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Abstract--A numerical investigation has been carried out to study the effect of a geometric perturbation 
on the three-dimensional buoyancy-driven flow and heat transfer in an annular cavity with impermeable 
end walls. The numerical scheme used in the present study is based on a Galerkin method of finite element 
formulation. The nature of the three-dimensional flow-field has been analyzed in detail. The local and 
average Nusselt numbers were obtained for a wide range of Rayleigh numbers, and the heat transfer 
performance was compared with that for the closed horizontal annulus without a perturbation. The effect 
of variation of a number of key geometric parameters of the perturbation on the overall heat transfer 
behavior has been studied. Some of the key features due to the introduction of the perturbation, and 
qualitative and quantitative effects of the perturbation within the annulus are discussed. It is shown that 
the introduction of the geometric perturbation can lead to a large increase in the overall heat transfer 

within the annulus. © 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

The natural convection flow and heat transfer within 
a cylindrical annulus has received considerable atten- 
tion in recent years. This is primarily because of  the 
numerous applications such as nuclear reactor design, 
cooling of  electronic components,  electric trans- 
mission cables, aircraft insulation, etc. 

Many theoretical and experimental investigations 
have been carried out. In most of  the earlier studies, 
a two-dimensional (2-D) model  was used in which 
the annulus is assumed to be infinitely long so that 
convection could be assumed to be within the trans- 
verse plane only. The work by Kuehn and Goldstein 
[1] constitutes a classical work for these types of  stud- 
ies. For  many practical applications where the annulus 
has a finite axial length, the viscous shearing effects at 
the end walls necessitate a full three-dimensional (3- 
D) analysis. In the past decade, there have been some 
studies which considered the 3-D fluid flow and heat 
transfer in concentric cylindrical annuli. However,  
although the 3-D free convection between concentric 
cylinders is well understood, a comprehensive litera- 
ture survey revealed that very few geometric modi- 
fications to the horizontal concentric cylindrical 
annuli have been considered. This paper presents the 
results o f  an investigation concerning the buoyancy- 
driven flow and heat transfer in a concentric annulus 
with a geometric perturbation on the inner cylinder. 

A comprehensive literature survey of  3-D buoy- 
ancy-driven flow was presented by Vafai and Ettefagh 

? Author to whom correspondence should be addressed. 

[2]. Therefore, a brief overview of  selected works con- 
cerned with different geometric modifications to the 
concentric cylindrical annulus having a finite axial 
length is presented here. Two-dimensional  investi- 
gations were carried out by Kwon et al. [3], Zhang et 

al. [4] and Lai [5]. Kwon et al. [3] carried out a study of  
natural convection in the annulus between horizontal 
circular cylinders with three axial spacers which were 
equally spaced. The variation in flow pattern, tem- 
perature distribution and heat transfer were studied 
by varying the Rayleigh number,  Prandtl number, 
diameter-ratio and the location and thermal conduc- 
tivity of  the axial spacers. The heat transfer across 
the annulus was found to be strongly affected by the 
conduction through the spacers. Zhang et al. [4] pre- 
sented the results of  an experimental study of  laminar 
natural convection fluid flow and heat transfer in the 
horizontal annulus between a cylindrical envelope and 
its concentric octagonal heated inner cylinder. The 
octagonal cylinders investigated include one with a 
complete surface and the other with horizontal slots 
on the top and bot tom surfaces. Smoke was used to 
visualize the flow and it revealed that while the flow 
pattern for the unslotted case was very similar to that 
in a concentric cylindrical annulus, it was quite differ- 
ent for the case of  the slotted cylinder. They found 
that significant heat transfer enhancement was 
obtained for the slotted case. Lai [5] numerically inves- 
tigated the feasibility of  using radial baffles to improve 
the effectiveness of  pipe insulation. The objective was 
to reduce heat transfer by natural convection in the 
horizontal annulus. Three baffle designs, namely full 
baffles, partial inner baffles, and partial outer baffles 
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NOMENCLATURE 

D, diameter of inner cylinder [m] 
D 2 diameter of outer cylinder [m] 
,q acceleration due to gravity [m s ~] 
k thermal conductivity [Win ~ K t] 
L total length of the annulus [m] 
L~ length of the portion of the annulus 

without the perturbation [m] 
Lp length of the portion of the annulus 

with the perturbation [m] 
Nu Nusselt number 
n outward drawn normal 
Pr Prandtl number, v/x 
p pressure [Pa] 
Rt radius of the inner cylinder [m] 
R2 radius of the outer cylinder [m] 
Rp radius of the perturbation [m] 
Ra Rayleigh number , q f l (R  2 - -  RI)3AT/vgt 
T temperature [K] 
u~ velocity in the x-direction [m s ~] 
u, velocity in the y-direction [m s i] 

tg. 
F 

.V, F ,  ,7 

velocity in the z-direction [m s 
radial coordinate [m] 

Cartesian coordinates [m]. 

Greek symbols 
thermal diffusivity [m: s '] 

fl coefficient of volume expansion [K ~] 
v kinematic viscosity [kg m ~ s ~] 
I~ dynamic viscosity [m 2 s ~] 
p density [kg m ~]. 

Subscripts 
1 inner cylinder 
2 outer cylinder 
p perturbation 
x x-component 
v 3'-component 
z z-component 
oc, condition at infinity 
qb circumferential coordinate, degrees. 

were considered. The study of the relation between 
the heat loss and the baffle orientation angle for each 
pip,baffle configuration revealed that radial baffles 
were effective in reducing the heat loss and the effec- 
tiveness increased with increase in baffle number. 

The main objective of this work is to provide a 
qualitative and a quantitative understanding of the 
flow field and the corresponding heat transfer process 
in a cylindrical annulus subject to a geometric per- 
turbation. A thorough understanding of the buoy- 
ancy-induced flow-field and heat transfer in this 
geometry will provide a strong basis for identifying 
the local maxima and minima of convective energy 
transfer, and thereby, will be an important design tool. 
The heat transfer behavior is studied by looking at 
the variations in the average and the local Nusselt 
numbers on the inner and the outer cylinders. Another 
objective of the current study is to study the effect of 
variation of key geometric parameters of the pertur- 
bation, like the size and aspect-ratio. In order to quan- 
tify the effects of these parameters, correlations have 
been obtained for the average Nusselt number. The 
lull 3-D Navier Stokes equation is solved numerically 
using the Galerkin weighted residual method of the 
finite-element formulation. 

In the next section, the selection of the basic 
geometry and the analysis used to understand the flow 
field are presented. The definitions of the local and 
the average Nusselt numbers are provided and the 
detailed explanations for their variations are given. 
The discussions are made with respect to the cor- 
responding case for the annulus without the pertur- 
bation so that the distinct features and the effect of 
the inclusion of the perturbation are seen clearly. The 

effects of the variations in the geometric parameters 
and the development of the correlations for the aver- 
age Nusselt number are discussed. 

2. FORMULATION 

2.1. Physical model and assumptions 
The physical model and coordinate system used 

in the present study is shown in Fig. 1. Due to the 
symmetric nature of the flow field in the axial direc- 
tion, only half the axial length of the annulus is con- 
sidered in the analysis. In a given half of the annulus, 
the lengths of the portions with and without the per- 
turbation are Lp and Lt respectively. The radius of the 
inner cylinder in the 0 ~< x ~< L~ region of the annulus 
is R~ while that of the perturbation in the LI ~< x ~< Lp 
region is Rp. The outer radius of the annulus is R2. 
The flow is going to be symmetric with respect to the 
vertical plane crossing the center of the cylinders and 
hence the region of interest is half the annulus. 

The thermophysical properties of the walls and the 
fluid are assumed to be independent of temperature 
in the analysis, except for the density in the buoyancy 
term. The fluid is assumed to be Newtonian and 
incompressible. The Boussinesq approximation is 
invoked and the viscous heat dissipation in the fluid 
is neglected. 

2.2. Governing equations 
The problem is modeled as a 3-D, steady-state, 

natural convection in an incompressible fluid. The 
non-dimensional governing equations are : 



Effects of a geometric perturbation on buoyancy induced flow 2903 

Fig. 1. Schematic of model used in analysis. 

continuity 

x momentum 

The following dimensionless parameters have been 
used and the superscripts have been dropped for con- 
venience. 

(1) 

z* = Z 
& 

(6) 

au, au, au, ap 

u* = u,R, 
Ra ii2 

C-1 i 

x u* = u,.& U,Rz 

Pr 
U”X +u,.- t-u;- = -ax +v2u,; 

a(RaPr)‘/* ’ a(RaPr)“’ 
ur= 

a(RaPr) “* 

ay a2 
(7) 

(2) 

Y momentum 

T-T T* = 2 PR: 

T, -T, ‘* = va(RaPr)“’ (8) 

These five equations in terms of the five unknowns, 
Ra Ii’ aU 

(-> 1 

au. au, 
Pr 

z&I +u,.- fU;~ ap namely u,, ur, u,, p and T along with the appropriate 

ax ay 
= - - +v2uI,; 

ay boundary conditions fully describe the buoyancy- 
driven flow in the annulus. 

(3) 
2.3. Boundary conditions 

z momentum Across the axial symmetry plane, there is no fluid 
flow and also no heat transfer. Similarly, there is no 

Ra I,2 

(-) i 

au. au. au. ap flow of fluid or heat across the vertical symmetry 
= -- 

Pr 
U,-+u,.-+U,- 

ax ay aZ aZ plane. The left end wall is assumed to be insulated. 
On all rigid and impermeable surfaces, the three com- 

T+ v2u; ; 
ponents of velocity are zero. The boundary conditions 

(4) are summarized below. 
(1) For the left end wall : 

energy 

= V’T. (5) 

R, 
atx=O and F<y<l 

2 

u, = uy = u; = 0, 
aT 
- = 0. ax (9) 
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(2) For  the axial symmetry plane : 

LI q-Lp and Rp 
a t x  - R----~ ~72~< r ~< 1, 

(3T 
u , = 0 ,  ? , x = 0 '  

(3) For  the vertical symmetry plane : 

@ = 0 '  and @ = 1 8 0  

LI RI 
0 ~ < x ~ < ~ 7  and R2<~r<~l 

LI (Li +Lp) Rp 
- - ~ x ~ < - -  and 4 r ~ l  
R 2 R 2 RT, 

0T 
u, = 0 ,  ~Ty=0.  

(4) For  the curved surface of  the inner cylinder : 

R1 LI 
a t r =  R2 and 0 < x ~ - - , R 2  

u, = u ,  = u _ = 0 ,  T -  T L - T ~  1. (12) 
- T~ T_~ 

(5) For  the vertical surface of  the perturbation : 

L I R I Rp 
at x = ~ _  2 and R2<r<R~_ 

T, T~ 
u, = u , . = u :  = 0 ,  T =  T I - T ~  - 1. (13) 

(6) For  the curved surface of  the perturbation : 

Rp L1 (L I + L p )  
a t r : ~ _  2 and R ~<_v< R ~  

T~ T~ 
u, = u ,  = u _ = 0 ,  and T =  T ~ - T ~  - 1. 

(14) 

(7) For  the curved surface of  the outer cylinder : 

(LI + L ~ )  
a t r = l  and 0 ~ < x ~ < - -  

R2 

T2 I ~oc 
u,.=uy=u_-=O, T - T ~  Tm" (15) 

2.4. Numerical scheme 
The cited coupled nonlinear system of governing 

equations along with the described boundary con- 
ditions were discretized using the Galerkin method of  
weighted residuals as described in the F I D A P  Theor- 
etical Manual  [6]. The important  aspects of  the 
numerical scheme are briefly outlined in this section. 
The continuum domain is first divided into elements 
within each of  which, the unknown variables u, v, w, p 
and Tare  approximated using interpolation functions. 
Substitutions of  these approximations into the gov- 
erning equations and boundary conditions yields a 

residual in each of  these equations and the Galerkin 
form of the method of  weighted residuals seeks to 
reduce these errors to zero in a weighted sense. This 
results in a global system of algebraic equations over 
the entire domain. The segregated solution algorithm 

(10) was selected to solve the system of equations. In a 
segregated formulation, the global discretized equa- 
tion, which is in the form of a global system matrix, 
is decomposed into smaller submatrices and then 
solved in a sequential manner. This results in con- 
siderably lesser storage requirements as compared to 
that required for the storage of  the global system 
matrix. Since the computat ion resource requirement 
for the direct solvers become prohibitively large for 
large-scale simulations, iterative solvers were used in 
the present study. The conjugate residual (CR) scheme 

(11) was used to solve the symmetric pressure type equa- 
tion systems, while the conjugate gradient squared 
(CGS) scheme was used for the nonsymmetric advec- 
tion diffusion type equations. 

2.5. Computational details 
A finer mesh was used in regions where steeper 

gradients were expected. This practice was adopted 
near the walls within the annulus. The mesh size was 
determined alter considerable numerical exper- 
imentation. For  the annulus with the perturbation 
located at the centre, a grid-structure consisting of  
about  20000 elements was found to be sufficient to 
produce a grid-independent solution. With the per- 
turbation at the centre, only half the annulus length 
was considered due to the axial symmetry. However,  
for some of the cases in the current study, in which 
the perturbation is not located at the centre of  the 
annulus, the entire length of  the annulus had to be 
considered in the analysis, and for these cases, grid- 
independent solutions were obtained with about 
35 000 elements. 

3. FLOW AND HEAT TRANSFER RESULTS 

3.1. bTuid flow 
3.1.1. Background. For  the case of  natural con- 

vection in the annulus between horizontal concentric 
cylinders of  infinite axial length, Kuehn and Goldstein 
[1] obtained a two-dimensional crescent shaped 
vortex. However,  for many practical applications, the 
annulus has a finite axial length. This necessitates a 
three-dimensional analysis to take care of  the viscous- 
shearing effects at the end-walls. The effect of  the shear 
force at the walls is also felt in the middle portion 
of  the annulus. Takata et al. [7] studied the natural 
convection in an inclined cylindrical annulus for very 
high Prandtl number fluids. Their study revealed that 
a fluid particle which is introduced at the left end 
of  the annulus moves in the axial-direction from the 
starting point, drawing a small crescent-shaped vortex 
in the r-(l) plane. As the particle approaches the central 
region of  the annulus, its velocity in the axial direction 
was found to decrease gradually with an increase in 
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the size of the crescent shape. The particle was then 
found to turn in the opposite direction and move 
towards the starting point by drawing a larger 
crescent-shaped vortex outside the smaller one. Such 
a trace of fluid particle was called a co-axial helix, 
which was essentially the same structure obtained by 
Vafai and Ettefagh [2]. It should be noted that for an 
inclined cylindrical annulus with heating and cooling 
at the end plates, Ozoe et al. [8] also obtained a similar 
structure. The main objective of the current study is 
to obtain a thorough understanding of the effects of 
the inclusion of a geometric perturbation on the flow 
field within an annulus. 

Since one of the objectives of this investigation was 
to compare the numerical solution with previous 
works [1, 2], the outer cylinder to inner cylinder ratio 
was taken as 2.6 and the ratio of the axial length to 
outer radius was considered to be 4.0. The outer radius 
of the annulus was taken as 1.0, and the length of the 
perturbation in the axial direction was considered to 
be 0.8 (thereby making Lt = 1.6 and Lp = 0.4 in a 
half-length of the annulus). 

3.1.2. Representation of the flow-field. From an 
initial survey of the velocity vector field, the highly 
three-dimensional nature of the flow-field was 
revealed. In order to understand the flow-field, a sys- 
tematic approach was adopted which is briefly out- 
lined below. 

A comprehensive probe into the flow-behavior 
within the annulus is done. For the description of the 
flow-field and the heat transfer behavior, the cyl- 
indrical coordinate system (r, q~, x) has been adopted 
for the sake of convenience. A comprehensive study 
of numerical results revealed that over the domain of 
the annulus, the flow-field could be broadly dis- 
integrated into two clear regions: a region over the 
relatively narrow portion of the annulus formed 
between the perturbation and the outer cylinder 
(region B) and that over the remaining portion of the 
annulus (region A). For convenience, the two regions 
identified above will henceforth be referred to as 
region A and region B (Fig. 1). 

At a given axial plane, the crescent-shaped flow 
pattern is observed but it varies considerably in the 
axial direction. Within the regions A and B, the axial 
component of the velocity could be subdivided into 
distinct circumferential pockets. This behavior lead to 
the utilization of averaging of the axial component 
over the circumferential direction. For clarity in pre- 
senting the flow-field results, the circumferential aver- 
aging was done over four quadrants. 

3.1.3. Essential features of the flow. The essential 
features of the flow-field are presented in Fig. 2 for 
the region A and Fig. 3 for region B. The four figures 
for each region represent the variation in the axial 
component of the velocity averaged over each of the 
four quadrants, respectively. The discussion is pre- 
sented for a Rayleigh number of 10000, but all the 
main characteristics discussed here do apply for a wide 
range of Rayleigh numbers. 

Concentrating on the first quadrant of the annulus, 
very little activity is observed at the left end of the 
annulus. However, a steady increase in the strength 
of the axial flow is observed towards the perturbation 
(Fig. 4). This can be attributed to the presence of 
the heated vertical portion of the perturbation. This 
heated vertical section causes the fluid in its vicinity 
to rise rapidly, thereby entraining fluid from the lower 
left end of the region A. As seen in Fig. 2(a), in the 
region closer to the inner cylinder, the axial-velocity 
has a negative component, which is due to the 
impingement of the flow in the vertical walls of the 
perturbation. Another aspect to be noted in Fig. 2(a) 
is that the flow has a strong axial component as it 
leaves region A and enters region B. 

The flow which leaves region A along the bottom 
portion of the annulus finds its way into region B as 
can be seen in Fig. 3(a). As expected, the flow weakens 
as it approaches the axial symmetry plane. The fluid 
which was entrained by the heated vertical portion of 
the perturbation enters region B through the fourth 
quadrant from region A. This can be clearly seen 
in Figs. 4 and 3(d). Again, the flow weakens as it 
approaches the axial-symmetry plane. 

As expected, the magnitude of the axial component 
of the velocity vanishes for the flow which enters 
region B from region A through the bottom and top 
portions of the annulus. As can be seen in Fig. 3(b,c), 
the fluid returns towards region A though the second 
and third quadrants. These figures show that as the 
returning fluid moves out towards region A from the 
axial-symmetry plane, the magnitude of the axial com- 
ponent of the velocity increases. A closer look at Fig. 
3(b,c) will show that the speed of the returning flow is 
higher in the upper half of the annulus and it gradually 
diminishes as it moves towards the left end wall. 

Another distinct feature of the flow-field is the 
counterclockwise rotating cell which is formed near 
the top left end of the annulus (Fig. 4). The flow- 
field for the regular annulus without a perturbation 
displays a similar behavior. The cause of this cell can 
be attributed to the viscous end-effects. The leftward 
moving flow along the outer cylinder eventually 
impinges the left end wall, thereby triggering-off the 
formation of the cell. It should be noted that at the 
mid-axial location, there is a confluence of three 
strong flow-pockets as seen in Fig. 4. One is the coun- 
ter-clockwise cell which was just discussed. Another 
pocket is related to the flow from region B through 
the upper half of the annulus. The third flow pocket 
is the rising portion of the crescent in the r-q~ plane 
at that axial location. As a result of these interactions, 
a clockwise rotating cell is generated. There also exists 
a counter-clockwise rotating cell near the circum- 
ferential symmetry plane (Fig. 4) which is formed by 
that part of the flow entrained from the lower half of 
the annulus in region A which did not enter region B 
from region A. These clockwise and counter-clockwise 
rotating cells impinge in the region near the top of the 
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Fig. 2. Circumferentially-averaged axial velocities over the four quadrants : (a) quadrant  I : (b) quadrant  

lI ; (c) quadrant  Ill  ; and (d) quadrant  IV in region A. 
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Fig.  4. Velocity vectors at circumferential symmetry plane. 
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circumferential symmetry plane to form a stagnation 
zone. 

Thus it is seen that the nature of  the flow field for 
the present study is considerably different from the 
coaxial double helix flow pattern of  the regular annu- 
lus without a perturbation [2]. 

3.2. Heat trans[er 
The local Nusselt numbers for the inner and the 

outer cylinders are given by 

Nu, .... - 2k In 

h2D 2 /D2"~ 
and Nu ..... - ~-k l n ~ - ] )  (16) 

where h~ and h2 are the local heat transfer coefficients 
on the inner and the outer cylinders and are, respec- 
tively, given by 

ht qwl and h 2  _ qw2 (17) 
(T~ -- T=) (T~ -- T2) 

where q~ and qw= are the heat fluxes per unit area form 
the inner and the outer cylinder surfaces, respectively. 

These nondimensional  heat fluxes are given by 

0T 
qw - On (18) 

when n denotes the normal pointing outwards from 
the surface over which the Nusselt number is to be 
calculated. 

On the curved surface of  the perturbation, the Nus- 
selt number is given by 

1 I'Dp'~OT / D 2 \ 

and the average Nusselt number over a surface area 
is given by 

- -  I / ' 0 T  
Nu = ~ |On dA. (20) 

3.2.2. Local Nusselt number distribution. The dis- 
tribution of  the local Nusselt number for the inner 
and the outer cylinder as a function of  the cir- 
cumferential and the axial coordinates at a Rayleigh 
number of  104 is shown in Fig. 5. The local Nusselt 
number variations for the regular annulus without the 
perturbation are shown in Fig. 5(a,b), while Fig. 
5(c,d) represents the local Nusselt number variations 
for the annulus with a perturbation. In Fig. 5(c), the 
local Nusselt number on the vertical face of  the per- 
turbation has not  been shown. Only the variations 
on the curved surface of  the inner cylinder and the 
perturbation have been shown since the objective of  
this illustration is to highlight the differences in impor- 
tant trends as compared to the case of  the regular 
annulus without the perturbation. A first glance at the 
results show the same general trend for both the cases, 
i.e. the annulus with and without the perturbation. 
However,  there are some regions of  the annulus where 
the Nusselt number varies considerably between the 
two cases, thereby necessitating a more detailed dis- 
cussion. This discussion has been subdivided into sep- 
arate sections for the inner and the outer cylinder. 

Inner cylinder 
By comparing the local Nusselt number plots for 

the inner cylinder, the first notable difference is seen 
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Fig. 5. Local Nusselt number distribution at Ra = 104: regular annulus--- (a) inner cylinder; (b) outer 
cylinder annulus with perturbation (c) inner cylinder ; (d) outer cylinder. 

at the axial location where the perturbation begins. 
F rom Fig. 2(a-d),  it can be clearly seen that the flow 
undergoes a reversal after it strikes the vertical port ion 
of  the perturbation resulting in a significant reduction 
in the overall flow speed and hence a reduction in the 
local Nusselt  number. 

Inclusion of  the perturbation introduces a number 
of  effects as seen in region B of the annulus. The 
Nusselt number is found to increase from the plane 
where the perturbation begins to the axial symmetry 
plane. A careful study of  the flow-field in this region 
reveals that as the entrained fluid from the lower half  
of  region A enters region B through the upper half of  
the annulus, separation occurs along the horizontal 
surface of  the perturbation. As the flow moves into 
region B, the separation near the horizontal surface 
of  the perturbation decreases, accounting for the local 
Nusselt number increase in that region. 

At the axial symmetry plane, the Nusselt number 
decreases near a circumferential location of  • = 135" 
and then increases along the top of  the annulus. This 
behavior can be attributed to the formation of  a stag- 
nant zone in that portion of  the axial symmetry plane. 
The stagnation zone is formed by the impingement of  
opposing flows entering this pane from the top and 
bot tom portions of the annulus, see Fig. 6. 

Outer cylinder 
A comparison of  the local Nusselt number plots at 

the outer cylinder for the two cases shows some similar 

trends. The Nusselt number increases from the bot tom 
to the top of  the annulus. However,  some notable 
differences in the local Nusselt number were seen near 
the top of the annulus. For  the regular annulus, the 
viscous effects near the end-wall were seen at the top of 

o~  o 
, "  % . ~  

2,..'.,, 

Fig. 6. Velocity vectors at axial symmetry plane. 
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Fig. 7. Comparison of average Nusselt numbers for an annulus with and without a geometric perturbation. 

the annulus whereas for the perturbation case, several 
maxima were seen. This behavior near the top region 
of the annulus is due to the different convection cells 
and flow patterns in this region. As for the regular 
annulus without a perturbation, the local Nusselt 
number increases from the left end wall. 

The decrease in the local Nusselt number at the 
mid-axial location can be attributed to the presence 
of the stagnation zone formed in this region. Further, 
the impingement of the flow entrained from the lower 
portion of region A on the outer cylinder causes an 
increase in the Nusselt number. As the axial symmetry 
plane is approached, the Nusselt number is again seen 
to decrease. 

3.3. Overall heat transfer behavior 
To assess the overall effect of the perturbation on 

the heat transfer process, the average Nusselt number 
characteristics are analyzed. Figure 7 shows the aver- 
age Nusselt number as a function of the Rayleigh 
number for the two cases. It is important to note 
that heat transfer enhancements of about 50% are 
obtained with the introduction of the perturbation 
within the annulus. The average Nusselt number vari- 
ations as a function of the Rayleigh number can be 
correlated by the following equations. 
For the regular annulus : 

Nu = 0.16Ra °27 for 103 ~< Ra <~ 10 4. (21) 

For the annulus with a perturbation at the centre : 

Nu = 0.39Ra °19 for 103 ~< Ra <~ 104. (22) 

It may be observed that the first correlation is identical 
to that obtained by Kuehn and Goldstein [1]. The 
numerical technique employed in the current study 

was validated by comparing the solutions of the lim- 
iting case without perturbations and comparing them 
with previous works [1, 2]. Excellent qualitative and 
quantitative agreement were observed. 

4. EFFECTS OF VARIATIONS OF PERTINENT 
GEOMETRIC PARAMETERS 

In this section, the influence of some key geometric 
parameters on the heat transfer performance will be 
studied. The geometric parameters which will be con- 
sidered are the lengths of the geometric perturbation 
in the axial and the radial directions, the axial position 
of the perturbation in the annulus, and the gap-width 
between the inner and the outer cylinders. Dimen- 
sionless parameters used in characterizing the effects 
of the geometric parameters identified above are now 
given (Fig. 1). 

(1) Dimensionless length of the perturbation in the 
axial direction is given by 

x* = 2Lp (23) 
L 

(2) Dimensionless length in the radial direction is 
given by 

r *  - -  hp (24) 
G 

where hp = R p - - R  z and G = R2--R~. In the above 
equation, Rt and R 2 a r e  the radii of the inner and the 
outer cylinder of the annulus, respectively, and Rp is 
the radius of the perturbation. 

(3) The position of the perturbation in the annulus 
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Fig. 8. Effect of variation in pertinent geometric parameters: % change in mean Nusselt compared to that 
for the baseline case. 

is characterized by considering the axial distance 
between the left end wall of  the annulus and the centre 
of  the perturbation. Dimensionless axial position of  
the perturbation is given by 

P * -  xc--LP (25) 
L- -  2Lp 

where x~ is the axial distance of  the centre of  the 
perturbation from the left end-wall. As the per- 
turbation is moved from the left to the right end-wall, 
the value of  P* will change from 0 to 1. 

(4) Dimensionless gap-width between the inner and 
the outer cylinder is given by 

G* - ( R 2 - R ~ )  (26) 
R~ 

In order to study the effects of  these geometric par- 
ameters, several cases were investigated. For  each 
case, the average Nusselt  number was compared with 
that for a baseline configuration. The geometric par- 
ameter for the baseline configuration and those for 
the different cases which were studied are summarized 
in the following table. 

x* r* P* G* 

Baseline 0.20 0.50 0.50 0.80 
Case 1 0.05 0.50 0.50 0.80 
Case 2 0.50 0.25 0.50 0.80 
Case 3 0.20 0.75 0.50 0.80 
Case 4 0.20 0.50 0.00 0.80 
Case 5 0.20 0.50 0.25 0.80 
Case 6 0.20 0.50 0.50 0.50 
Case 7 0.20 0.50 0.50 0.10 

The results obtained are shown in Fig. 8 in terms 
of  the percentage change in average Nusselt number 
between each of  the cases identified above and the 
baseline case. At any given Rayleigh number, the aver- 
age Nusselt number was found to increase with an 
increase in the axial and the radial lengths of  the 
perturbation. As seen in the figure, the effect of  the 
axial and the radial dimensions of  the perturbation 
decrease with an increase in Rayleigh number i.e. at 
a lower Rayleigh number,  the effects of  change in 
perturbation-dimensions are more prominent  than 
those at higher Rayleigh numbers. As the axial length 
of the perturbation was reduced to 0.05 from the base- 
line dimension of  0.2, the average Nusselt number 
decreased by about  10-15% while it increased by 
about 10-30% when the axial dimension increased to 
0.5. On the other hand, as the radial dimension was 
decreased from the baseline value of  0.5 to 0.25, the 
average Nusselt number decreased by about 15-20% 
while it increased by about 40-55% as the radial 
dimension was increased to 0.75 from the baseline 
value of  0.5. As the position of  the perturbation in the 
annulus is moved progressively towards the left end- 
wall from the central location, the average Nusselt 
number was found to decrease. For  example, when 
the perturbation is at the extreme left end-location, 
the average Nusselt number was found to decrease 
only marginally at Rayleigh numbers up to about  103, 
while it decreased by as much as 25% as the Rayleigh 
number approached 10 4. For  the perturbation located 
at a quarter-annulus length from the left end, the heat 
transfer behavior was quite similar to the case where 
the perturbation was at the left end wall. While study- 
ing the effect of  the gap-width, it has to be noted that 
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the gap-width appears in the definition of  the Rayleigh 
number  and so its effect on the heat transfer per- 
formance was considered separately. As the gap-width 
is changed from a baseline value of  0.80 to 0.5, the 
average Nusselt number  deceases by about  5% while 
it decreases by about  15% for a gap width of  0.1. 

The results can be well coordinated by the following 
equation : 

Nu = 0.30Ra° °8(1 +0.62x*)(1 +2.67r*) 

× (1 +0.69P*)Pr -°°~ (27) 

whichis  valid for 103 ~< Ra <~ 104and0.7 ~< Pr <~ 100. 
Equat ion (27) captures the effects of  all the pertinent 
geometric parameters as well as the Rayleigh number 
and Prandtl  number variations, 

5. CONCLUSION 

Buoyancy-induced flow and heat transfer in a cyl- 
indrical annulus in the presence of  a geometrical per- 
turbation is investigated in this work. The general 
patterns and the detailed features of  the flow and heat 
transfer in the annulus due to the perturbation are 
presented. The detailed 3-D structure of  the flow field 
and heat transfer characteristics within this type of  
geometry has been analyzed and compared with that 
of  the regular cylindrical annulus without any per- 
turbation. With the introduction of  the perturbation 
in the annulus, the flow field differed considerably 
from the coaxial double helix flow pattern of  the reg- 
ular annulus. It was found that the introduction of  
a geometric perturbation can result in considerable 
increase in the overall heat transfer. 

The effects of  some key geometric parameters of  the 
perturbation on the heat transfer characteristics were 
studied. The influence of  the length of  the perturbation 
in the axial and radial directions, the axial position of  
the perturbation in the annulus and that of the gap- 
width between the inner and the outer cylinders have 
been studied. The average Nusselt number was found 

to increase with an increase in the axial and radial 
lengths of  the perturbation. As the perturbation is 
moved from the central axial location to either end, 
the rate of  increase in the average Nusselt number due 
to the perturbation was found to decrease. However,  
the presence of  the perturbation regardless of  the 
location induced a significant increase in the overall 
heat transfer within the annulus. As the gap width 
between the inner and the outer cylinders decreased, 
the average Nusselt number was found to decrease. 
Considering the effect of  the perturbation on the flow 
and heat transfer within the annulus, this work could 
serve as an initial design tool for a number of  practical 
applications which were mentioned earlier. 
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