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Abstract-The basic features of the buoyancy-driven convection in an open-ended cavity are analyzed and 
an in depth presentation of the related results are given in this work. It is shown that, at higher Rayleigh 
numbers, a one to one relationship exists between the frequency of the periodic oscillations in the Nusselt 
number and the central vortex’s oscillations and location inside the cavity. In fact, for any given type of 
oscillatory pattern (e.g. asymmetric sinusoidal or distorted W’). the frequency of the oscillations of the 
Nusselt number (or the central vortex inside the cavity) increases linearly as the Rayleigh number increases. 
For air, this linear relationship was explicitly determined. Furthermore, it is determined that. for cases 
which Ra 2 9 x 10s, the central vortex’s oscillation frequency and/or amplitude becomes much higher and 
it starts to deviate from any type of repeatable pattern. It is proposed that it is this irregular high frequency 
and/or amplitude of the central vortex coupled with the flow separation around the mid-section of the 

lower block that triggers the transition to turbulent Row. 

1. INTRODUCTION 

ONE OF the main characteristics of the buoyancy 
induced flows in the open-ended cavities is its basic 
geometry. This is because several, complex geome- 
tries, such as the brake housing of an aircraft, can 
be approximated or constructed from this basic 
geometry. Problems involving natural convection in 
open cavities were studied by Doria [l] in predicting 
fire spread in a room and by Jacobs et al. [2, 31 in 
modeling circulation above city streets and geo- 
thermal reservoirs. Chan and Tien [4,5] studied natu- 
ral convection in a shallow open cavity using laser 
Doppler velocimetry in which their conclusion about 
the open boundary condition was that the outgoing 
flow is force driven by the open cavity heating 
while the incoming flow is affected by the exter- 
nal conditions. Experimental studies were also done 
by Humphrey and co-workers [6] and Sernas and 
Kyriakides [7], in modeling solar receivers. By focus- 
ing on this basic geometry, a better understanding of 
the flow characteristics around a sharp corner and its 
crucial importance in directly influencing the fluid 
mechanics of the near field will be achieved. In the 
present study the transient, two-dimensional buoy- 
ancy-driven flow in open-ended cavities is analyzed. 
The effects of sharp corners on vorticity generation 
and the flow instabilities are discussed. The impor- 
tance of the far field boundary conditions and the 
interaction between the controlling variables are all 
discussed and in-depth analysis of the fluid flow 
and vortex interaction in the open-ended cavity is 
presented. For example it is found that, the flow and 
heat transfer characteristics inside the open-ended 
cavity and in its immediate surroundings are affected 
by a much larger computational domain of influence 

than what has been used by previous investigators. 
Although a few authors have obtained their steady 
state results through transient solution of the govern- 
ing equations, reports on transient results for the open 
cavity configuration are very rare in literature. For 
example, graphical presentation of the cavity Nusselt 
number vs time (for only a very short time period) by 
Penot [S] is among the very limited transient results 
available in the literature. 

In the present study, the transient characteristics of 
the flow field including the heat transfer characteristics 
inside an open-ended cavity and near the openings 
are thoroughly researched. The transient behavior of 
the flow field is characterized by the secondary recir- 
culating flow formation along the lower block in 
addition to the primary flow inside the open-ended 
cavity. The complete time history of the flow devel- 
opment inside the open-ended cavities consisting of 
the interactions between the secondary recirculating 
flow and the primary flow has been analyzed in this 
paper. It is found that the time history development 
of the flow includes the secondary recirculating flow 
formation, and the rise in the strength of this recir- 
culating flow to a maximum value. After that, this 
recirculating flow continues to lose its strength until 
it completely disappears from the flow field (the 
approach towards the steady state). The transient 
Nusselt number which represents the heat transfer 
process is shown to exhibit an overshooting followed 
by damped oscillations around its steady state value. 
It is rigorously proved that a one to one relationship 
exists between the frequency of oscillations in the 
Nusselt number and the central vortex’s oscillations 
(the central vortex is discussed in detail later) and 
location inside the cavity and that in fact, these oscil- 
lations are linearly dependent on the Rayleigh 
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NOMENCLATURE 

d length of the cavity [m] B thermal expansion coefficient of fluid 
H open cavity height [m] [K- ‘I 
Nu, Nusselt number for the cavity W 

vorticity 
Pr Prandtl number, V/Z :, dimensionless temperature 
Ra Rayleigh number, gBH-‘AT/w P dynamic viscosity [kg m- ’ s- ‘1 
T temperature [K] V kinematic viscosity [m’ s- ‘1 
U non-dimensionalized .r-component P fluid density [kg m-‘1 

velocity II/ stream function. 
C non-dimensionalized )-component 

velocity 
x non-dimensionalized horizontal Subscripts 

coordinate 1 lower block 
Y non-dimensionalized vertical coordinate. 2 upper block 

min minimum value 
Greek symbols max maximum value 

Z thermal diffusivity [m’ s- ‘1 cc free stream. 

cal experiments it becomes clear that, for cases which 
Ra > 9 x 105, the central vortex’s oscillation fre- 
quency and/or amplitude becomes much higher and 
it starts to deviate from any type of repeatable pattern. 
Based on the facts mentioned earlier it is then pro- 
posed that it is this irregular high frequency movement 
of the central vortex coupled with the flow separation 
around the mid-section of the lower block that triggers 
the transition to turbulent flow. 

2. FORMULATION AND NUMERICAL SCHEME 

The two-dimensional open-ended cavity which is 
analyzed in this work is shown in Fig. 1. The lower 
block and upper block temperatures of the slot are at 
constant temperatures T, and T, and the length and 
the height of the cavity are d and H, respectively. The 
vertical portions of both blocks are assumed to be 
adiabatic and the surrounding fluid communicating 

with the open-ended cavity is at an ambient tem- 
perature T,. The transformed governing equations in 
terms of vorticity, stream function, and temperature 
are 

where 

and 

Ra = BBH’AT ----, Pr=i, A = H,d. 
CIV 

In the above expressions Ra is the Rayleigh number, 
Pr the Prandtl number, A the aspect ratio, g the 
gravitational acceleration, z the thermal diffusivity of 
the medium, B the coefficient of volume expansion. 
and v the kinematic viscosity of the fluid medium. The 
above equations were nondimensionalized by using 
the open cavity height, H, HI/a, (T, - T,), and z/H 
as characteristic length, time, temperature difference, 
and velocity, respectively. 

The rate of heat transfer across the open-ended 
cavity was computed in terms of a cavity Nusseit 
number which represents the non-dimensional total 
rate of heat transfer from the entire cavity, and is 
given as 

Nu, = -A dx. 
= ..I 2 

FIG. I. Schematic of an open-ended cavity. To reduce the size of the computational domain, the 
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expected symmetry condition was used at the center- 
line of the open-ended cavity (see the Appendix). 
The validity of using the symmetry conditions at 
the centerline of the cavity was checked through a 
series of numerical runs. The non-uniform grid net- 
work used in this work possesses a very fine grid 
structure near the symmetry line which gradually con- 
verts to a fine grid structure. inside the cavity. In the 
extended computational domain, the grid distribution 
is fine near the vertical portions of the cavity and then 
it gradually becomes coarser towards the far field. In 
this work the grid distribution was chosen such that 
the following criteria : 

and 

Axi - Ax, _ , = O{(Axi_ ,)‘} 

AYj-AYj- I = O{CAYj- I)‘} 

would always be satisfied. In the above expressions 
A.ri and Ay, are the spatial distances between nodal 
locations xi and xi+ ,, and y, and yj+ ,, respectively. 
Satisfaction of the above criteria ensured that we 
would not experience any extra loss of accuracy result- 
ing from the usage of a variable grid system. In our 
numerical simulations the fluid was assumed to be 
initially at rest and at the ambient temperature. Aside 
from being quite basic, the initial conditions were 
motivated by physical considerations as they prevail 
in a variety of practical problems. By performing a 
series of separate runs, using different initial con- 
ditions it was ascertained that the initial conditions 
do not have any influence on the regular steady state 
results. 

At each time step, the elliptic equation (Poisson 
equation) is solved by an extrapolated Jacobi scheme, 
an iterative method with optimum over-relaxation. 
This scheme has some similarities with the original 
Jacobi scheme [9]. However, in this scheme at iteration 
level K only half of the nodal points are updated. At 
the next iteration level, K+ 1, the other half of the 
nodal points are updated and the process continues 
on like this. Furthermore, before starting each iter- 
ation the newly iterated nodal values, 4:; ’ are over- 
relaxed using the optimum over-relaxation parameter. 

It can be shown that this method has the same 
convergence rate as the conventional SOR method 
and even its spectral radius is the same as that of SOR. 
Hence, the algorithm for its optimum over-relaxation 
parameter is the same as the one for SOR. But, its 
advantage is that it can be vectorized, which makes it 
more efficient when used on a Cray (91. This efficiency 
is best explained when one realizes that most of the 
computer time spent is resulting from the solution of 
the Poisson equation. The basic method used for the 
two transport equations at the interior points is as 
follows. The energy equation is advanced in time 
according to the ADI method. The spatial derivatives 
are approximated in the non-uniform grid system 

Cxi+ I - xi = A-y,, .Yj+ 1 -yj = Ayj) by central differences 
in the following form : 

a 0 is j,, = 
ei* I.1 -‘i- I./ 

Ax, + Axi _ , 

a% ( ) dx2 ij = 

2 
A-xi- I&+ I., -(Axi+AYi_ ,)eij+AQi- 1.j. (2) 

AxiA~,_,(A.r,+Axi- I) 

Since our grid distribution was chosen such that 
Axi-Auf_, = O{(Axi_ J’}, then the use of equation 
(I) or an expression which is based on three point 
differencing for (aO/Zx),i will produce a truncation 
error which would be locally of the same order of 
magnitude as that which would occur in a uniformly 
spaced grid system. The advection terms are repre- 
sented by the second upwind differencing to avoid the 
stability problems associated with central differencing 
and the inaccuracies caused by the artificial viscosity 
effect associated with the first-order upwind differ- 
encing. In this type of differencing which is called 
the ‘Donor cell’ method [lo], some sort of average 
interface velocities on each side of the considered mesh 
point are defined. The sign of these velocities deter- 
mined by central differencing, specifies which cell 
values of the field function should be used. This 
method can easily be interpreted from the control 
volume point of view, with interface velocities deter- 
mined by averaging and interface field variable values 
determined by the flow direction. The above pro- 
cedure can be combined into a single expression which 
is easily implemented in our solution algorithm 

[(UR-IURI)~~+I.~+(UR+IURI 

-~,+I~~O~i.j-~~~+I~~O~i-,.jl 
A.si + Axi _ , 

where 
(3) 

UR = 
ut.j+"t+ I.j W- I.j+ ut., 

2 9 4 = 2 . 

It is assumed that the steady state conditions have 
been reached when the following convergence criteria : 

for temperature, stream function, and vorticity have 
been met. In the above expression, n refers to any 
particular time level and 4 represents either one of the 
three dependent variables. 

A part of this study involves the development of 
realistic, accurate and stable boundary conditions. 
The no-slip boundary condition appears at the block 
surfaces, along which the value of the stream function 
is constant, in which the constant is chosen to be zero. 
The vorticity is determined in the customary manner, 
by expanding the stream function out from the walls 
in a Taylor series and invoking the no-slip condition. 
Temperature conditions are specified temperature at 
the base and adiabatic conditions at the vertical por- 
tion of the blocks. At the centerline, the symmetry 



2332 K. VAFAI and J. E~EFAGH 

Table 1. Different choices which were analyzed for repre- 
senting the far field boundary conditions 

Variable Choice I Choice II Choice III 

t 
Const. St):‘& = 0 F$/h’ = 0 
Const. i’C),:& = 0 &+,&’ = 0 

5 Determined from the I) information 

requires that the vorticity, stream function, and the 
horizontal temperature gradient be zero. The open 
boundary conditions are specified by setting the nor- 
mal gradients of the velocity and the temperature 
to zero. The vorticity values at these boundaries are 
calculated from the stream function distribution. Due 
to an implicit method applied to the vorticity trans- 
port equation, it is necessary to temporarily assume 
the vorticity distribution on the boundaries at times 
nf l/2 and n+ 1 equal to that at time n. Thus, the 
boundary vorticity is out of step with the advancement 
of the interior vorticity field. The error introduced by 
this assumption is very small and can be even further 
reduced by choosing small time steps. Furthermore, 
the error completely diminishes by the approach 
towards steady state. However. it should be noted 
that the stream function and temperature fields were 
determined by an implicit routine which simul- 
taneously incorporated the boundary and the internal 
points into the solution algorithm at each time step. 
In the course of our work we had analyzed several 
different expressions summarized in Table I, as poss- 
ible candidates for representing the far field boundary 
conditions. 

In Table I, n denotes the normal direction with 
respect to any of the far field boundary lines. All the 
boundary conditions given in Table 1 were chosen 
such that they could be directly incorporated into the 
stream function and the energy equations. This way 
the stream function and the temperature fields were 
determined using an implicit routine which simul- 
taneously incorporated the boundary and the internal 
points into the solution algorithm at each time step 
thus, creating a very accurate and stable algorithm. 
To the authors’ knowledge, only the use of the above- 
mentioned boundary conditions permit the point 
governing equations being satisfied identically every- 
where including the boundaries through the use of 
an implicit routine which simultaneously incorporates 
the boundary and the internal points into the solution 
algorithm at each time step. Other types of boundary 
conditions suffered from two serious drawbacks. 
First, they required some type of extrapolation 
scheme, thereby reducing their accuracy. In addition, 
they could not be used in an implicit routine which 
simultaneously incorporated the boundary and the 
internal points into the solution algorithm at each 
time step. Thus, the use of any other set of expressions 
for the far field boundary conditions would introduce 
a significant degree of inaccuracies compared to using 
the expressions given in Table 1. 

After doing extensive numerical experimentation 
with the above-mentioned boundary conditions we 
had found that the choice. ~?‘$,‘dn’ = 0, for the stream 
function and the choice. E0iSn = 0, for the tem- 
perature field are, from a numerical point of view, the 
best choices. That is this set of boundary conditions 
can simulate the true conditions inside the com- 
putational domain for a lesser number of extensions. 
From a physical point of view, d’$/Sn’ = 0, places 
the least degree of restriction on the flow field (com- 
pared to the other choices presented in Table I). How- 
ever, although, I%/& = 0. from a physical point of 
view is not the least restrictive option (the least restric- 
tive option is: ???/&I’ = 0) we still found it to be 
the best choice with respect to simulating the true 
conditions inside the computational domain for a 
lesser number of extensions. It should be noted 
though, with respect to the cavity and its immediate 
surroundings, all the choices given in Table 1 pro- 
duced the same results when the computational 
domain was extended far enough. Furthermore, the 
improvements in terms of reducing the number of 
extensions (by using the second or third set of outer 
boundary conditions given in Table 1) necessary for 
producing the conditions inside the computational 
domain were relatively insignificant. This could be 
attributed to the fact that all the boundary conditions 
given in Table 1 were chosen such that they would be 
implicitly and simultaneously incorporated into the 
solution algorithm at each time step. 

3. ANALYSIS OF OSCILLATIONS IN THE 

TEMPORAL NUSSELT NUMBER 

VARIATIONS FOR HIGH RAYLEIGH 

NUMBERS 

The transient behavior of the flow field through the 
formation of vortices, the formation of the stratified 
region, the effects of the geometric and thermo- 
physical parameters and the influence of the Rayleigh 
number and different temperature levels on the flow 
field are discussed in another related investigation 
[I I]. In here the concentration is directly focused on 
thermal and fluid flow instabilities in open-ended 
geometries. Figure 2 illustrates the Rayleigh number 
effects on transient behavior of the cavity Nusselt 
number. The transient response shows an over- 
shooting of the cavity Nusselt number, followed by 
damped oscillations around a steady state value. 
Oscillations in the Nusselt number were also observed 
in an open-ended cavity obstructed by a porous 
medium [ 121. As expected, the initial overshoot of the 
cavity Nusselt number starts earlier in time and is 
steeper for higher Rayleigh numbers. This is because 
the time that it takes to heat up the fluid particles 
along the lower block is decreased, resulting from 
steeper temperature gradients, as the Rayleigh num- 
ber is increased. Furthermore. the frequency of the 
oscillations increases and the damping of the oscil- 
lations decreases with an increase in the Rayleigh 



Thermal and fluid flow instabilities in buoyancy-driven flows in open-ended cavities 2333 

FIG. 2. Time history of the cavity Nusselt number for (?I = 1, A = 0.5, Pr = 0.71 and IO’ C Ra C 5 x IO’. 

number. The low damping effect at high Rayleigh 
number flows is the cause for the transition to time- 
dependent convection as illustrated by a periodic 
behavior of the cavity Nusselt number for the cases 
with Ra >, 3 x 105. As it can be seen, for these cases, 
no steady state solution exists. Therefore, for these 
situations if the problem would have been analyzed 
through a non-transient formulation, a multitude of 
solutions would be found depending on the initial 
guesses and disturbances. Of course, none of the 
aforementioned solutions would represent the real 
situation. For flows with Ra > 9 x lo’, due to an 
increase in the frequency of oscillations and a decrease 
in damping of oscillations, the flow becomes quite 
unstable. This situation is discussed later in more 
detail. 

To describe these oscillations in more detail the 
results of the numerical runs for air (ez = 1, A = 0.5) 
and for Ra = 3 x 105, 3.5x 105, 4x IO’, 4.5 x lo’, 
5 x lo’, 5.5 x 105, 6 x lo’, 6.5 x 105, 7 x 105, 7.5 x 105, 
8 x IO’, and 9 x lo’, will be discussed. These oscil- 
lations essentially start from Ra > 3 x 10’ (although 
the amplitude of oscillations for Ra = 3 x lo5 is quite 
small). In the range of 3 x IO’ Q Ra < 5.5 x 105, the 
oscillations are in the shape of asymmetric sinusoidal 
waves. For values of Ra 2 6 x lo’, these sinusoidal 
oscillations in the Nusselt number distribution will 
no longer exist. For Rayleigh numbers larger than 
Ra = 6 x IO’, the sinusoidal oscillations are converted 
to distorted W shaped oscillations. This latter pattern 
of oscillations in the temporal Nusselt number distri- 
bution will persist from Ra > 6 x lo5 to Ra < 9 x 10’. 
Finally, for Ra > 9 x lo5 the Wshaped pattern breaks 
down to some intermediary W’s and also part of the 
flow separates from the central portion of the lower 
block. Furthermore, on the basis of several numerical 

experiments it becomes clear that, for cases which 
Ra 2 9 x 105, the central vortex’s oscillation fre- 
quency and/or amplitude (the oscillation frequency 
of the central vortex is discussed in detail later for 
3 x 10’ < Ra < 9 x 10’) becomes much higher and it 
starts to deviate from any type of repeatable pattern. 
Based on the facts mentioned earlier it becomes clear 
that it is this irregular high frequency’and/or ampli- 
tude of the central vortex coupled with the break off 
of the flow around the central portion of the lower 
block that triggers the transition to turbulent flow. It 
should be noted that for Rayleigh numbers larger than 
9 x lo’, despite using a highly vectorized and efficient 
algorithm, the required computational time for ob- 
taining accurate results becomes increasingly pro- 
hibitive. This increase in computational time is ex- 
pected since even for Ra = 9 x IO’ we are already 
observing some chaotic features, i.e. very high fre- 
quencies for the central vortex’s movements and the 
apparent lack of any persistent pattern, in the flow 
field. Therefore, for Ra > 9 x 10’ we must in essence 
perform direct turbulent flow simulations. Obviously, 
such a task calls for the use of much finer grid res- 
olutions and the use of much smaller time steps result- 
ing in a very large increase in the computational time. 
The presence of turbulence for Rayleigh numbers 
greater than 10’ was checked through some simple 
experimental runs (see the Appendix). 

Al! the oscillations which were mentioned earlier 
from Ra 2 3 x 10’ to Ra c 9 x lo5 followed a regular 
pattern and they were physically induced. In each case 
it was ascertained that using larger spatial extensions 
or smaller time steps (relative to what was used to 
obtain the numerical results) have no influence on the 
transient as well as the steady or the oscillatory state 
results for the stream function, temperature, vorticity 
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and the temporal Nusselt number distributions. This 
was done in three stages. First, we tested the effect of 
a spatial domain extension by increasing the size of 
the open-ended region. For example, for a case where 
the numerical runs were obtained for a computational 
domain which had been extended by N times the 
cavity height, the spatial domain would be sequen- 
tially extended to (N+A) times and then to 
(N+ A + B) times the cavity height in each direction. 
The value for A was usually chosen somewhere from 
12 to 20 and the value for B was mostly taken as 20 
but never below 12. 

will have no effect on our results. It was also found 
that using the proper number of extensions and the 
time step size found at a higher Rayleigh number 
could obviously be used for computational runs at a 
lower Rayleigh number. 

Next, we used two different time step sizes which 
were respectively half and one fourth of the time step 
size for which the numerical runs were obtained. The 
latter process during the second stage was done with 
the proper extensions found from the first stage of 
our accuracy tests. For example, if we had found 
during the first stage of our tests that using extensions 
beyond N times the cavity height had no effect on our 
results, we would then apply the second stage of our 
tests for an N times the cavity height extended com- 
putational domain. This way we could isolate the 
spatial and time step size effects on the results. If a 
discrepancy was observed at any time during the first 
couple of stages, the test procedure sequence would 
be interrupted at that point. We would then either 
increase the domain extension or decrease the com- 
putational time step or both (depending on the results 
of the tests from the first and the second stages) and 
then restart the entire test procedure. We would con- 
tinue the above-mentioned procedure until we would 
observe no changes in our results during the first and 
second stages of our test procedure. 

We also tested the effects of using a larger number 
of grid points for a chosen spatial domain. However, 
again we never observed an influence from an increase 
in the number of grid points. This was expected, since 
at all times we are using a fine and judiciously dis- 
tributed variable grid structure with special con- 
centration on the critical regions in the flow field. It 
should be mentioned that these tests were also carried 
out for the lower range of the Rayleigh numbers as 
well and not just for Rayleigh numbers for which 
oscillatory flow was observed. However. as expected 
the tests for Rayleigh numbers which did lead to an 
oscillatory flow were more demanding from a com- 
putational point of view. As a final check after deter- 
mining the suitable extension for the computational 
domain and the size of the computational time 
increment (and using these values) we doubled (in 
some cases we increased the total simulation time even 
further) the total simulation time for the program to 
see if we will observe any differences in our transient, 
steady or oscillatory state results. Again. as expected, 
we never observed an influence from an increase in the 
total simulation time while using the computational 
extension and time increments which were determined 
from our three stage test procedures. 

The above-mentioned procedures constituted the 
first and second stages of our test procedure. Having 
established there would be no changes in our results 
from the increases in the spatial domain and re- 
ductions in the computational time step we would 
then move into the third stage of our checks. For the 
third stage we would adopt the largest of the spatial 
extensions, and the smallest of the computational time 
steps which were used in the first and second stages. 
The third stage enabled us to ensure that the simul- 
taneous changes in the spatial domain and the time 
steps had no influence on any of our results. However, 
it should be noted we never obtained any information 
from the third stage which was additional (or in con- 
flict) to what was already obtained in the first and the 
second stages. For example, if we had learned through 
the first and second stages that : 

(I) using any additional extension beyond N times 
the cavity height had no effect on our results; 

(2) and that also using the N times the cavity height 
extension ; reducing computational time steps beyond 
At does not have any effect on the results ; 

A sample representation of some test runs for Ray- 
leigh numbers in the range of 2 x IO’ < Ra < 8 x 105, 
is summarized in Table 2. Specifically some test results 
for Ra = 2 x IO’, 3 x lo’, 5 x lo’, 6 x 10’. and 8 x lo5 
with the essence of conclusions which have been based 
on the figures corresponding to these test results are 
given in this table. It should be noted that all the 
comments given in Table 2 essentially pertain to the 
steady state or the oscillatory state of the transient 
solutions. For example, as it can be seen from Table 
2 for cases 1 and 2, for Ra = 2 x 10’ using a 32 times 
the cavity height extension is just not enough despite 
of the size of the computational time increment, At. 
It should be noted that at Ra = 2 x 10’ even for a 32 
times the cavity height extension. the solution 
diverges. If we increase the extent of the com- 
putational domain to 48 times the cavity height while 
keeping the same At which was used in case 1, a 
solution which displays an oscillatory behavior is 
observed (case 3 in Table 2). Keeping the same com- 
putational domain as in case 3 while decreasing the 
size of the computational time increment At (case 4) 
will lead to a steady state solution with no oscillatory 
behavior. An attentive study of cases 3-7 (in Table 2) 
will show that the suitable number of cavity height 
extensions and the At for Ra = 2 x 10’ are 48 and 
1 O- 3, respectively. 

we would then always observe that simultaneously It is interesting to note the points that were made 
increasing the number of cavity height extensions earlier with respect to the redundancy of stage 3 of 
more than N and reducing the time step beyond At our tests and our final check on the total simulation 
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Table 2. Information related to the effects of the outer boundary and convergence and accuracy analysis 

2335 

Case No. Ra 

Number of Time Total 
extensions increment time Comments 

1 200000 32 I/600 600 
2 200000 32 l/1000 1000 
3 200000 48 l/600 600 
4 200000 48 I/l000 1000 
5 200000 60 l/600 600 
6 200000 60 l/l000 1000 
7 200000 60 l/5000 4350 

8 300000 60 l/5000 2000 
9 300 000 60 1/10000 5000 

IO 300000 60 I/20 000 10000 
II 500000 2 1/10000 5000 
12 500 000 8 l/10000 5000 
13 5OOOcnl 16 1/10000 10000 
14 500000 32 l/l0000 5000 
I5 500 000 48 I/l0000 5000 
16 500000 60 1/10000 5000 
17 500000 60 l/l0000 10000 
18 500000 60 l/20000 10000 
19 500 000 60 1/40000 20 000 
20 500 000 80 l/l0000 5000 
21 500 000 80 I/10000 10000 
22 600000 60 l/l0000 5000 
23 600 000 60 l/20 000 10000 
24 600 000 80 1/10000 5000 
25 600 000 80 l/20 000 10000 
26 800 000 60 l/l0000 5000 
27 800000 60 l/20000 10000 
28 800000 60 l/40000 20000 
29 800 000 80 l/20000 10000 

Diverged 
Diverged 
Oscillation 
Converged to a steady state solution ; no oscillation 
Oscillation (no difference between cases 3 and 5) 
Converged to a steady state solution ; no oscillation 
Converged to a steady state solution ; no oscillation ; no 
difference between cases 4.6 and 7 
Oscillation (case 8 differs very little from cases 9 and IO) 
Oscillation (refined) 
Oscillation (refined; no difference between cases 9 and 10) 
Diverged 
Diverged 
Diverged 
Irregular oscillation 
Oscillation (case 15 differs very little from cases 16 to 21) 
Oscillation (refined) 
Oscillation (refined) 
Oscillation (refined) 
Oscillation (refined) 
Oscillation (refined) 
Oscillation (refined ; no difference between cases 16 and 2 I) 
W shape 
W shape (refined) 
W shape (no difference between cases 22 and 2-1) 
W shape (refined : no difference between cases 23 and 25) 
W shape 
W shape (refined) 
W shape (refined) 
W shape (refined ; no difference between cases 27 and 29) 

time. For example, as seen from the specs on cases 3 
and 5 one can draw the conclusion that extending the 
computational domain by 48 times the height of the 
cavity is a suitable extension even before seeing the 
results of cases 6 and 7. But, just to rigorously prove 
this somewhat intuitive conclusion we continued on 
running these additional tests. The conclusions and 
comments with respect to Ra = 3 x lo5 are quite self- 
evident, i.e. the number of extensions and Ar are 60 
and lo-‘, respectively. Again, Table 2 includes just a 
sample presentation of some of the tests for only some 
of the Rayleigh numbers which were researched in our 
work. For Ra = 5 x lo’, most of the stream function 
and the temperature contours are also presented. A 
comparison of these plots and the specs for cases 1 l- 
21 makes our earlier statement with respect to the 
inadequacy of a maximum of two times the cavity 
height extension used by the previous investigators 
amply clear. The suitable number of extensions and 
At for this case turn out to be 60 and 10e4, respec- 
tively. The nature of the asymmetric sinusoidal oscil- 
lations which were discussed earlier can be studied in 
more detail from this table. As it can be clearly seen 
once a suitable number of extensions and the size of 
computational time increment are determined from 
our tests the occurrence, frequency and amplitude of 
oscillations will be independent of an increase in the 
number of the extensions and/or a decrease in the 

computational time increment and/or an increase in 

the total simulation time. 
Based on the results for Ra = 6 x IO5 (cases 22-25 

and the related figures which were analyzed for Table 
2) it becomes clear that a suitable number of exten- 
sions and At are respectively 60 and 5 x IO- ‘. Again, 
as it was noted for earlier cases, by just studying the 
results of cases 22 and 24 it can be concluded that 
extending the computational domain by 60 times the 
cavity height is enough for Ra = 6 x 10’. The com- 
ments which were made with respect to the nature 
of oscillations for Ra = 5 x 10’ equally apply for the 
distorted W shape oscillations observed in the range 
of6x105fRa<9x10’. 

A global accuracy check was done on the problem 
by using the overall energy balance. Assuming the 
temperature gradients and the excess temperatures 
(above the ambient temperature) around the periph- 
ery of the computational domain are exactly equal 
to zero and integrating the energy equation from t = 0 

to tw,, StafC results in the following approximate global 
energy balance : 

Q tola~ = [Au1 = Usrcacty rcarc - Initial state. (4) 

In the above expression QlO,., refers to the total energy 
which has been transferred from both of the two 
heated blocks into the computational domain from 
t = 0 to kady ItatcI and Us,,d, ,tale and uinitiat Imtc refer to 
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the internal energy of the computational domain at 
the steady and initial states. respectively. With respect 
to the assumptions which have been used in devel- 
oping equation (4), first it should be noted that our 
computational domain is extended far enough such 
that the temperature gradients around the periphery 
of the computational domain are almost zero. How- 
ever, although the excess temperatures around the 
periphery of the computational domain have mostly 
died down, they are not exactly equal to zero (in our 
numerical simulations the exact values for the excess 
temperature around the periphery of the com- 
putational domain are computed). Therefore, as it 
was noted earlier equation (4) does not constitute an 
exact global check on our numerical results. With this 
in mind, it was found that the values of the left-hand 
side and the right-hand side of equation (4) differ by 
not more than 1.2%. For example, for the case of 
Ru = lo’, A = l/2, O2 = I, and Pr = 0.71 the value of 
Q,O,a, was 335.5 J per unit depth of the cavity while 
the value of [Au] turned out to be 339.0 J per unit 
depth of the cavity. The procedures which have been 
described in the earlier part of this section constitute 
more precise. detailed and thorough numerical accu- 
rat) and con\-ergcncc tests. Comparisons were also 
made with the work of Chan and Tien [4] for their 
geometry and the boundary conditions that they used 
for Ra < 10’. The maximum difference between the 
two sets of results was found to be 3%. 

4. ANALYSIS OF THE FREQUENCY OF 
OSCILLATIONS OF THE CENTRAL VORTEX 

INSIDE THE CAVITY AND ITS RELATION 

WITH THE NUSSELT NUMBER 

The results of each of the runs for Ra = 3 x 105, 
3.5 x IO’, 4 x IO’, 4.5 x 105, 5 x 105, 5.5 x 105, 6 x IO’, 
6.5 x IO’, 7 x 105, 7.5 x IO’, and 8 x 1O’were checked 
in great detail to determine precisely the frequency of 
the Nusselt number oscillations. The locations and 
the values (directly from the generated numerical data 
and not the figures) of the maximum and minimum 
(local and absolute) and some intermediate values 
of the Nusselt numbers including the corresponding 
values of the maximum stream function, I/I,,,.=. the 
maximum and minimum values of the vorticity, &,,,, 
and tmin, and the non-dimensional time, t, at those 
locations were carefully recorded (during the oscil- 
latory phase) and analyzed for all the above-men- 
tioned Rayleigh numbers. It should be mentioned that 
all these quantities were recorded for each of the 
above-mentioned Rayleigh numbers for many cycles 
during the oscillatory phase. This analysis generated 
several, interesting results. For example it was estab- 
lished that these oscillations essentially start from 
Ra 2 3 x IO’. From 3.5 x 10’ < Ra < 5.5 x lo’, the 
oscillations are in the shape of asymmetric sinusoidal 
waves. For values of Ru 2 6 x lo’, these sinusoidal 
oscillations in the Nusselt number distribution will 
no longer exist. For Rayleigh numbers larger than 

Ru = 6 x IO’, the sinusoidal oscillations are converted 
to distorted W shaped oscillations. These latter pat- 
terns of oscillations in the temporal Nusselt number 
distribution will persist from Ru 2 6 x IO5 to 
Ru < 9 x IO’. Finally, for Ru > 9 x IO5 the W shaped 
pattern breaks down to some intermediary w’s and 
at the same time part of the flow separates and breaks 
off from the central part of the lower block. Fur- 
thermore, on the basis of several numerical exper- 
iments it becomes clear that, for cases in which 
Ru 2 9 x IO’, the central vortex’s oscillation fre- 
quency becomes much higher and it starts to deviate 
from any type of repeatable pattern. 

A sample presentation of some data and figures 
which were used in the above-mentioned analysis for 
Ru = 5 x 10’ and 6 x IO5 are given in Tables 3 and 4 
and the related Figs. 3-l 1. The results presented for 
Ru = 5 x lo5 are representative of the nature of the 
asymmetrical sinusoidal oscillations which occur 
within the range of 3 x lo5 < Ru < 5.5 x lo5 and the 
results presented for Ra = 6 x IO5 represent the nature 
of the distorted W oscillations which happen within 
the range of Ru 2 5.5 x 10’ to Ru < 9 x 105. The cor- 
relation between locations l-8 listed in Table 3 and 
its related figures and the Nusselt number oscillations 
are given in Fig. 12(a). Likewise, the correlation 
between locations 1-I 6 listed in Table 4 and its related 
figures and the Nusselt number oscillations are given 
in Fig. 12(b). Figures 12(a) and (b) each show two 
consecutive cycles for the asymmetric sinusoidal and 
the distorted W oscillations in the temporal Nusselt 
number distributions. Points 1-4 are the locations on 
the first asymmetrical sinusoidal cycle and the points 
5-8 are the locations on the next (second) cycle shown 
in Fig. 12(a). Similarly, points l-8 are the locations 
on the first distorted W cycle and the points 9-16 are 
the locations on the subsequent (second) cycle shown 
in Fig. 12(b). 

The presence of a very regular and one to one pat- 
tern and relationship between the frequency of oscil- 
lations in the Nusselt number and the central vortex’s 
location and oscillation inside the cavity becomes 
quite apparent from the results presented in Tables 3 
and 4 and the related figures corresponding to these 
tables. The linear relationship between the frequency 
of the oscillation of the central vortex in the cavity, 
R, and the Rayleigh number was found to be 

where 

R(Ru) = r Ru+/l (5) 

x= 1.02~10-~ and /I=47 

for 3.5 x 10’ < Ra < 5.5 x 10’ 

and 

x = 4.21 x lo-’ and j = 28.9 

for 6x105<Ra,<8x105. 

This linear relationship is displayed in Fig. 13. The 
figures related to Tables 3 and 4 provide a very clear 
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Table 3. Information related to vortex oscillations presented in Figs. 35 

Non-dimensional Related 
Location time G mar <tin s’, figure 

1 0.2622 - 106.2 - 10870 1839 3;5 
2 0.2643 - 114.5 - 10438 2005 3;s 
3 0.2662 -113.3 -10304 2420 3;5 
4 0.269 - 102.6 -9900 2304 3;5 
5 0.2723 - 105.9 - 10876 1839 4;5 
6 0.2744 -114 - 10476 2012 4;5 
7 0.2763 - 112.9 - 10292 2451 4;5 
8 0.2791 - 102.5 -9933 2315 4;5 

Table 4. Information related to vortex oscillations on heat transfer dis- 
played in Figs. 6-l I 

Non-dimensional Related 
Location time ti mnrt r 5,,. ml” figure 

: 0.2591 0.2615 - -112.96 126.26 - -11 I I 495 199 2772 2711 6;lO 6; 10 
3 0.2639 - 109.49 - 1 I 306 2137 6;lO 
4 0.26595 -117.55 -11596 2094 6;lO 
5 0.268 - 120.23 - I1 539 2570 7;lO 
6 0.27115 - 108.8 - 10463 2314 7: IO 
7 0.27425 - 117.54 - 12 345 2183 7:lO 
8 0.2759 - 126.7 -11718 2357 7:lO 
9 0.2775 - 125.5 -11480 2786 8:ll 

IO 0.2799 -112.29 -11 166 2702 8;ll 
11 0.2823 - 109.33 - 11382 2112 8;ll 
12 0.28435 -117.28 -11594 2104 8; 11 
13 0.2864 -119.82 -11541 2574 9;ll 
14 0.2895 -108.45 -10516 2327 9;11 
15 0.2926 -116.87 -12326 2175 9;11 
16 0.29425 -126.06 -11727 2316 9;11 

FIG. 3. The location of the central vortex and the temperature contours for e2 = 1, A = 0.5, Pr = 0.71, 
Ru = 5 x 10’ and for locations 14 given in Table 3 and displayed in Fig. 12(a). 
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FIG. 4. The location of the central vortex and the temperature contours for U2 = 1, A = 0.5. Pr = 0.71, 
Rrr = 5 x 10’ and for locations 5-8 given in Table 3 and displayed in Fig. 12(a). 

FIG. 5. Vorticity contours corresponding to the streamiines and isotherms displayed in Figs. 3 and 4. 

picture of the vorticity field and its interaction with 
the movement of the central vortex inside the cavity. 
These set of contours also clearly show that each 
oscillation cycle is-very repeatable. If we were to com- 
pare the stream function, the temperature and vor- 
ticity contours for the set of locations I-4 corre- 
sponding to the first cycle of the asymmetrical sinu- 
soidal oscillations, with the co~esponding contours 

for the set of locations 5-8 corresponding to the 
second cycle of these oscillations vve would be hard 
pressed to find any differences. For higher Rayleigh 
numbers, Rn > 550000 to Ra < 900~0, while the 
oscillation pattern does become more complex, it is 
still very regular and repetitious. Therefore, again the 
same conclusions which were stated for the asym- 
metrical oscillations can be stated about the contours 
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FIG. 6. The location of the central vortex and the temperature contours for 19~ = I, A = 0.5. Pr = 0.71, 
Ra = 6 x 10’ and for locations 1-4 given in Table 4 and displayed in Fig. 12(b). 

FIG. 7. The location of the central vortex and the temperature contours for Bz = 1, A = OS, Pr = 0.71, 
Ra = 6 x IO’ and for locations 5-8 given in Table 4 and displayed in Fig. 12(b). 

for the set of locations l-8 corresponding to the first 
cycle of the W oscillations and the contours for the 
set of locations 9-16 corresponding to the second cycle 
of these oscillations. Overall the set of contours related 
to Tables 3 and 4 provide a vivid description of the 
movement of the central vortex inside the cavity and 
its interaction with the temperature and vorticity 
fields. 

The patterns mentioned earlier are even more reg- 
ular than what has been presented in Tables 3 and 4 
and the related figures. This is because the values of 
maximum and minimum Nusselt numbers are very 
slightly dependent on the finite size. of the time step, 
A.t, used in the numerical calculations. That is the cut- 
off point where the maximum or the minimum values 
of the Nusselt numbers are selected are generally 
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(9) fI0) (II) (12) 

FIG. 8. The location of the central vortex and the temperature contours for 0, = 1, A = 0.5, Pr = 0.71, 
Ra = 6 x 10’ and for locations 9-12 given in Table 4 and displayed in Fig. 12(b). 

FIG. 9. The location of the central vortex and the temperature contours for Bz = I, A = 0.5, Pr = 0.71, 
Rn = 6 x IO’ and for locations 13-16 given in Table 4 and displayed in Fig. 12(b). 

within At/2 of the actual maxima values. The above- Nusselt number distributions this effect was virtually 

mentioned points are a direct consequence of working undetectable. 

in a discrete (computational) domain rather than a 
physical domain. It should be noted, though that the 
resulting inaccuracy (which is unavoidable in any 

5. CONCLUSIONS 

numerical scheme) is very small. In fact, for flow, A number of interesting results with respect to the 

temperature and vorticity fields as well as the temporal interrelationship between Nusselt number oscilla- 
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FIG. IO. Vorticity contours corresponding to the streamlines and isotherms displayed in Figs. 6 and 7. 

FIG. 1 I. Vorticity contours corresponding to the streamlines and isotherms displayed in Figs. 8 and 9. 
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tions, the corresponding temperature distribution, the 
fluid flow pattern and the vortex dynamics were estab- 
lished in this work. Some of the more pertinent con- 
clusions for buoyancy-driven convection in open- 
ended cavities are given below. 

(1) It was established that the periodic oscillations 
in the Nusselt number are directly the result of oscil- 
lations of the central vortex inside the cavity. In fact, 

it was established that the frequency of the oscillations 
for the Nusselt number and the central vortex inside 
the cavity is the same. 

(2) Within the range of 3 x 10’ < Ra < 9x 10’ 
two distinct, oscillatory patterns were established. 
These were: asymmetric sinusoidal and distorted W 
shaped oscillations. The first pattern existed within 
3.5 x 10’ < Ra < 5.5 x 10s, while the second pattern 
existed from Ra > 6 x lo5 to Ra < 9 x 10’. 
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FIG. 12. (a) Correlation between locations 1-8 listed in 
Table 3 and the vortex oscillations displayed in Figs. 3-5. 
(b) Correlation between locations 1-16 listed in Table 4 and 

the vortex oscillations displayed in Figs. 6-I I. 

(3) The frequency of the oscillations of the central 
vortex inside the cavity (or the Nusselt number) dur- 
ing the oscillatory phase was found to be directly 
related to the Rayleigh number. The relationship 
between the frequency of oscillation of the central 
vortex in the cavity, R, and the Rayleigh number was 
found to be 

where 

Q(Ra) = tl Ra+P 

GI= 1.02x10-“ and B=47 

for 3.5 x 10’ 6 Ra Q 5.5 x 10’ 

and 

z = 4.27 x 10W5 and #I = 28.9 

for 6x10scRa~8x10S. 

1.0 2.0 3.0 4.0 5.4 4.4 1.0 5.4 5.0 10.4 

Roylei,$ Number (x18’) 

FIG. 13. Frequency of the oscillation of the central vortex 
inside the cavity, R, as a function of the Rayleigh number, 

Ra. 

(4) In every instance, the frequency and the ampli- 
tude of the oscillations during the oscillatory phase 
were extremely regular in pattern, magnitude, etc. 

(5) A relationship between the Nusselt number 
oscillations and the onset and prediction of turbulence 
was shown to exist. 
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APPENDIX 

The experimental apparatus described below was used to 
provide a crude, visual check on the use of the symmetry 
conditions at the centerline of the open-ended cavity. The 
rigorous and precise examination of the use of the symmetry 
conditions was done through extensive and systematic 
numerical experimentation. The apparatus depicted in Fig. 
A I consisted of a water tank, cooling plates, and couple of 
heating units. The tank (22 x 12 x 6.5 in.) was constructed of 
0.5 in. Plexiglas so that, we could maintain relatively easy 
optical access to the test section. The far field ambient con- 
ditions were simulated by using a hollow (to allow for the 
circulation of the coolant fluid) cooling plate (I2 x 6.5 x 0.75 
in.) made of aluminum on each end of the water tank. Each 
of the heated blocks were simulated by using a narrow strip 
heater with a steel block with the same base dimensions 
and 1.5 in. thickness cemented on top of the strip heater. 

Referring to Fig. 1, the strip heater was chosen so that. it 
would be much longer in the z-direction than the .x-direction 
to reduce the end effects. Each of the strip heater units (the 
strip heater and the steel block) was placed within a box built 
from balsa wood. The box, the heater and the steel plate 
were all cemented using waterproof epoxy glue and the 
electrical connections were sealed by using a silicon based 
sealer. The back side of the heaters and all the side walls of 
the boxes which contained the heating units were insulated 
with fiberglass insulation. 

The input power to the heaters was controlled by two 
independently controlled PID (proportional integral differ- 
ential) temperature controllers. These controllers used the 
feedback from the thermocouples which were mounted on 
the surfaces of the heating units to maintain a constant 
temperature condition on those surfaces. The Row field visu- 
alization was done through injecting dye into the water tank. 
Since the working fluid was water, the lowest achievable 
Rayleigh number was Ra = 5 x 106. The flow field patterns 
were explored in the range of 5 x IO6 C Ra < 10’. Based on 
our observations, the flow field appeared to be symmetric 
around Ra = 5 x lo6 with respect to the mid-plane of the 
open-ended cavity. That is we did not observe movement of 
the dye across the mid-plane of the cavity. Furthermore, 
based on our observations we were also able to observe the 
presence of certain turbulent features around Ra = IO-. 
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INSTABILITES COUPLEES THERMIQUES ET DYNAMIQUES DANS DES 
ECOULEMENTS FLOTTANTS DANS DES CAVITES OUVERTES 

Rbumk-Les configurations de la convection naturelle dam une cavite ouverte sont analysies et une 
presentation detaillee des resultats est donnee. On montre qu’aux nombres de Rayleigh les plus forts, il 
existe une relation univoque entre la frequence des oscillations pkiodiques du nombre de Nusselt et les 
oscillations du tourbillon central et la position dans la cavite. En fait, pour un type donne quelconque 
d’oscillation (par exemple, sinusoidal asymttrique ou Wdistordu), la frequence des oscillations du nombre 
de Nusselt (ou du tourbillon central dans la cavite) augmente lintairement quand le nombre de Rayleigh 
croit. Pour l’air, cette relation lineaire est explicit&e. On constate que pour des cas ou Ra 2 9 x 105, la 
frequence d’oscillation du tourbillon central devient beaucoup plus grande et elle commence a devier de 
n’importe quel type de configuration reproductible. On propose que c’est ce mouvement irregulier a haute 
frequence du tourbillon central. couple a la separation de I’ecoulement autour de la section moyenne du 

bloc inferieur qui declanche la transition i I’tcoulement turbulent. 

GEKOPPELTE THERMISCHE UND STRGMUNGS-INSTABILITATEN IN 
AUFTRIEBSSTRGMUNGEN IN NACH OBEN OFFENEN HOHLRAUMEN 

Zusammenfassung-Die Grundlagen der auftriebsgetriebenen Stromung in einem olTenen Hohlraum werden 
analvsiert, die Eraebnisse werden ausfiihrlich daraestellt. Es zeist sich. da13 bei hohen Rayleigh-Zahlen das 
Verdlltnis der figenden Grogen eins betrlgt : Frequenz der-period&hen Schwankungen der Nusselt- 
Zahl, Frequenz der Schwankungen des Zentralwirbels und Position innerhalb des Hohlraums. Tatsichlich 
gilt fur jeden vorgegebenen Typ der Oszillationsform (z. B. asymmetrisch sinusfiirmig oder gestiirt). daD 
die Frequenz der Schwankungen der Nusselt-Zahl (oder die Frequenz der Schwankungen des Zentralwirbels 
im Hohlraum) linear mit steigender Rayleigh-Zahl zunimmt. Fiir Luft wird dieser lineare Zusammenhang 
explizit bestimmt. Augerdem wird festgestellt, dal3 bei Rn 2 9 x IO’ die Frequenz der Schwankungen des 
Zentralwirbels viel griiger wird und von jeglicher reproduzierbarer Form abzuweichen beginnt. Es wird 
vorgeschlagen, daD der Ubergang zur turbulenten Stromung gerade durch diese unregelmagige hoch- 
frequente Bewegung des Zentralwtrbels ausgelijst wird, die mit einer Stromungsablosung im Bereich des 

Mittelteils der Unterseite gekoppelt ist. 

B3AMMOCBII3AHHbIE TEHJIOBlUl HEYCTOH9HBOCTb H HEYCTOHSWBOCTI 
TEHEHHH, OSYCJIOBJIEHHbIX IIOjTbEMHbIMM CHJIAMH, B HESAMKHYTbIX 

HoJIOCTIIx 

~~~~P-AH~~H~H~)Tc~ocHoBHu~ ~CO~~HHOCTH KoHneK~H3acY~nonbe~HblxclUl8 He3awKHy- 
TOii IIOJWCTH. nOK;uaHO, YTO IIpH I$blCOKHX 3Ha'lCHHnX 4HCJla P3Jlen Me*ay UaCTOTOfi IlepHOLUi'ieClCHX 
KOJle6aHHfi ‘lHeJE3 HyCCCnbTa H Q'JIbCBUHnMH UeHTpaJIbHOrO 8HXpn.a TaK)Ke MeCTOM HXJlOKaJIX3aUHH B 
IfOflOCTH QlUeCTByeT OJUiO3Ha'IHan 3aBHCHMOCrb. npH 3aIlaHHOM KOJIe6aTeJlbliOM peGWvfe(HaIIpHMep, 
IIpH BCHMMeTpIiPHOM cHHycoiIAanbHoM HIlH ne@OpMHpOBaHHOM W-O~P~UHOM) YaCTOTa KOJie6aHHfi 
wcna HyCWTbTa (HJIH ueerpanbaoro nHxpn BH~-T~H nonocrss) nmrektio eo3pacran c ysenmewieht 
qHcJIa Panen) Weqemran abtme nmieiirran 3anHcmmmb onpcneneua B asHoil @opn4e mn Bo3nyxa. 
Ycrauoanerro Tame. -ITO nm Ra 2 9 x 10’ SacroTa nynbcaurrfi uetrrprurz.uoro ettxpn cymecreemto 
ystnxvHBaeTcn H ero noBeAeime HammeT omomma 0~ nosTopmourerocn pemhia ndoro Tma. 

TIpeanonaraercn,rTO HMeHHO no XaOTHWCKOe BbICOLOYaCTOTHOeIlFJlDIeHHe UeHTpWlbHOrO empncoe- 

M~CTHO~OT~~IBOM noToKaBoKpyrbfmeneeoroce~eHHnHmHer0 6nora HH~ilUl~pym nepexonnTyp6y- 

JleHTHOMy Te’JeHHIO. 


