about this plane for
the ranges of R, A, and Rayleigh number investigated. In subsequent numerical
simulations within these ranges, symmetry boundary conditions (equations (21)–(24))
were employed only at φ = π(−π) (over 1 < r < R and 0 < z < L) for enhanced
computational efficiency. Note that the simulations with periodic boundary conditions
at φ = π(−π) were compared to the corresponding cases with symmetry boundary
conditions at φ = π(−π) and the results were found to be identical.

∂Θ

∂φ
= 0 at φ = π(−π), (21)

∂Vr

∂φ
= Vφ =

∂Vz

∂φ
= 0 at φ = π(−π), (22)

Ωr =
∂Ωφ

∂φ
= Ωz = 0 at φ = π(−π), (23)

Ψr =
∂Ψφ

∂φ
= Ψz = 0 at φ = π(−π). (24)

At the adiabatic endwalls of the annulus, the normal gradient of temperature and the
three components of velocity are zero. Therefore, the boundary conditions at z = 0
and z = L (over 1 < r < R and −π < φ < π) are

∂Θ

∂z
= 0 at z = 0, L, (25)

Vr = Vφ = Vz = 0 at z = 0, L, (26)



Three-dimensional convective states in a narrow-gap annulus 7

Ωr = −∂Vφ
∂z

, Ωφ =
∂Vr

∂z
, Ωz = 0 at z = 0, L, (27)

Ψr = Ψφ =
∂Ψz

∂z
= 0 at z = 0, L. (28)

In previous two-dimensional numerical studies dealing with bifurcative natural
convection of air in long horizontal annuli, various types of initial conditions were
employed to obtain multiple supercritical solutions corresponding to different direc-
tions of rotation and numbers of longitudinally oriented rolls. Usually, one multi-
cellular solution was achieved by successively increasing the Rayleigh number starting
from a subcritical value and using each solution as the initial condition for the
next higher Rayleigh number. A second multicellular solution with reversed direc-
tions of cell rotation was obtained using another set of initial conditions such as a
motionless state with either a uniform or perturbed temperature field, and abruptly
increasing the Rayleigh number to a value greater than Rac. Cadiou et al. (1998)
showed that these two types of solutions bifurcate from the unicellular flow at
Ra = Rac. At Rayleigh numbers much greater than Rac, a solution exhibiting a
greater number of cells was obtained by Chung et al. (1999) using specialized initial
conditions.

A total of four three-dimensional supercritical states are investigated in the present
study. One state is obtained by successively increasing the Rayleigh number from
subcritical to supercritical values. In this case, transverse end rolls that carry over
from the subcritical solution determine the orientation and directions of rotation of
supercritical rolls that subsequently form in the annulus, as explained in § 3.1. These
end rolls also develop prior to the formation of supercritical rolls when starting from
quiescent and isothermal initial conditions, resulting in the same supercritical state.
In order for the other three states to arise, the supercritical rolls must be induced
to form prior to the development of the end rolls. To accomplish this, perturbed
conductive temperature fields of the same general type as that employed by Cheddadi
et al. (1992) to induce cellular flow are used as initial conditions in the present study.
These perturbed temperature fields, which are presented in equations (29) and (30),
physically simulate the reversal of thermal gradients associated with inception of
thermal instabilities in the annulus. Equation (29) is periodic in the axial direction
and consequently triggers formation of transverse rolls, while equation (30) is periodic
in the angular direction and leads to the development of longitudinal rolls. In these
equations, CA is an amplification coefficient, CB is the wavenumber, and η is the phase
shift of the temperature perturbation.

Θ = 1− (ln r/ lnR) + CA sin (π ln r/ lnR)(− cos (CBπz + η)), (29)

Θ = 1− (ln r/ lnR) + CA sin (π ln r/ lnR) cos (CBφ+ η). (30)

2.3. Solution procedure

The three-dimensional governing equations (6)–(15) are solved in conjunction with
the boundary conditions (16)–(28) using a finite-difference method. A modified form
of the three-dimensional alternating direction implicit (ADI) method developed by
Brian (1961) is employed to advance the energy equation (15) and vorticity equations
(6)–(8) in time. The vector potential equations (9)–(11) are solved iteratively within
each timestep using the extrapolated Jacobi scheme with optimum over-relaxation.
Velocities are evaluated using central difference approximations to equations (12)–(14).
At each time level, convergence to steady state is checked by calculating the relative
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changes of the temperature, vorticity components, and vector potential components
at every grid point and comparing these to a prescribed constant, which was set to
10−3. Steady state is assumed to have been achieved when

ξn+1
i,j,k − ξni,j,k
ξni,j,k

6 10−3, (31)

where n is a particular time level and ξ is any one of the dependent variables.
In order to properly capture the counter-rotating rolls that arise at the top of

the annulus owing to thermal instabilities, a very fine grid distribution is used in
this region. A non-uniform grid size in the angular direction is employed in order
to minimize the total number of grids without sacrificing accuracy, with the larger
size grids located in the lower portion of the annulus where angular gradients of the
temperature and flow variables are smaller. The spatial derivatives in the non-uniform
grid system are approximated by the following central difference expressions

∂f

∂φ

∣∣∣∣
i,j,k

=
fi,j+1,k − fi,j−1,k

∆φj−1 + ∆φj
, (32)

∂2f

∂φ2

∣∣∣∣
i,j,k

=
2∆φj−1fi,j+1,k − 2(∆φj−1 + ∆φj)fi,j,k + 2∆φjfi,j−1,k

∆φj−1∆φj(∆φj−1 + ∆φj)
, (33)

where ∆φj−1 is the angular distance between grid points i, j, k and i, j − 1, k, and
∆φj is the angular distance between grid points i, j + 1, k and i, j, k. The change in
grid size in the transition region between the fine mesh at the top of the annulus and
the coarser mesh in the lower portion is chosen such that

∆φj − ∆φj−1
∼= O(∆φ2

j−1). (34)

This criterion ensures that use of equations (32) and (33) results in a local truncation
error that is of the same order of magnitude as would occur in a uniformly spaced
system. By gradually changing the grid size in this manner, the extra reduction in
accuracy that would otherwise occur at the boundary between regions of different grid
size is avoided. An example of radial, angular, and axial grid distributions showing
the fine, transition, and coarse angular mesh regions is provided in figure 2.

2.4. Heat transfer calculations

The inner and outer cylinder mean Nusselt numbers are the spatial averages of the
local Nusselt number over the inner and outer cylinders, respectively, where the local
Nusselt number is the ratio of the actual to conduction heat transfer. The expressions
for the inner and outer cylinder mean Nusselt numbers Nui and Nuo, respectively, are

Nui =
−1

2πL

∫ L

0

∫ 2π

0

ln(R)
∂Θ

∂r

∣∣∣∣
r=1

dφ dz, (35)

Nuo =
−1

2πL

∫ L

0

∫ 2π

0

R ln(R)
∂Θ

∂r

∣∣∣∣
r=R

dφ dz. (36)

At steady state conditions, Nui and Nuo converge to the same value, which is reported
herein as the overall annulus Nusselt number. This fact was used as a further check
on the accuracy of the numerical scheme.
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Figure 2. Example of radial, angular, and axial grid distributions used in the computations.

3. Results and discussion
The development of flow patterns and temperature distributions as the Rayleigh

number is successively increased from subcritical to supercritical values is presented.
Multiple three-dimensional supercritical states characterized by the orientations and
directions of rotation of convective rolls that form in the upper region of the annulus
owing to thermal instability are analysed, and factors influencing the number of
supercritical rolls are studied. A critical Rayleigh number above which the basic flow
is unstable is determined from the numerical results.

As indicated earlier, all of the numerical simulations were performed over the full
angular and axial extent of the annulus. It was demonstrated that, owing to flow
symmetry, the normal component of velocity and normal gradients of the tangential
velocity components are zero at the vertical angular plane and the mid-axial plane.
Accordingly, the φ-component of vector potential corresponds to the two-dimensional
stream function at the vertical angular plane, and the z-component of vector potential
corresponds to the two-dimensional stream function at the mid-axial plane. In § 3.1,
supercritical states exhibiting only transverse rolls in the upper part of the annulus
are studied. In this case, results are presented as streamlines and isotherms at the
upper vertical angular plane since these provide a characteristic cross-section of the
flow and temperature fields associated with the transverse rolls. Supercritical states
that display longitudinal rolls in the highest part of the annulus in combination with
transverse rolls located between the longitudinal rolls and primary flow are studied
in § 3.2. For this case, the streamlines and isotherms at the mid-axial plane provide
a representative cross-section of the flow and temperature fields associated with the
longitudinal rolls.

A systematic mesh refinement procedure was employed to ensure that the results
are not dependent on grid size. In this procedure, the number of grid points in the
radial, angular, and axial directions, and the angular boundaries of the fine mesh and
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transition mesh regions were independently varied. The results of these runs were
compared to determine the grid distribution which yielded grid-independent results.
The number of grid points in the radial direction was first successively increased
while the angular and axial grid points were held constant. Keeping the number of
axial grid points the same and using the grid size in the radial direction obtained
from the previous step, the angular boundaries of the fine mesh and transition mesh
regions were then successively increased to ensure that the rolls that form in the upper
portion of the annulus were properly captured. Once the boundaries of the angular
mesh regions were determined, the number of grid points in the angular direction
was successively increased. With the angular and radial grid sizes thus established, the
number of grid points in the axial direction was then successively increased. Finally,
the number of grid points in all three directions as well as the angular boundaries
of the fine mesh and transition mesh regions were increased to determine the grid
distribution which yielded grid-independent results. Note that the ratio of adjacent
grid sizes in the transition mesh region was always set to satisfy the equation (34)
criterion.

The mesh refinement procedure was conducted over the ranges of R and Rayleigh
number studied. The required number of angular grid points was found to vary with
both R and Rayleigh number. As expected, the greatest number of angular grids is
associated with the smallest R at the highest Rayleigh number. Also, the required
angular extent of the fine mesh region varies depending on the Rayleigh number,
with the largest angular extent corresponding to the highest Rayleigh number. For
gap aspect ratios greater or less than the baseline value of A = 7, the number of axial
grid points was increased or decreased, respectively, according to the aspect ratio.

Sufficiently small timesteps in the range of 10−5 to 10−6 were used to obtain
timestep-independent solutions. In separate numerical runs, the timestep was initially
set to a large value and then progressively decreased until the transient solution
no longer changed. Following this procedure, the step size which yielded timestep-
independent results was determined for each case studied.

In addition to the studies performed to ensure grid- and timestep-independence,
steady state results were compared to those of previous numerical and experimental
investigations to verify the accuracy of the numerical scheme. These comparisons are
presented in Dyko et al. (1999), and thus are only summarized briefly here. Four sets
of comparisons were made, the first three for air as the fluid medium with Rayleigh
numbers in the range of Ra = 103 to 1.1 × 104, and the fourth for a fluid with
Pr = 100 and Rayleigh numbers of Ra = 8.725 × 103 and 2.52 × 104. The results
of these comparisons show that the streamlines and isotherms calculated using the
present numerical scheme are in excellent agreement with the experimental results of
Dyko et al. (1999) for air and a fluid with Pr = 100, as well as the numerical results
of Kuehn & Goldstein (1976) for air. In addition, other important features of the
natural convective flows such as the position and size of transverse vortex structures,
centre of rotation of unicellular flows, and movement of the centre of rotation with
increasing Rayleigh number are seen to be properly captured by the numerical model.

For further verification of the numerical algorithm employed in the present in-
vestigation, comparisons were made between longitudinal rolls that set up early in
the transient evolution of the three-dimensional flow field, and the steady counter-
rotating cells obtained by Cadiou et al. (1998) using a two-dimensional model for
the case of R = 1.04, Ra = 3000, and Pr = 0.7. These comparisons are valid since
the flow in the mid-axial region of the annulus remains two-dimensional until a later
time when adjoining transverse rolls begin to form there. In figure 3, streamlines and
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Figure 3. Comparisons of isotherms and streamlines occurring early in the transient evolution of
the three-dimensional flow field at the mid-axial plane z = 1

2
L (present work) to those obtained

using a two-dimensional model (Cadiou et al. 1998) for R = 1.04, Ra = 3000, and Pr = 0.7:
(a) first supercritical state; (i) Present Work: Cross-section (at z = 1

2
L) of three-dimensional

longitudinal rolls very early in the transient development of the flow field (t = 0.001), prior to
formation of the adjoining three-dimensional transverse rolls; (ii) Cadiou et al. (1998): Steady
cells from a two-dimensional model (the two-dimensional model cannot simulate the adjoining
three-dimensional transverse rolls that are actually present at steady state); (b) second supercritical
state. (i) Present Work: Cross-section (at z = 1

2
L) of three-dimensional longitudinal rolls very early

in the transient development of the flow field (t = 0.001), prior to formation of the adjoining
three-dimensional transverse rolls; (ii) Cadiou et al. (1998): Steady cells from a two-dimensional
model (the two-dimensional model cannot simulate the adjoining three-dimensional transverse rolls
that are actually present at steady state).

isotherms from their work are plotted next to those at the mid-axial plane from the
present three-dimensional study, for two different supercritical states. It is seen that
the streamlines and isotherms in the upper part of the annulus from our numerical
model are in excellent agreement with their solutions from the two branches of the bi-
furcation curve for two-dimensional flow. These two branches correspond to cells with
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reversed directions of rotation. Note that since Cadiou et al.’s (1998) two-dimensional
model cannot simulate the three-dimensional transverse rolls that are in place next
to the longitudinal rolls at steady state, their steady results are incorrect. It should be
noted that a two-dimensional simulation of the narrow-gap annulus cannot represent
the three-dimensional transverse rolls that are indeed present at steady state.

3.1. Transverse rolls

Three-dimensional natural convective flow consisting of transverse rolls in the upper
region of the annulus in conjunction with the primary recirculating flow outside this
region is studied in this section. Simulations were conducted for an annulus of radius
ratio R = 1.1 and gap aspect ratio A = 7, with air (Pr = 0.7) as the fluid medium. The
Rayleigh number was successively increased from Ra = 1000 to Ra = 3000, which
enabled investigation of subcritical and supercritical flow structures. To illustrate the
effects of gap aspect ratio on the supercritical flow and temperature fields, results are
presented for A = 5, 6 and 8. The results of simulations performed for R = 1.05, 1.15
and 1.2 to study the influence of radius ratio are also provided.

At a Rayleigh number of Ra = 1000, two crescent-shaped recirculation patterns
centred on φ = ± 1

2
π are present in each of the axial planes. These patterns are

symmetric to one another about the vertical angular plane. The isotherms appear
as concentric circles centred on r = 0 (when viewed in any axial plane) indicating
that heat transfer takes place essentially by conduction only. When viewed in any of
the (r, z)-planes, the isotherms form horizontal straight lines without any noticeable
distortion near the endwalls. Note that, for conciseness, plots of the flow patterns and
isotherms for Ra = 1000 are not presented.

When the Rayleigh number is increased to Ra = 1500, the temperature field retains
its two-dimensional characteristics except in the upper region of the annulus near
the endwalls. Here, the isotherms become slightly distorted owing to the increased
strength of locally three-dimensional flow that results from the viscous shearing effect
of the endwalls. As the Rayleigh number is increased above the critical value for
instability of Rac = 1740 for R = 1.1 determined in the present study, the isotherms
in the upper region begin to vary noticeably over the entire length of the annulus.
As shown later, this is an indication of the formation of three-dimensional secondary
flow structures in the upper region of the annulus. The heat transfer from the inner
to outer cylinder begins to depart from that of pure conduction as a result of these
secondary flows.

The streamlines and isotherms in the upper vertical angular plane are plotted in
figures 4(a) and 4(b), respectively, for a Rayleigh number of Ra = 1500. At this
subcritical Rayleigh number, a core region of approximately 1

8
L < z < 7

8
L exists in

which the temperature distribution is essentially independent of axial position and
the axial velocity is very small. In figure 4(a) a rotational cell is seen to be present
at each endwall. These cells are actually cross-sections of transverse rolls extending
across the upper region that rotate clockwise and counterclockwise on the right- and
left-hand sides of the annulus, respectively. The strength of these end rolls is very
low, which results in only a slight distortion of the isotherms near the endwalls, as
observed in figure 4(b). In figure 4(a), an even weaker counter-rotating secondary flow
pattern produced by viscous shear forces is seen to be present next to each end roll.
At this Rayleigh number, the overall Nusselt number is Nuav = 1.003 which indicates
that heat transfer occurs almost entirely by conduction.

As the Rayleigh number is increased above the critical value Rac = 1740, two
additional pairs of counter-rotating cells form in the central space between the
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Figure 4. Effect of Ra on convection at the upper vertical angular plane for the first type of
transverse roll pattern for R = 1.1, A = 7, Pr = 0.7: (a) streamlines; (b) isotherms.

end rolls, thereby eliminating the core region, as seen in figures 4(a) and 4(b) for
Ra = 2000. Each of the cells is a cross-section of a transverse roll that arises owing to
thermal instability. Note that at Rayleigh numbers slightly greater than Rac = 1740,
the inner transverse rolls are weaker than the end rolls. However, as the Rayleigh
number is increased, the strength of the inner rolls increases faster than that of the
end rolls and becomes slightly greater prior to reaching Ra = 1800. As the Rayleigh
number is elevated further, the end rolls remain weaker than the inner rolls because
of the viscous shearing effect of the endwalls, as shown in figure 4(a) for Ra = 2000,
2500 and 3000. The strength of the supercritical inner rolls increases significantly with
Rayleigh number, as seen by comparing the maximum values of stream function at
the upper vertical angular plane of 0.69, 1.58, 2.77 and 3.57 for Ra = 1800, 2000,
2500 and 3000, respectively. At each Rayleigh number, the strength of each of the
four inner rolls is almost the same.

The alternating elevation and depression of isotherms along the length of the
annulus observed in figure 4(b) for Rayleigh numbers of Ra = 2000, 2500 and 3000
reflects the upward and downward movement of fluid corresponding to the opposing
directions of rotation of the transverse rolls. The closer spacing of isotherms next
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Figure 5. Radial velocity at r = 1
2
(ri + ro), φ = 0, z = 1

2
L as a function of Rayleigh number for

�, the first type of transverse rolls, �, second type of transverse rolls, and N, subcritical flow for
R = 1.1, A = 7, Pr = 0.7.

to the inner and outer cylinder surfaces corresponds to where the flow cooled by
the outer cylinder impinges on the inner cylinder and the flow heated by the inner
cylinder impinges on the outer cylinder, respectively. As the Rayleigh number is
increased from Ra = 2000 to Ra = 3000, the isotherms attain a more pronounced
S-shaped appearance as a result of the higher rotational strength of the rolls, as
seen in figure 4(b). Over this Rayleigh number range, the overall Nusselt number
increases significantly beyond that of pure conduction, from a value of Nuav = 1.033
at Ra = 2000 to Nuav = 1.089 and 1.143 at Ra = 2500 and 3000, respectively.

In studying the stability characteristics of the narrow-gap annulus flow, a procedure
was followed in which the Rayleigh number was successively increased in increments
starting at a value less than the critical Rayleigh number Rac for onset of secondary
flows. Each converged solution was used as an initial guess for the next highest
Rayleigh number. The value of Rac = 1740 was determined by plotting results from
each converged solution as a function of the Rayleigh number, as shown in figure 5 for
the radial velocity at r = 1

2
(ri + ro), φ = 0, z = 1

2
L. The abrupt increase in the upward

radial velocity at this location occurring at Rac = 1740 is indicative of the formation
of transverse rolls in the upper portion of the annulus owing to thermal instability.
At a Rayleigh number substantially greater than 1740, the process was reversed and
carried through until the Rayleigh number was once again below Rac. The value of
Rac thus determined by decreasing the Rayleigh number was found to be the same as
that obtained by increasing the Rayleigh number, within the tolerance of the Rayleigh
number increment of 10 that was employed. A smaller increment could be used to
determine whether or not hysteresis effects are present. However, the computational
cost is prohibitive since the numerical solution converges much more slowly as Rac
is approached owing to the more gradual formation of the secondary flow.

To provide additional insight into the three-dimensional flow structure, fluid particle
path plots are presented in figure 6 for R = 1.1, A = 7 and Ra = 2500. In these plots,
a particle is introduced into each of the six transverse rolls at positions near the top
of the annulus (locations A1–A6), and also into four of the transverse rolls at positions
closer to the main flow (locations B1–B4). The ensuing pathlines show the primary
flow features present in the narrow-gap annulus including the interactions between
the convective rolls and the main flow. In figures 6(a) and 6(b), all ten pathlines are
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Figure 6. Fluid particle paths for the first type of transverse roll pattern for R = 1.1, A = 7,
Ra = 2500, Pr = 0.7: (a) side view; (b) perspective view; (c) end view of end roll region; (d) end
view of inner roll pair region.
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shown whereas in figures 6(c) and 6(d), views of the end roll region pathlines and the
inner roll pair pathlines, respectively, are shown.

As seen in figures 6(a) and 6(c), a particle introduced into the centre of an end roll
near the top of the annulus (locations A1 and A6) traces a series of increasingly larger
patterns that reflect the cross-sectional shape of the roll, with only slight movement
in the angular direction. Another particle injected into an end roll at a position closer
to the main flow (locations B1 and B4) exhibits very different behaviour. This particle
performs several loops within the roll before becoming entrained in the primary flow,
and then follows a crescent-shaped route downward along the outer cylinder (C) to
the bottom of the annulus and back up along the inner cylinder (D) to the end roll.
At this point it loops over the end roll and then follows another full crescent-shaped
route that is closer to the end wall before re-entering the end roll near its release
point, thereby closing a three-dimensional circuit. These results indicate that the fluid
in the upper portion of the end roll does not interact appreciably with the main flow,
whereas that in the lower portion of the roll is part of a three-dimensional circulation
involving the end roll and the primary flow. This circulation takes place within the
axial boundaries of the end roll.

Particles introduced into the centre of each inner roll near the top of the annulus
(locations A2–A5) behave similarly to those injected into the upper portion of the
end rolls (locations A1 and A6), tracing increasingly larger patterns with very little
movement in the angular direction, as seen in figures 6(a) and 6(d). A particle inserted
into an inner roll that is adjacent to an end roll at a position closer to the main
flow (locations B2 and B3) proceeds differently, first moving spirally upward in the
annulus and then transferring from this roll to the adjacent inner roll that is next to
the mid-axial plane. The particle then traces several loops as it proceeds downward
in the annulus and becomes entrained in the primary flow, whereupon it follows a
crescent-shaped route to the bottom of the annulus along the outer cylinder (E) and
then back up along the inner cylinder (F). The particle returns to the transverse roll
where it was introduced, and then traces additional crescent-shaped circuits within
the axial boundaries of the inner roll pair. These particle path results show that fluid
in the uppermost portion of the inner rolls does not interact appreciably with the
main flow, and that three-dimensional circulation patterns involving adjacent pairs of
inner rolls and the primary flow are present in the annulus. Since there are two pairs
of adjacent inner rolls for the case of R = 1.1, A = 7 and Ra = 2500 considered here,
there are two such circulation patterns within the annulus.

The inner and outer cylinder local Nusselt number distributions are plotted in
figures 7(a) and 7(b), respectively, for R = 1.1, A = 7 and Ra = 2500. In the lower
third of the annulus (between φ = 2

3
π and φ = π) the inner cylinder Nusselt number

shows little variation in the axial direction, and within this region it is highest at the
bottom (φ = π) where the inner cylinder thermal boundary layer is thinnest. As the
fluid rises along the hot inner cylinder the boundary-layer thickness increases and
Nusselt number decreases. In the middle third of the annulus (between φ = 1

3
π and

φ = 2
3
π), the inner cylinder Nusselt number begins to vary noticeably in the axial

direction as a result of the influence of the transverse rolls on the primary flow. In the
upper third (between φ = 0 and φ = 1

3
π), there is much greater variation in the axial

direction owing to the direct influence of the transverse rolls. At φ = 0, there are two
large peaks in the inner cylinder Nusselt number corresponding to where fluid in the
inner roll pairs is first cooled by the outer cylinder and then impinges on the inner
cylinder (NuiMAX in figures 4(a) and 4(b)). Owing to the greater strength of the inner
rolls, these are larger than the local peaks at z = 0 and z = L associated with the
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Figure 7. Local Nusselt number distributions for the first type of transverse roll pattern for
R = 1.1, A = 7, Ra = 2500, Pr = 0.7: (a) inner cylinder; (b) outer cylinder.

end rolls. Between the peaks there are three local minima at φ = 0 corresponding
to locations of upward flow away from the inner cylinder, although the perspective
in figure 7(a) does not clearly show all three minima. The inner cylinder Nusselt
number at φ = 0 varies by a factor of 4.88 over the length of the annulus. It is seen
that the four peaks associated with the transverse rolls drop-off significantly with
increased angular position between approximately φ = 1

12
π and φ = 1

3
π as the rolls

dissipate. The rate of drop-off temporarily decreases at approximately φ = 1
6
π, which

corresponds to where the flow rising along the inner cylinder from the lower portion
of the annulus becomes entrained in the transverse rolls.

As shown in figure 7(b), in the lower portion of the annulus, the outer cylinder
Nusselt number is essentially independent of axial position, becomes smaller with
increased angular position, and is a minimum at φ = π. The trend of decreasing
magnitude with increased angular position occurs since the outer cylinder thermal
boundary layer increases in thickness as the flow proceeds downward. In the middle
portion of the annulus, the outer cylinder Nusselt number begins to vary significantly
in the axial direction as a result of the influence of the transverse rolls on the primary
flow, as was the case for the inner cylinder Nusselt number. In the upper part of the
annulus, the outer cylinder Nusselt number shows a dramatic variation in the axial
direction resulting from the inner roll pairs. There are three local maxima occurring
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Figure 8. Effect of A on convection at the upper vertical angular plane for the first type of
transverse roll pattern for R = 1.1, Ra = 2500, Pr = 0.7: (a) streamlines; (b) isotherms.

at φ = 0 which are associated with the flow in the rolls moving upward from the
hot inner cylinder and meeting the cool outer cylinder (NuoMAX in figures 4(a) and
4(b)). There are also four local minima at φ = 0 corresponding to the locations of
downward movement of fluid away from the outer cylinder, even though these are not
all clearly shown in the figure 7(b) view. The outer cylinder Nusselt number at φ = 0
varies by a factor of 4.20 over the length of the annulus. The locations where the flow
rising along the inner cylinder becomes entrained in the transverse rolls coincide with
three local maxima present at approximately φ = 1

6
π.

The streamlines and isotherms in the upper vertical angular planes of annuli with
gap aspect ratios of A = 5, 6, 7 and 8 are presented in figure 8 for Ra = 2500. From
these results, it is seen that as the aspect ratio is successively increased from A = 5 to
A = 8 in increments of ∆A = 1, either the existing rolls expand or additional inner
rolls form, always one counter-rotating roll pair at a time. The total number of rolls
and sizes of the inner rolls are given in table 1 as a function of A. It can be seen that
the size of the inner rolls varies somewhat to accommodate an integral number of roll
pairs between the end rolls. The roll sizes given in table 1 are within −3% to +18%
of the theoretical size of l′ = 0.101 for an infinite length annulus calculated using
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Inner role size
Aspect ratio A Number of rolls (dimensionless)

5 4 0.119
6 6 0.099
7 6 0.114
8 8 0.098

Table 1. Number and size of transverse rolls in the annulus for R = 1.1 and Ra = 2500.
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Figure 9. Effect of R on convection at the upper vertical angular plane for the first type of
transverse roll pattern for A = 7, Ra = 2500, Pr = 0.7: (a) streamlines; (b) isotherms.

l′ = mπ(ro − ri)/ScL, with m = 1 being the number of cells and ScL = 3.12 being the
critical wavenumber obtained from the linear stability analysis of Dyko et al. (1999).

Simulations were also performed for R = 1.05, 1.15 and 1.2 with A = 7 and
Ra = 2500 to investigate the effect of radius ratio R on the transverse rolls. The
streamlines and isotherms in the upper vertical angular plane associated with each
of these cases and the baseline case of R = 1.1, A = 7 and Ra = 2500 are plotted in
figures 9(a) and 9(b), respectively. It can be seen that for all of the cases, a total of
six transverse rolls form in the upper portion of the annulus. The maximum value of
the stream function at the upper vertical angular plane associated with the inner rolls
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varies by less than 2% over the range 1.05 6 R 6 1.2. Consequently, the appearance
of the isotherms is essentially unchanged over this range. These results indicate that,
for A = 7 and Ra = 2500, within the range of R studied, the radius ratio does not
affect the number of transverse rolls nor does it significantly affect the dimensionless
strength of the transverse rolls.

The orientation and directions of rotation of the counter-rotating supercritical rolls
presented up to this point are determined by end rolls that are present at subcritical
Rayleigh numbers and become stronger as the Rayleigh number is increased above
Rac, which is approximately 1740 for R = 1.1. These end rolls, which are driven by
the main flow and form because of the viscous shear imposed by the endwalls, are
oriented in the transverse direction and rotate clockwise and counterclockwise on the
right- and left-hand sides of the annulus, respectively. The shear force they exert on
the fluid in the inner region induces the formation of supercritical transverse rolls
and determines the directions of rotation of these rolls.

In the absence of perturbations in the flow and temperature fields, these end
rolls develop prior to formation of the supercritical rolls when starting from a
quiescent and isothermal initial state and increasing the Rayleigh number to a value
above Rac, resulting in the same transverse supercritical rolls as described so far.
In nature and experiments, however, small disturbances that trigger the inception of
instabilities cannot be eliminated and it is possible for the supercritical rolls to arise
prior to the development of these end rolls. In such a situation, the orientation and
directions of roll rotation are no longer predetermined and different supercritical roll
patterns can develop. In a numerical simulation where round-off errors are negligibly
small, disturbances must be deliberately introduced to simulate this process. This is
accomplished in the present study through the use of appropriate initial conditions.

In order to prompt formation of supercritical transverse rolls prior to development
of the aforementioned end rolls, the equation (29) perturbed conductive temperature
field that is periodic in the z-direction is introduced at t = 0. As mentioned previously,
equation (29) physically represents the reversal of thermal gradients associated with
inception of thermal instabilities in the annulus. Simulations were conducted in which
η was varied over the full range of 0 6 η 6 2π, with CB based on the solution obtained
by successively increasing the Rayleigh number to supercritical values. It was found
that one of two types of steady transverse roll patterns develops depending on the
value of η. The first type is identical to that obtained by successively increasing the
Rayleigh number from subcritical to supercritical values as plotted in figure 4, with
end rolls that rotate clockwise and counterclockwise on the right- and left-hand sides
of the annulus, respectively. The second type exhibits the same number of transverse
rolls, but with reversed directions of roll rotation. Thus, for the second type, the end
rolls rotate counterclockwise and clockwise on the right- and left-hand sides of the
annulus, respectively. It is noted that the existence of rolls with reversed directions of
rotation can also be found in Rayleigh–Bénard convection between horizontal planes,
in which two branches of solutions corresponding to clockwise and counterclockwise
roll rotation bifurcate from the hydrostatic solution at Ra = Rac.

The streamlines and isotherms in the upper vertical angular plane associated with
the second type of transverse roll pattern are plotted in figures 10(a) and 10(b),
respectively, for R = 1.1 and A = 7 at Rayleigh numbers of Ra = 2000, 2500 and
3000. As seen by comparing figure 10(a) with figure 4(a), at each of these supercritical
Rayleigh numbers, the number of transverse rolls is the same as for the first type
of transverse roll pattern, but the direction of rotation of each roll is reversed. Note
that at the subcritical Rayleigh number of Ra = 1500 (Rac = 1740 for R = 1.1),
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Figure 10. Effect of Ra on convection at the upper vertical angular plane for the second type of
transverse roll pattern for R = 1.1, A = 7, Pr = 0.7: (a) streamlines; (b) isotherms.

the same final solution as that shown in figures 4(a) and 4(b) is obtained using the
equation (29) initial condition. Owing to the reversed directions of rotation of the
transverse rolls, the alternating elevation and depression of isotherms along the length
of the annulus for the second type of transverse roll pattern is opposite to that of
the first type, as seen by comparing figure 10(b) with figure 4(b). The axial locations
of impingement regions on the inner cylinder, as indicated by the closer spacing of
isotherms next to the inner cylinder seen in figure 10(b), correspond to those on the
outer cylinder for the first type of transverse roll pattern seen in figure 4(b). Likewise,
the axial positions of impingement regions on the outer cylinder correspond to those
on the inner cylinder for the first type of pattern. As the Rayleigh number is increased
from Ra = 2000 the overall Nusselt number increases from a value of Nuav = 1.028
to Nuav = 1.085 and 1.142 at Ra = 2500 and 3000, respectively. Therefore, over this
Rayleigh number range the overall annulus heat transfer is essentially unchanged
compared to the first type of transverse roll pattern.

The bifurcation point for the second type of transverse roll pattern was found
to be approximately Ra = 1950 (within a Rayleigh number increment of 50) for
R = 1.1, as indicated in figure 5. For Rayleigh numbers between Rac = 1740 and
approximately Ra = 1950, the second type of transverse roll pattern initially forms
using the equation (29) initial condition, but as time progresses the flow transitions
to the first type of transverse roll pattern. This transition occurs owing to a gradual
dissipation of the second type of end roll (counterclockwise and clockwise rotation
on the right- and left-hand sides of the annulus, respectively) and resulting formation



22 M. P. Dyko and K. Vafai

of the first type of end roll (clockwise and counterclockwise rotation on the right-
and left-hand sides of the annulus, respectively).

The plots shown in figure 5 for the first and second types of transverse roll
patterns and the subcritical flow provide evidence of an imperfect bifurcation for
transverse rolls in a narrow-gap annulus. The pitchfork bifurcation associated with
Rayleigh–Bénard convection between horizontal planes degenerates into this imper-
fect bifurcation owing to the curvature of the inner and outer cylinders, the presence
of the end walls, and the interaction of the transverse rolls with the primary flow. The
rolls associated with the first type of transverse roll pattern interact with the primary
flow somewhat differently to those associated with the second type (as described next),
which contributes to the asymmetry of the two branches of supercritical solutions
seen in figure 5. It is noted that the figure 5 bifurcation diagram for transverse rolls
is similar in appearance to the bifurcation diagrams for two-dimensional cellular flow
in a narrow-gap annulus presented by Cadiou et al. (1998), even though the flow
patterns are very different.

Fluid particle path plots for the second type of transverse roll pattern are presented
in figure 11 for R = 1.1, A = 7 and Ra = 2500. In the same manner as previously
shown in figure 6 for the first type of transverse roll pattern, a particle is introduced
into each of the six transverse rolls at positions near the top of the annulus (locations
A1–A6), and also into four of the transverse rolls at positions closer to the main flow
(locations B1–B4). In figure 11, however, the locations B2 and B3 are now within the
two innermost rolls, rather than the inner rolls that are adjacent to the end rolls.

As seen in figures 11(a) and 11(b), particles introduced into the centre of each
transverse roll near the top of the annulus (locations A1–A6) behave similarly to the
corresponding particles shown in figure 6 for the first type of transverse roll pattern.
Each of these particles traces increasingly larger patterns with very little movement
in the angular direction. Therefore, the fluid in the upper portions of the transverse
rolls does not interact appreciably with the main flow, as was the case for the first
type of transverse roll pattern (figure 6).

A particle injected into an end roll at a position closer to the main flow (locations
B1 and B4) exhibits behaviour different from the corresponding particle for the first
type of transverse roll pattern. As shown in figures 11(a) and 11(c), for the second
type of transverse roll pattern this particle spirals downward within the end roll and
then becomes entrained in the primary flow. It subsequently follows a crescent-shaped
route downward along the outer cylinder (C) to the bottom of the annulus and back
up along the inner cylinder (D). After this, it enters the inner roll that is adjacent to
the end roll, spirals upward in the annulus, and transfers from this inner roll to the
end roll near its release point, thereby closing a three-dimensional circuit. It is thus
shown that the three-dimensional circulation at the end of the annulus now involves
the end roll, the adjacent inner roll, and the primary flow instead of just the end roll
and the primary flow as in the first type of transverse roll pattern.

In figures 11(a) and 11(d), it can be seen that a particle inserted into one of the
two innermost rolls at a position close to the main flow (locations B2 and B3) traces
several loops before becoming entrained in the primary flow, and then follows a
crescent-shaped route towards the bottom of the annulus along the outer cylinder
(E) and back up along the inner cylinder (F), whereupon it re-enters the innermost
roll. The particle subsequently traces several crescent-shaped routes that show greater
axial movement toward the end wall prior to returning to the innermost roll. These
particle path results for the second type of transverse roll pattern indicate that three-
dimensional circulation patterns involving a single innermost roll and the primary
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Figure 11. Fluid particle paths for the second type of transverse roll pattern for R = 1.1, A = 7,
Ra = 2500, Pr = 0.7: (a) side view; (b) perspective view; (c) end view of end roll and adjacent inner
roll region; (d) end view of innermost roll region.



24 M. P. Dyko and K. Vafai

2.5

0
0.7

0

z

Nui

(a)

p

0

φ

2.5

0
0.7

0

z

Nuo

(b)

p
0

φ

Figure 12. Local Nusselt number distributions for the second type of transverse roll pattern for
R = 1.1, A = 7, Ra = 2500, Pr = 0.7: (a) inner cylinder; (b) outer cylinder.

flow are present in the annulus. Since there are two innermost rolls, there are two such
circulation patterns within the annulus. These patterns are therefore different from
those associated with the first type of transverse roll pattern, in which the innermost
rolls are each paired with an adjacent inner roll in a circulation pattern.

The inner and outer cylinder local Nusselt number distributions for the second
type of transverse roll pattern are plotted in figures 12(a) and 12(b), respectively, for
R = 1.1, A = 7 and Ra = 2500. The inner cylinder Nusselt number distribution in
the lower two-thirds of the annulus is seen to be nearly the same as that shown in
figure 7(a) for the first type of transverse roll pattern. In the upper portion of the
annulus, however, there are significant changes resulting from the reversed directions
of rotation of the rolls. At φ = 0, there are now three local maxima (rather than
two large peaks and two smaller peaks) corresponding to where fluid entrained in
the rolls is first cooled by the outer cylinder and then impinges on the inner cylinder
(NuiMAX in figures 10a and 10b). There are also four local minima at φ = 0 (rather
than three), although all of these are not clearly seen in this view. The inner cylinder
Nusselt number at φ = 0 varies by a factor of 4.69 over the length of the annulus.
As is the case for the first type of transverse roll pattern, the peaks associated with
the transverse rolls drop-off significantly with increased angular position between
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approximately φ = 1
12
π and φ = 1

3
π as the rolls dissipate. This drop-off is temporarily

interrupted at approximately φ = 1
6
π, which corresponds to where the flow rising

along the inner cylinder from the lower portion of the annulus becomes entrained in
the transverse rolls.

It is seen by comparing figure 12(b) with figure 7(b) that the outer cylinder Nusselt
number distribution in the lower two-thirds of the annulus for the second type of
transverse roll pattern is close to that for the first type of transverse roll pattern. In the
upper part of the annulus, however, the outer cylinder Nusselt number distribution
is significantly changed owing to the reversed roll rotation. There are now two large
peaks at φ = 0 that are associated with the flow in the inner roll pairs being heated
by the inner cylinder and then impinging on the outer cylinder (Nu0MAX in figures 10a
and 10b), and also two smaller peaks at z = 0 and z = L associated with the end
rolls (rather than three maxima). There are also three local minima at φ = 0 (rather
than four) corresponding to the locations of downward movement of fluid away from
the outer cylinder. These minima can be clearly seen from a different perspective.
The outer cylinder Nusselt number at φ = 0 varies by a factor of 4.08 over the
length of the annulus. The locations where the flow rising along the inner cylinder
becomes entrained in the transverse rolls coincide with the four local maxima present
at approximately φ = 1

6
π.

In addition to the cases analysed for R = 1.1 with A = 7, simulations were
performed for A = 5, 6 and 8 with R = 1.1 and Ra = 2500, and for R = 1.05, 1.15
and 1.2 with A = 7 and Ra = 2500 to investigate the effects of annulus aspect ratio A
and radius ratio R, respectively, on the second type of transverse roll pattern. From
these simulations, it was found that the overall effects of varying A and R on the
second type of roll pattern are the same as those previously discussed for the first
type of roll pattern.

3.2. Combinations of longitudinal and transverse rolls

Three-dimensional natural convective flow comprised of longitudinal rolls in the
top portion of the annulus, transverse rolls adjacent to the longitudinal rolls, and
the primary recirculating flow in the middle and lower regions is investigated in
this section. Simulations were performed for an air-filled annulus of radius ratio
R = 1.1 and gap aspect ratio A = 7, which are the same baseline parameters used
in the investigation of supercritical flows exhibiting only transverse rolls in the upper
annulus discussed in § 3.1. Results for Rayleigh numbers ranging from Ra = 2000 to
Ra = 3000 are presented to illustrate the evolution of supercritical flow structures
with increasing Rayleigh number. Results are also presented for R = 1.05 and 1.15
to demonstrate the influence of radius ratio on the flow fields and temperature
distributions.

The equation (30) perturbed conductive temperature field, which is periodic in the
angular direction, was introduced at t = 0 to induce the formation of supercritical
longitudinal rolls prior to development of transverse end rolls. As noted earlier,
equation (30) simulates the reversal of thermal gradients associated with the onset of
thermal instabilities in the annulus. Numerical simulations were performed in which
the phase shift η was successively varied over the full range of 0 6 η 6 2π, with
CB based on the theoretical wavenumber obtained using linear stability theory. It
was found that at sufficiently high Rayleigh numbers, one of two types of steady
longitudinal roll patterns that are symmetric with respect to the vertical angular
plane develops depending on the value of η. The first type has a downward radial
velocity at the upper vertical angular plane, and the second type an upward radial
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velocity. Hence, the directions of rotation of the rolls for one type of longitudinal
roll pattern are opposite to those of the other type. Note that longitudinal rolls that
are asymmetric with respect to the vertical angular plane form initially when η is
set to a value other than zero or an integer multiple of π. However, it was found
that these rolls become symmetric after a sufficient period of time passes, resulting
in one of the two types of final roll patterns. For the purposes of illustrating the
fundamental behaviour of longitudinal rolls that initially set up in the annulus (and
persist undiminished until the development of transverse rolls) and comparing these
initial longitudinal rolls to the steady cells obtained in previous two-dimensional
numerical studies (see figure 3), the results presented herein for early times in the
transient development of the flow field correspond to η of zero or an integer multiple
of π.

In the discussions that follow, a longitudinal roll is characterized as fully separated
from the main flow if, when viewed in the mid-axial plane, it is bounded on each side
by a streamline that extends radially between the inner and outer cylinders. These
fully separated rolls are designated by Arabic numerals in the figures. Rolls that are
either bounded on only one side by a radial streamline or are not bounded by any
radial streamlines are considered to be partially separated from the main flow, and
are designated in the figures by Roman numerals.

Streamlines and isotherms in the mid-axial plane associated with the first type
of longitudinal roll pattern (downward radial velocity at the upper vertical angular
plane) are plotted on the left-hand side of figure 13(a) for Ra = 2000 at a time
early in the transient response of the fluid of t = 0.005. It is seen that at t = 0.005,
a single fully separated rotational cell (1) has formed on the left-hand side of the
upper vertical angular plane. There is a corresponding counter-rotating cell on the
right-hand side of this plane, for a total of two fully separated cells at the top of
the annulus. Each cell is actually a cross-section of a fully separated longitudinal
roll (1) extending along the length of the annulus that is set apart from the main
crescent-shaped flow by two partially separated rolls (II, III), which are also shown
on the left-hand side of figure 13(a). The S-shaped appearance of the isotherms in
the upper portion of the annulus reflects the alternating directions of rotation of
the fully and partially separated rolls. The flow remains steady and two-dimensional
at the mid-axial region until approximately t = 0.01, at which time transverse rolls
begin to form there. It is observed on the right-hand side of figure 13(a) that when
steady state conditions are achieved at t > 0.15, the longitudinal rolls have completely
dissipated. By this time, transverse rolls have replaced the longitudinal rolls and the
flow structure is identical to that shown in figure 4 for Ra = 2000. These results show
that at Ra = 2000, the strength of the longitudinal rolls is insufficient to prevent their
eventual displacement by transverse rolls.

At a Rayleigh number of Ra = 2500, the partially separated rolls on each side
of the annulus gain strength and become two additional fully separated longitudinal
rolls (2, 3) as seen on the left-hand side of figure 13(b), for a total of six fully separated
counter-rotating rolls in the upper region at t = 0.005. Also, there is evidence of two
additional rolls (IV, V) beginning to separate from the main flow as indicated by
the narrowing of streamlines and distortion of isotherms near the tip of the main
crescent-shaped flow. The longitudinal rolls present for Ra = 2500 at t = 0.005 are
stronger than the corresponding rolls present for Ra = 2000 at this same time, as
indicated by the plotted streamlines, increased value of ∆Ψ , and more pronounced
S-shaped appearance of isotherms on the left-hand side of figure 13(b) compared to
the left-hand side of figure 13(a). The strength of the longitudinal rolls at Ra = 2500
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Figure 13. Effect of Ra on convection at the mid-axial plane for the first type of longitudinal roll
pattern for R = 1.1, A = 7, Pr = 0.7, with streamlines on the left-hand sides and isotherms on the
right-hand sides at t = 0.005 and steady state: (a) Ra = 2000; (b) Ra = 2500; (c) Ra = 3000.

is now sufficient that the transverse rolls no longer displace all of the longitudinal
rolls at steady state. Instead, as shown on the right-hand side of figure 13(b) for
t > 0.15, on each side of the upper vertical angular plane there exists a single fully
separated longitudinal roll (1) accompanied by two weak counter-rotating regions
(II, III). Although not obvious in this figure showing results at the mid-axial plane,
transverse rolls are in place between the longitudinal rolls (accompanied by weak
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counter-rotating regions) and the main flow. There are a total of two fully separated
longitudinal rolls and four weak counter-rotating regions at the top of the annulus
that separate six transverse rolls on one side of the annulus from six corresponding
transverse rolls on the other side. It is thus shown that at a sufficiently high Rayleigh
number, another type of final supercritical roll pattern exists that is comprised of
both longitudinal and transverse rolls in the upper part of the annulus.

At a Rayleigh number of Ra = 3000, three fully separated longitudinal rolls (1, 2, 3)
once again form on each side of the annulus (six fully separated rolls total in the upper
region) at t = 0.005 as seen on the left-hand side of figure 13(c). The strength and
angular extent of these rolls has increased, as seen by comparing the streamlines and
isotherms plotted on the left-hand side of figure 13(c) to the corresponding ones in
figure 13(b) for Ra = 2500. By comparing the streamlines and isotherms at t = 0.005
in figure 13(c) for Ra = 3000 to the corresponding ones in figures 13(a) and 13(b)
for Ra = 2000 and Ra = 2500, respectively, the trends of an increasing number of
fully separated longitudinal rolls and greater angular extent of these rolls with higher
Rayleigh number are clearly evident. These trends are consistent with the increase
in angular extent of cellular flow observed in the experimental studies of natural
convection of air in a long narrow-gap horizontal annulus conducted by Liu et al.
(1961). As shown on the right-hand side of figure 13(c) for t > 0.15, the final flow
structure after development of the adjoining transverse rolls at Ra = 3000 is similar
to that present at Ra = 2500. Once again, a total of two fully separated longitudinal
rolls and four weak counter-rotating regions at the top of the annulus separate six
transverse rolls on each side of the annulus. The strength of the rolls at Ra = 3000 is
greater than at Ra = 2500. The steady state overall Nusselt numbers for the first type
of longitudinal roll pattern shown on the right-hand sides of figures 13(b) and 13(c)
are Nuav = 1.084 and 1.136 for Ra = 2500 and 3000, respectively. These values are
only slightly lower than the corresponding Nusselt numbers for the first and second
types of transverse roll patterns discussed in § 3.1, and indicate a substantial increase
in heat transfer beyond that of pure conduction.

The pathlines of particles introduced into the annulus at positions close to the
main flow (locations B1–B4) for the first type of longitudinal roll pattern for R = 1.1,
A = 7, and Ra = 2500 are essentially the same as those shown in figure 6 for the
first type of transverse roll pattern, and thus are not presented. Particles released into
the longitudinal rolls themselves trace a series of increasingly larger patterns that
reflect the cross-sectional shape of the rolls, except now these patterns are rotated
90◦ (compared to the transverse roll patterns) owing to the roll orientation. There is
relatively little movement of these particles in the axial direction, and the fluid within
the longitudinal rolls does not interact appreciably with the main flow. It is noted
that the above description of overall fluid movement in the annulus also applies to
the second type of longitudinal roll pattern discussed later, except that the particles
released into a given longitudinal roll rotate in the opposite direction owing to the
reversed directions of roll rotation.

The inner and outer cylinder Nusselt number distributions for the first type of
longitudinal roll pattern are shown in figures 14(a) and 14(b), respectively, for R =
1.1, A = 7 and Ra = 2500. It is seen that below the longitudinal rolls (between
approximately φ = 1

12
π and φ = π), the inner and outer cylinder Nusselt number

distributions are essentially the same as those shown in figures 7(a) and 7(b) for the
first type of transverse roll pattern, except the peaks in inner cylinder Nusselt number
associated with the transverse rolls (now located between the longitudinal rolls and
the main flow) are slightly greater than before. In figure 14(a), a large perturbation
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Figure 14. Local Nusselt number distributions for the first type of longitudinal roll pattern for
R = 1.1, A = 7, Ra = 2500, Pr = 0.7: (a) inner cylinder; (b) outer cylinder.

in the inner cylinder Nusselt number distribution near φ = 0 that extends axially
across the entire annulus is seen to occur as a result of the longitudinal roll next to
φ = 0. The local peak values of Nusselt number along the length of the annulus at
φ = 0 reflect the downward movement of fluid from the cool outer cylinder to the
hot inner cylinder owing to this longitudinal roll. The inner cylinder Nusselt number
at φ = 0 varies by a factor of 1.51 over the length of the annulus, which is much less
than for the transverse roll patterns. In figure 14(b), a large perturbation in the outer
cylinder Nusselt number distribution near φ = 0 that extends axially across the entire
annulus is seen to occur owing to the longitudinal roll. The local minimum values of
the Nusselt number along the length of the annulus at φ = 0 reflect the downward
movement of fluid away from the outer cylinder. The outer cylinder Nusselt number
at φ = 0 varies by a factor of 1.53 over the length of the annulus, which again is
much less than for the transverse roll patterns.

The streamlines and isotherms in the upper portion of the mid-axial plane at Ra =
2500 are plotted in figures 15(a), 15(b) and 15(c) for annulus radius ratios of R = 1.15,
1.1 and 1.05, respectively. As seen on the left-hand sides of these figures, the number
of fully separated longitudinal rolls on each side of the vertical angular plane that set
up early-on increases from one (1) to three (1, 2, 3) to five (1, 2, 3, 4, 5) as R decreases
in increments of ∆R = 0.05 starting from R = 1.15. From the right-hand side of
figure 15(a), it can be seen that at steady state conditions there are no final longitudinal
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Figure 15. Effect of R on convection at the upper portion of the mid-axial plane for the first type
of longitudinal roll pattern (downward radial velocity at φ = 0) for A = 7, Ra = 2500, Pr = 0.7,
with streamlines on the left-hand sides and isotherms on the right-hand sides for initial rolls and
steady rolls: (a) R = 1.15; (b) R = 1.1; (c) R = 1.05.

rolls present for R = 1.15. For R = 1.1 and R = 1.05, one final fully separated
longitudinal roll (1) is accompanied by two counter-rotating regions (II, III) on each
side of the annulus at steady state as shown on the right-hand sides of figures 15(b)
and 15(c), respectively. The results presented in figures 15(a)–15(c) indicate that an
odd number of longitudinal rolls always sets up on each side of the annulus for the
first type of longitudinal roll pattern (downward radial velocity at the upper vertical
angular plane). This occurs since, for this type of pattern, the directions of rotation
of the uppermost roll and the roll adjacent to the main flow are both opposite that of
the main flow, which is possible only for an odd number of counter-rotating rolls. The
results also show that the first type of longitudinal roll pattern is sustained at steady
state for annulus radius ratios less than a critical value R1, where 1.1 < R1 < 1.15.
When R > R1, the transverse rolls supplant the longitudinal rolls at steady state.

The streamlines and isotherms in the upper portion of the mid-axial plane associated
with the second type of longitudinal roll pattern (upward radial velocity at the upper
vertical angular plane) are plotted in figures 16(a), 16(b) and 16(c) for R = 1.15,
1.1 and 1.05, respectively, at Ra = 2500. It can be seen from the left-hand sides of
these figures that the number of fully separated longitudinal rolls on each side of the
annulus that set up early-on increases from two (1, 2) to four (1, 2, 3, 4) as R decreases
from R = 1.15 to R = 1.05. It is also seen from the right-hand sides of figures 16(a) and
16(b) that at t > 0.15 there are no final longitudinal rolls present for either R = 1.15 or
R = 1.1. For R = 1.05, there are two fully separated longitudinal rolls (1, 2) and two
counter-rotating regions (III, IV) present on each side of the annulus at steady state,
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Figure 16. Effect of R on convection at the upper portion of the mid-axial plane for the second
type of longitudinal roll pattern (upward radial velocity at φ = 0) for A = 7, Ra = 2500, Pr = 0.7,
with streamlines on the left-hand sides and isotherms on the right-hand sides for initial rolls and
steady rolls: (a) R = 1.15; (b) R = 1.1; (c) R = 1.05.

as observed in figure 16(c). It is evident from these results that an even number of
longitudinal rolls is always present on each side of the annulus for the second type of
longitudinal roll pattern. This occurs since the uppermost roll and the roll adjoining
the main flow rotate in opposite directions, which is possible only for an even number
of counter-rotating rolls. It is also seen that the second type of longitudinal roll
pattern becomes established at steady state for annulus radius ratios less than a
critical value R2, where 1.05 < R2 < 1.1. If R > R2, the transverse rolls displace the
longitudinal rolls at steady state. Note that steady state overall Nusselt numbers for
the first and second types of longitudinal roll patterns were compared to each other
for the case of R = 1.05 and Ra = 2500, and found to be essentially the same.

The angular extent of the fully and partially separated longitudinal rolls present
early-on for Ra = 2500 remained within approximately ±30◦ over the range of R
studied. This can be clearly seen by examining the streamlines and the alternating
elevation and depression of isotherms plotted on the left-hand sides of figures 15
and 16. There are, of course, a greater number of rolls for smaller R since the gap
thickness is reduced and more rolls of approximately the same aspect ratio can fit into
the same angular region. At steady state conditions, the angular extent of the fully
and partially separated longitudinal rolls is reduced to within approximately ±10◦ for
the range of R studied as a result of the formation of transverse rolls, as seen on the
right-hand sides of figures 15(b), 15(c) and 16(c). This approximate boundary between
longitudinal and transverse rolls agrees well with the experimentally determined
critical angle of inclination for a rectangular box of 9◦ reported by Kirchartz &
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Oertel (1988). Below this critical angle, rolls oriented perpendicular to the basic flow
in the box (corresponding to longitudinal rolls in the annulus) arise as Ra is increased
above Rac. As the angle of inclination is increased above the critical value, rolls
oriented parallel to the basic flow (corresponding to transverse rolls in the annulus)
become established.

As clearly seen in the streamline plots provided on the left-hand sides of figures
13(b), 13(c), 15(b), 15(c) and 16(a)–16(c), and on the right-hand side of figure 16(c)
(all corresponding to when more than one fully separated longitudinal roll is in place
on each side of the annulus), the longitudinal rolls that rotate in the same direction
as the main flow (like-rotating) are stronger than the adjoining longitudinal rolls that
rotate in the opposite direction (opposite-rotating). Within the like-rotating rolls, the
fluid moves upward along the positively inclined inner cylinder wall as it is heated and
downward along the negatively sloping outer cylinder wall as it is cooled, and thus the
flow along the walls is aided by buoyancy forces. Within the opposite-rotating rolls,
however, the fluid moves in the opposite directions along the cylinder walls in local
opposition to buoyancy forces. Therefore, owing to the slope of the cylinder walls,
the like-rotating rolls are stronger. The strength of the like- and opposite-rotating
longitudinal rolls is seen to decrease and increase, respectively, with decreased distance
from the top of the annulus. This occurs as a result of the decreasing slope of the
cylinder walls and the corresponding reduction in the influence of wall inclination on
roll strength just described. These results indicate that at a given Rayleigh number,
the strength of a longitudinal roll is dependent both on its direction of rotation and
its location relative to the top the annulus.

An overall representation of the orientations and numbers of steady convective
rolls associated with the four different convective states investigated in the present
work is provided in figure 17 for R = 1.05, A = 7 and Ra = 2500. Schematic diagrams
of the boundaries of the convective rolls present in the upper portion of the annulus
are shown in figure 17 for each state. The view is from above the annulus looking
downward. In figures 17(a) and 17(b), it can be seen that the first and second types
of transverse roll patterns exhibit six transverse rolls (T1–T6) in the upper region
of the annulus. The directions of rotation of the rolls in figure 17(a) are opposite to
those of the corresponding rolls in figure 17(b). Note that the figure 17(a) schematic
corresponds to the results shown in figure 9 for R = 1.05. In figure 17(c), it can be
seen for the first type of longitudinal roll pattern that two fully separated longitudinal
rolls (1, 4) (accompanied by four counter-rotating regions (II, III, V, VI)) separate six
transverse rolls on one side of the annulus (T1–T6) from six transverse rolls on the
other side of the annulus (T7–T12). In figure 17(d) for the second type of longitudinal
roll pattern, four fully separated longitudinal rolls (1, 2, 5, 6) (accompanied by four
counter-rotating regions III, IV, VII, VIII) separate six transverse rolls on one side
of the annulus (T1–T6) from six transverse rolls on the other side of the annulus
(T7–T12). The longitudinal rolls in figure 17(c) rotate in the opposite directions of
the corresponding longitudinal rolls in figure 17(d). The transverse rolls in figure 17(c)
(T1–T12) rotate in the same directions as the corresponding transverse rolls in
figure 17(d). It is noted that the figure 17(c) and 17(d) schematics correspond to the
results shown on the right-hand sides of figure 15(c) and 16(c), respectively.

4. Conclusions
An investigation of three-dimensional buoyancy-driven flow in a narrow-gap an-

nulus has been performed for the first time. It was shown that in a narrow-gap
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Figure 17. Boundaries of the steady convective rolls in the upper portion of the annulus (as viewed
from above the annulus looking downward) for R = 1.05, A = 7, Ra = 2500 and Pr = 0.7: (a) first
type of transverse roll pattern; (b) second type of transverse roll pattern; (c) first type of longitudinal
roll pattern; (d) second type of longitudinal roll pattern.

annulus with impermeable endwalls, the onset of thermal instabilities leads to the
development of three-dimensional flow in the upper portion of the annulus consisting
of multiple counter-rotating rolls. Four different supercritical states that have not
been previously identified for narrow-gap annuli were examined in detail for air. The
structure of three-dimensional subcritical flow, and two-dimensional supercritical flow
occurring early in the transient development of the flow field were also investigated.

At low Rayleigh numbers, the flow in a narrow-gap annulus is similar to that in
annuli with larger R, with two-dimensional crescent-shaped patterns present in the
core region and a three-dimensional rotational structure located in the upper portion
of the annulus at each endwall. When the Rayleigh number is successively increased
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from a subcritical value to above Rac, however, an integral number of transverse roll
pairs forms between the existing end rolls owing to thermal instability (similar to
that in a moderate-gap annulus), resulting in the first supercritical state. An analysis
was conducted which showed that when the inception of instability occurs prior to
the development of the end rolls, three additional supercritical states (one described
in § 3.1, and the other two in § 3.2) can occur. Each of the four supercritical states
exhibits either transverse rolls or a combination of longitudinal and transverse rolls
in the upper portion of the annulus.

Two types of steady supercritical states exhibiting only transverse rolls in the upper
region of a narrow-gap annulus were investigated. The first type is characterized by
end rolls that rotate clockwise and counterclockwise on the right- and left-hand sides
of the annulus, respectively. The second type has the same number of transverse rolls
as the first type, but with reversed directions of rotation. Accordingly, the second type
is characterized by end rolls that rotate counterclockwise and clockwise on the right-
and left-hand sides of the annulus, respectively. It was found that the second type of
supercritical state bifurcates from the first type at a Rayleigh number greater than
Rac. The transverse rolls were shown to produce individual recirculating zones in
which complex interactions between either one or two rolls and the primary flow take
place. The fluid in the upper portion of the rolls does not interact appreciably with
the main flow, which differs from the interaction between spiral vortices and the main
flow that occurs in a moderate-gap annulus. It was shown that for a fixed Rayleigh
number and gap aspect ratio A, the number of transverse rolls remained constant
and the dimensionless strength of the rolls was nearly unchanged over the range of
narrow-gap R studied. The temperature field and the inner and outer cylinder Nusselt
number distributions in the upper part of the annulus were shown to be significantly
affected by the transverse rolls.

Two types of supercritical states exhibiting longitudinal rolls in the top portion of
the annulus in combination with transverse rolls between the longitudinal rolls and
the main flow were studied. The first type is characterized by uppermost longitudinal
rolls with a downward radial velocity at the upper vertical angular plane, and has
an odd number of longitudinal rolls on each side of the annulus. This type was
found to set up in annuli with a radius ratio R less than a critical value R1, where
1.1 < R1 < 1.15. The second type displays uppermost rolls with an upward radial
velocity at the upper vertical angular plane (rolls with reversed directions of rotation)
and has an even number of longitudinal rolls on each side of the annulus. This type
arises in annuli with R less than a second critical value R2, where 1.05 < R2 < 1.1. The
angular extent of the steady longitudinal rolls associated with each of these two states
remained within approximately ±10◦ of the top of the annulus. The three-dimensional
flow structures in regions of the annulus below the longitudinal rolls were found to be
essentially the same as for the first type of supercritical state involving only transverse
rolls, consisting of individual recirculating zones involving the transverse rolls and
the primary flow. Again, it was found that the fluid in the longitudinal rolls does
not interact appreciably with the main flow. The temperature field and the inner and
outer cylinder Nusselt number distributions at the top of the annulus are significantly
affected by the longitudinal rolls.

It was shown that at early times in the transient development of the flow field,
two-dimensional flow consisting only of longitudinal rolls can arise in the upper
portion of the annulus owing to thermal instability. These initial longitudinal rolls,
which correspond to the multiple counter-rotating cells considered in previous two-
dimensional studies, persist undiminished until transverse rolls begin to form at a
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later time. At sufficiently high Rayleigh numbers and for sufficiently small R, the
flow then transitions to one of the two final three-dimensional supercritical states
exhibiting longitudinal rolls in combination with transverse rolls. Both the number
and angular extent of the fully separated initial longitudinal rolls are greater than
for the subsequent fully separated steady longitudinal rolls. The number of fully
separated initial longitudinal rolls tends to increase with either higher Rayleigh
number or decreased R, and the angular extent of these rolls increases with higher
Rayleigh number.
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