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Abstract

The flow and heat transfer inside a non-isothermal and incompressible thin film having its upper plate slightly in-

clined from the horizontal and undergoing an oscillatory squeezing motion is investigated in this work. Two models are

analyzed: low and large Reynolds number flow models. The corresponding governing equations for each model are

properly non-dimensionalized and solved numerically. The main controlling parameters for the dynamic and thermal

behavior of the inclined thin film are found to be the amplitude of the upper plate motion, squeezing Reynolds number,

squeezing number, thermal squeezing parameter and the dimensionless slope of the upper plate. It is found that

fluctuations in the axial and normal velocities are greater for convergent thin films than for divergent thin films.

Furthermore, Nusselt numbers and their amplitudes are found to decrease with an increase in the dimensionless slope of

the upper plate. Finally correlations are obtained for Nusselt numbers and their corresponding amplitudes for two

different thermal conditions: constant wall temperature and uniform wall heat flux.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Flow and heat transfer inside thin films have received

a significant amount of attention in the recent years

because they are widely utilized in many engineering

applications such as in lubrication, heat pipes, micro-

channels and fluidic cells. External disturbances such as

unbalances in rotating machines and increased noise

levels from the surroundings can result in oscillatory

relative motions between the plates surrounding the thin

film. Even small oscillating motions can have a sub-

stantial impact because the thickness of thin films is very

small. Accordingly, the dynamics and thermal charac-

terization of thin films will be altered.

The chambers for chemical and biological detection

systems such as fluidic cells for chemical or biological

microcantilever probes (Lavrik et al. [1]) are an impor-

tant example for applications of thin films. Small noise

levels that may be present at the boundaries can produce

flow instabilities inside the fluidic cells. These distur-

bances have large influence on the measurements of the

detecting elements specially those utilizing microcanti-

levers. These detecting elements are very sensitive to flow

conditions. Therefore, a special design for these fluidic

cells such as considering converging or diverging thin

films is needed in order to transport the target proteins

to the probes with minimum effects of turbulence or

thermal disturbances.

There are many studies that have investigated flow in

hydrodynamic or squeezed thin films like Langlois [2]

who solved analytically the momentum equations for

hydrodynamic pressure in isothermal squeezed films with

fluid density varying according to the pressure. Later

on, towards the end of the 20th century, the interest in
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studying flow inside squeezed thin films increased.

Hamza [3] and Bhattacharyya et al. [4] have studied the

squeeze effects on the temperature distribution inside the

thin film. However their works were concerned with flow

between two parallel disks and were simplified to a one-

dimensional flow case. Recently, Khaled and Vafai [5,6]

considered heat transfer in incompressible squeezed thin

films with sinusoidal squeezing for two different models:

low and large Reynolds number models. To the authors

knowledge the literature lacks studies that are concerned

with the effects of pressure squeezing on flow and heat

transfer inside convergent or divergent thin films which is

related to a number of application such as fluidic cells

utilizing detection of biological agents.

In this work, the effects of external squeezing on flow

and heat transfer inside thin films having its upper plate

slightly inclined are studied. Thin films with positive

inclination forms divergent thin films while they become

convergent films when the inclination is negative. The

governing equations for both low and large Reynolds

number flow models are non-dimensionalized and then

solved numerically and the influence of squeezing Rey-

nolds number, dimensionless amplitude of the upper

plate�s motion, squeezing number, thermal squeezing
parameter and dimensionless slope for the upper plate

are determined on both flow and heat transfer charac-

teristics inside non-flat thin films. Finally, few correla-

tions are generated for Nusselt numbers at the exit of the

thin film as functions of both the dimensionless slope of

the upper plate and the dimensionless amplitude of the

upper plate�s motion for two thermal conditions: con-
stant wall temperature (CWT) and uniform wall heat

flux (UHF).

2. Problem formulation

Consider a two-dimensional thin film that has a small

thickness h compared to its length B. The x-axis is taken

in the direction of the length of the thin film, the hori-

zontal direction, while y-axis is taken in the vertical di-

rection along the thickness of the thin film as shown in

Fig. 1. The lower plate of the thin film is horizontal and

fixed while the upper plate is inclined and allowed to

have sinusoidal vertical motion such that the thickness

of the thin film can be expressed according to the fol-

lowing relation:

h ¼ h0 1
�

� b cosðcxtÞ þ j
x
B

�
ð1Þ

Nomenclature

B thin film length

cp specific heat of the fluid

H ; h dimensionless and dimensional thin film

thickness

hc convective heat transfer coefficient

h0 reference thin film thickness

k thermal conductivity of the fluid

Nu local Nusselt number

Pr Prandtl number

PS thermal squeezing parameter

p fluid pressure

q heat flux at the lower plate

RL, RS lateral and squeezing Reynolds numbers

T temperature in fluid

T1 fluid inlet temperature

T2 temperature at the lower and upper plates

(CWT)

t time

U ; u dimensionless and dimensional axial veloci-

ties

V ; v dimensionless and dimensional normal ve-

locities

X ; x dimensionless and dimensional horizontal

coordinates

Y ; y dimensionless and dimensional vertical co-

ordinates

Greek symbols

X;X� vorticity and dimensionless vorticity

W;W� stream function and dimensionless stream

function

b dimensionless squeezing motion amplitude

e perturbation parameter

c dimensionless frequency

g variable transformation for Y-coordinate

j dimensionless slope of the upper plate

l dynamic viscosity of the fluid

h dimensionless temperature in flow field

q density of the fluid

r squeezing number

s; s� dimensionless time

t kinematic viscosity

x reciprocal of a reference time (reference

squeezing frequency)

n variable transformation for the dimension-

less x-coordinate

Subscripts

L lower plate

m average value for velocity and mean bulk

value for temperature

U upper plate

W lower plate for temperature (UHF)
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where c is the dimensionless frequency and j, b and x
are the dimensionless slope of the upper plate of the thin

film, dimensionless amplitude of the upper plate�s mo-
tion and a reference frequency, respectively. It is as-

sumed that the fluid is Newtonian and having constant

properties.

2.1. General model

The general two-dimensional continuity, momentum

and energy equations for the laminar thin film are given

as

ou
ox

þ ov
oy

¼ 0 ð2Þ

q
ou
ot

�
þ u

ou
ox

þ v
ou
oy

�
¼ � op

ox
þ l

o2u
ox2

�
þ o2u

oy2

�
ð3Þ

q
ov
ot

�
þ u

ov
ox

þ v
ov
oy

�
¼ � op

oy
þ l

o2v
ox2

�
þ o2v
oy2

�
ð4Þ

qcp
oT
ot

�
þ u

oT
ox

þ v
oT
oy

�
¼ k

o2T
ox2

�
þ o2T

oy2

�
ð5Þ

where T, q, p, l, cp and k are the fluid temperature,

density, pressure, dynamic viscosity, specific heat and

the thermal conductivity of the fluid, respectively.

A generalized set of boundary and initial conditions

for this problem are

uðx; 0; tÞ ¼ 0; uðx; h; tÞ ¼ 0;

vðx; 0; tÞ ¼ 0; vðx; h; tÞ ¼ h0xcb sinðcxtÞ
opð0; y; tÞ

ox
¼ C1; pðB; y; tÞ ¼ pe

T ðx; 0; tÞ ¼ T2
T ðx; h; tÞ ¼ T2; T ð0; y; tÞ ¼ T1;

oT ðB; y; tÞ
ox

¼ 0; T ðx; y; 0Þ ¼ T1

ð6aÞ

where pe, T1 and T2 are application specified constants.
When the value of C1 is set to zero, there will be no flow
entering or leaving the thin film at x ¼ 0. However,

negative values of C1 insure that flow is always entering
the thin film. The constant C1 is function of time and will
be determined later based on the assumption that the

average velocity at the inlet is constant. This assumption

can find its applications in thin films having flows driven

by gravity such as in the fluidic cells used by Raiteri et al.

[7].

Another set of thermal boundary and initial con-

ditions corresponding to UHF that will be considered

are

T ðx; y; 0Þ ¼ T1; T ð0; y; tÞ ¼ T1; �k
oT ðx; 0; tÞ

oy
¼ q;

oT ðx; h; tÞ
on

¼ 0
o

ox
TWðB; tÞ � T ðB; y; tÞ
TWðB; tÞ � TmðB; tÞ

� �
ffi 0 ð6bÞ

where q, um and n are a constant represents the heat flux
applied at the lower plate, the mean axial velocity at the

exit and the direction normal to the upper plate, re-

spectively. It is assumed that the upper plate is insulated

which can model certain applications like biological

fluidic cells that require isolation from the external en-

vironment. Note that TW and Tm are the temperature of
the lower plate and the mean bulk temperature which

are defined later. The suggested exit thermal boundary

condition as shown in condition (6b) was proven in the

literature for steady state conditions (see Edwards et al.

[8]). Also, it was shown numerically in the work of

Khaled and Vafai [6] that this condition represents a

good approximation for the exit thermal condition for

flat sinusoidally squeezed thin films.

2.2. Low Reynolds numbers flow model

Eqs. (2)–(5) are non-dimensionalized using the fol-

lowing dimensionless variables:

X ¼ x
B
; Y ¼ y

h0
ð7a; bÞ

s ¼ xt ð7cÞ

U ¼ u
ðxBþ V0Þ

; V ¼ v
h0x

ð7d; eÞ

Fig. 1. Schematic diagram and boundary conditions.
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P ¼ p � pe
l x þ V0

B

� �
e�2

ð7fÞ

h ¼ T � T1
DT

ð7gÞ

where T1 and V0 are the temperature of the fluid at the
inlet and a constant representing a reference dimensional

inlet velocity, respectively. DT is equal to T2 � T1 for
CWT conditions and it is equal to qh0=k for UHF

conditions. The variables X, Y, s, U, V, P and h are the
dimensionless forms of x, y, t, u, v, p and T variables,

respectively. The above transformations except for di-

mensionless temperature have been used by Langlois [2]

along with the following perturbation parameter:

e ¼ h0
B

ð8Þ

where h0 is a reference thin film thickness.

The resulting first-order dimensionless continuity and

momentum equations are

oU
oX

þ 1

1þ V0
xB

� � oV
oY

¼ 0 ð9Þ

oP
oX

¼ o2U
oY 2

� RS
oU
os

� ðRS þ RLÞ U
oU
oX

� �
� RSV

oU
oY

ð10Þ

oP
oY

¼ 0 ð11Þ

where RS and RL are squeezing and lateral Reynolds
numbers, respectively. They are given as

RS ¼
qh20x

l
; RL ¼ qV0h0

l
h0
B

� �
ð12a; bÞ

The solution to Eq. (10) for low Reynolds numbers in

absence of any boundary translational effects is

U ¼ 1

2

oP
oX

ðY ÞðY � HÞ ð13Þ

Eq. (13) along with Eq. (9) can be solved to determine

the Reynolds equation [9]

o

oX
H 3 oP

oX

� �
¼ r

oH
os

ð14Þ

where r is the squeezing number and it is equal to

r ¼ 12

1þ V0
xB

ð15Þ

Eq. (13) reduces to the following after solving Eq. (14):

UðX ; Y ; sÞ ¼ 1

2H
½rbcX sinðcsÞ þ C�

1 	
Y
H

� �
Y
H

�
� 1
�
ð16aÞ

The corresponding normal velocity is found to be by

solving Eq. (9)

V ðX ; Y ; sÞ ¼
"
� 2 1

�
� 3jX

H

�
Y
H

� �3

þ 3 1

�
� 2jX

H

�
Y
H

� �2#
bc sinðcsÞ

þ 6C
�
1j

rH
Y
H

� �3"
� Y

H

� �2#
ð17aÞ

The constant C�
1 can be obtained by equating the flow

rate at the inlet calculated by integrating Eq. (16a) at

X ¼ 0 to the average velocity at the inlet which is as-

sumed to be constant (i.e. reference axial velocity V0)
multiplied by the inlet film thickness. This results C�

1 to

equal to �ð12� rÞHð0; sÞ. Accordingly, Eqs. (16a) and
(17a) are can be written as

UðX ; Y ; sÞ ¼ 1

2H
½rbcX sinðcsÞ

� ð12� rÞHð0; sÞ	 Y
H

� �
Y
H

�
� 1
�

ð16bÞ

V ðX ; Y ; sÞ ¼ bc sinðcsÞ 3 1

�"
� 2jX

H

�
Y
H

� �2

� 2 1

�
� 3jX

H

�
Y
H

� �3#
� 6 12

r

�
� 1
�


 jHð0; sÞ
H

Y
H

� �3"
� Y

H

� �2#
ð17bÞ

Next, Eq. (5) is reduced to the following when dimen-

sionless variables (7) and (8) are used

PS
oh
os

�
þ 12

r
U

oh
oX

þ V
oh
oY

�
¼ e2

o2h
oX 2

þ o2h
oY 2

ð18Þ

where PS is the thermal squeezing parameter and it is
defined as follows:

PS ¼ RS Pr ð19Þ

where Pr ¼ qcpt=k is the Prandtl number of the fluid.

2.3. Large squeezing Reynolds number flow model

It is convenient to solve the vorticity equation

and stream function formulations for cases with large

squeezing Reynolds numbers. These equations are listed

below in dimensional form:

oX
ot

þ u
oX
ox

þ v
oX
oy

¼ t
o2X
ox2

�
þ o2X

oy2

�
ð20Þ

o2W
ox2

þ o2W
oy2

¼ �X ð21Þ

where X and W are the dimensional vorticity and stream

functions, respectively. The vorticity and stream func-
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tions are related to the velocity components through the

following:

X ¼ ov
ox

� ou
oy

ð22Þ

u ¼ oW
oy

; v ¼ � oW
ox

ð23a; bÞ

The following dimensionless variables are suggested

X ¼ x
B
; Y ¼ y

h0
ð24a; bÞ

s ¼ xt ð24cÞ

X� ¼ X
ðV0 þ xBÞ=h0

; W� ¼ W
h0ðV0 þ xBÞ ð24d; eÞ

h ¼ T � T1
DT

ð24fÞ

where X� and W� are the corresponding dimensionless

values for X and W, respectively. The introduction of
variable (24e) in Eqs. (23a,b) results in the following

dimensionless velocity components:

U ¼ u
V0 þ xB

; V ¼ v
eðV0 þ xBÞ ð25a; bÞ

The dimensionless vorticity–stream function formula-

tions for the flow inside the thin film and the dimen-

sionless energy equation are

oX�

os

�
þ 1

�
þ RL

RS

�
oW�

oY
oX�

oX

�
� oW�

oX
oX�

oY

��

¼ 1

RS
e2
o2X�

oX 2

�
þ o2X�

oY 2

�
ð26Þ

e2
o2W�

oX 2

�
þ o2W�

oY 2

�
¼ �X� ð27Þ

PS
oh
os

�
þ 1

�
þ RL

RS

�
oW�

oY
oh
oX

�
� oW�

oX
oh
oY

��

¼ e2
o2h
oX 2

þ o2h
oY 2

ð28Þ

The following transformations are used to avoid time

and spatial dependent grid points:

s� ¼ s; n ¼ X ð29a; bÞ

g ¼ Y
HðX ; sÞ ð29cÞ

The boundary conditions can then be easily written in

the dimensionless form in terms of the squeezing number

as the following for the stream function formulation Eq.

(27):

W�ð0; g; s�Þ ¼ 1
�

� r
12

�
Hð0; s�Þg; o2W�ð1; g; s�Þ

on2
ffi 0

ð30a; bÞ

W�ðn; 0; s�Þ ¼ 0 ð30cÞ

W�ðn; 1; s�Þ ¼ 1
�

� r
12

�
Hð0; s�Þ � r

12

� �
nbc sinðcs�Þ

ð30dÞ

while the next are the boundary conditions for the

vorticity equation (26)

X�ð0;g; s�Þ ¼ �e2
o2W�ð0;g; s�Þ

on2

�
þ 2gj2

H 2ð0; s�Þ
oW�ð0;g; s�Þ

og

� 2gj
Hð0; s�Þ

o2W�ð0;g; s�Þ
onog

�
ð31aÞ

oX�ð1; g; s�Þ
on

ffi C4ð1� b cosðcs�Þ � jÞ � 2C3j
ðC3 þ C4Þð1� b cosðcs�Þ þ jÞ

� �
X�ð1; g; s�Þ

ð31bÞ

X�ðn; 0; s�Þ ¼ � oUðn; 0; s�Þ
Hog

;

X�ðn; 1; s�Þ ¼ � oUðn; 1; s�Þ
Hog

ð31c; dÞ

Boundary conditions (30b) and (31b) are approximated

boundary conditions derived based on the fact that the

upper plate is slightly inclined and that the velocity at

the exit of the thin film has the following order of

magnitude:

U � C3 þ C4n
H

pðgÞ ð32Þ

where pðgÞ is a certain function of g. The parameters C3
and C4 are

C3 ¼ 1
�

� r
12

�
Hð0; s�Þ;

C4 ¼ � r
12

� �
bc sinðcs�Þ ð33a; bÞ

The thermal boundary conditions for plates having a

CWT are

hðn; 0; s�Þ ¼ 1; hðn; 1; s�Þ ¼ 1 ð34a; bÞ

hð0; g; s�Þ ¼ 0;
ohð1; g; s�Þ

on
¼ jg

H
ohð1; g; s�Þ

og
ð34c; dÞ

while the corresponding thermal boundary conditions

for uniform heat flux conditions at the thin film plates

are

ohðn; 0; s�Þ
Hog

¼ �1;

ohðn; 1; s�Þ
og

¼ e2jH
1þ e2j2

ohðn; 1; s�Þ
on

ð35a; bÞ

hð0; g; s�Þ ¼ 0 ð35cÞ
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ohð1; g; s�Þ
on

¼ jg
H

ohð1; g; s�Þ
og

þ ohWð1; s�Þ
on

� hWð1; s�Þ � hð1; g; s�Þ
hWð1; s�Þ � hmð1; s�Þ

� �


 ohWð1; s�Þ
on

�
� ohmð1; s�Þ

on

�
ð35dÞ

where hm and hW are the dimensionless mean bulk and

lower plate�s temperatures, respectively. Eq. (35d) can be
used for CWT conditions for relatively large PS values
noting that hWð1; s�Þ ¼ 1 in this case. The boundary

conditions (35b) is obtained by resolving the tempera-

ture gradient at the upper plate along the g-direction
since the upper plate is insulated.

2.4. Calculated parameters

The calculated thermal parameters that will be con-

sidered are the Nusselt numbers at the lower and upper

plates. They are defined according to the following

equations:

CWT

NuUðX ; sÞ �
hcUh0
k

¼ 1

1� hmðX ; sÞ
ohðX ;H ; sÞ

oY

� �2 

þ e2
ohðX ;H ; sÞ

oX

� �2!1=2

NuLðX ; sÞ � hcLh0
k

¼ �1
1� hmðX ; sÞ

ohðX ; 0; sÞ
oY

ð36Þ

UHF

NuLðX ; sÞ � hcLh0
k

¼ 1

hðX ; 0; sÞ � hmðX ; sÞ ð37Þ

hmðX ; sÞ ¼ 1

UmðX ; sÞH

Z H

0

UðX ; Y ; sÞhðX ; Y ; sÞdY

UmðX ; sÞ ¼
1

H

Z H

0

UðX ; Y ; sÞdY

ð38Þ

where Um is the average dimensionless axial velocity. hcU
and hcL are the convective heat transfer coefficient at the
upper and the lower plates, respectively.

3. Numerical analysis

Eqs. (18), (26) and (28) are first transformed to the

new computational domain ðn; g; s�Þ and then solved

using the alternating direction implicit method (ADI),

see Ref. [10]. After each half time step for Eqs. (26) and

(28), Eq. (27) was solved using the method of successive

over relaxation SOR. The dimensionless velocities in

Eq. (26) as well as the dimensionless vorticity at the

plates of the thin film, seen in Eqs. (31c,d), were calcu-

lated initially at previous half time steps and then cor-

rected by consecutive iterations until the convergence

criteria is satisfied.

In the numerical results, the value of the dimen-

sionless frequency was chosen to be 3.0. Note that other

values will result in similar physical behavior. Based on

extensive numerical experimentation for the large Rey-

nolds number model, the values of 0.0125, 0.05, 0.001

and 10�5 were chosen for Dn, Dg, Ds� and the maximum
error for stream functions in Eq. (27), respectively.

However, a finer mesh was selected for the low Reynolds

number model because less computational time is nee-

ded for this model. For highly convective cases, thermal

and momentum axial diffusions can be neglected com-

pared to axial convections and therefore errors associ-

ated with exit boundary conditions was found to be

negligible.

The time history of the exit Nusselt number for both

models was compared for similar controlling parameters

for UHF conditions except for RS which is allowed to
vary from a negligible value to a value of 10 keeping a

constant value for the thermal squeezing parameter.

Both models were found to give a good agreement as

shown in Fig. 2. The difference between the results is

ascribed to additional inertia effects that are present in

the high Reynolds number flow model. Also, different

mesh sizes were used for both models. Accordingly, a

parametric study is performed to investigate flow and

heat transfer inside non-flat thin films.

Fig. 2. Comparison between small and large Reynolds models

(UHF).
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4. Discussions of the results

4.1. Low Reynolds numbers flow model

Figs. 3 and 4 illustrate the effect of dimensionless

slope of the upper plate of the thin film j on the Nusselt
number for CWT and UHF conditions, respectively. It

is noticed that all NuL and NuU for CWT condition and
NuL for UHF condition have oscillatory behaviors. Note
that NuU is zero for the UHF condition. Further, both
NuL and NuU for CWT condition and NuL for UHF
condition decrease as j increases due to a decrease in the
average axial velocity as j increases. An interesting

feature for inclined thin films is that the variation in the

Nusselt number decreases as j increases. This can be

recognized from Figs. 3 and 4. Moreover, it is noticed

from Fig. 3 that NuU is always greater than NuL for
convergent thin films while the opposite is true for di-

vergent thin films.

As initial thermal effects diminish, kinks are noticed

to appear for Nusselt numbers as in Figs. 2 and 3 due to

the transition with the steady periodic solution. These

are clear for divergent thin films and at larger r values.
This is because the increased fluid volume in divergent

cells and the decreased inlet velocities for larger r values
increases the transient effects and accordingly we see

these kinks occur at further times. These kinks can be

seen in many vibrated dynamical systems.

The axial distribution of NuL at two different times is
shown in Figs. 5 and 6 for CWT and UHF conditions,

respectively. NuL is almost constant for j ¼ 0:0 except
near the inlet where the flow is not thermally developed.

However for cases where j is different than zero, NuL

increases almost linearly as n increases far from the inlet

for negative values of j and it decreases almost linearly
for positive values of j as n increases. The influence of j
on hm is shown in Fig. 7 for CWT condition. The values
of hm are noticed to increase as j decreases due to in-
creases in the convective heat transfer coefficient. It can

be seen for UHF conditions (Fig. 8) that average lower

plate temperature hW is found to increase as j increases
due to a decrease in the convective heat transfer coeffi-

cient. Further, it is noticed that the average hW has an

Fig. 3. Effects of j on Nu (CWT).

Fig. 4. Effects of j on Nu (UHF).

Fig. 5. Effects of j on the development of NuL (CWT).
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oscillatory behavior almost similar to the upper plate

motion with a phase shift.

4.2. Correlations

The mean value of the Nusselt number Num and the
fluctuation in the Nusselt number are defined as follows:

NumðX Þ ¼ c
2p

Z 2p

2p 1�ð1=cÞð Þ
NuðX ; s�Þds� ð39Þ

DNu ¼ ðNumax � NuminÞ
2

ð40Þ

Table 1 contains correlations for both the mean value of

the Nusselt number and its corresponding fluctuation.

The maximum error between these correlations and the

numerical results are 3% for the Nusselt numbers and

about 6% for the values of DNuL=NuLm and DNuU=NuUm .
The following equation characterizes of the Nusselt

number variations for both CWT and UHF conditions

Table 1

Correlations for the mean Nusselt numbers and fluctuations in

Nusselt numbers: (PS ¼ 1:0, � ¼ 0:1 and r ¼ 5:0; 0:16b6 0:4,

�0:256j6 0:5)

Condition Correlations

CWT NuLm ¼ 3:853e�0:004jX ½ð1þ jX Þ2 � b2	�0:497

DNuL
NuLm

¼ 1:674e�0:678jX ð0:0478þ bÞ1:361

CWT NuUm ¼ 3:846e�0:194jX ½ð1þ jX Þ2 � b2	�0:496

DNuU
NuUm

¼ 1:675e�0:610jX ð0:0468þ bÞ1:356

UHF NuLm ¼ 2:719e0:117jX ½ð1þ jX Þ2 � b2	�0:519

DNuL
NuLm

¼ 1:187e�1:163jXb1:026

Fig. 6. Effects of j on the development of NuL (UHF).

Fig. 7. Effects of j on hm (CWT).

Fig. 8. Effects of j on average hW (UHF).
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as a function of dimensionless time s� in the absence of
transient effects and viscous dissipation.

NuLðX ; sÞ ¼
NuLmðX ; sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ jX Þ2 � b2

q
ð1� b cosðcsÞ þ jX Þ ð41Þ

The values of NuLm in Eq. (41) are obtained from Table 1
and can be used for different r and PS values as long as
the Nusselt number is evaluated far from the inlet. In

this region, the flow can be said to be thermally fully

developed. Eq. (41) can also be applied for evaluating

the Nusselt number at the upper plate for CWT condi-

tions.

4.3. Large squeezing Reynolds number flow model

Fig. 9 shows the effects of RS on the dimensionless
velocity profiles at maximum relief velocity for a flat thin

film. Although the average velocity for the studied case

is positive, negative velocities appear near the lower

plate for RS greater than 40 as shown in Fig. 9. This
instability or flow separation is due to reductions in the

flow kinetic energy and increases in fluid pressure as a

result of upper plate relaxation. The critical RS value
that causes flow separations near the plates decreases as

the dimensionless slope j increases as shown in Fig. 10.
Figs. 11 and 12 explain the influences of dimension-

less slope of the upper plate j on the axial and normal
velocity profiles at the exit of the thin film, respectively.

Axial velocities and the corresponding shear rates in-

crease as j decreases as illustrated in Fig. 11. For un-
disturbed thin films, the minimum normal velocities are

for flat thin films but convergent thin films have higher

normal velocities than divergent ones because these ve-

locities are proportional to the gradient of the axial ve-

locities which is proportional to j=ðj þ 1Þ2. Yet the
variation in normal velocities near the fixed plate of

squeezed thin films can be minimized significantly for

divergent thin films. This can be seen from Fig. 12. Also,

Eq. (17b) suggests that divergent cells having j near

unity have a minimized normal velocities near the lower

plate for small values of b and at large values of r.Fig. 9. Effects of RS on U profiles (high RS).

Fig. 10. U profiles for large j value.

Fig. 11. Effects of j on U.
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The effects of j on hm at dimensionless times s� ¼
3p=2, 5p=3, 11p=6 and 2p is exemplified in Fig. 13 for
CWT conditions. Values of hm for the studied conver-
gent thin film, j ¼ �0:2, is found to be greater than
those for the studied divergent thin film, j ¼ 0:4. The
increased axial velocities in convergent thin films results

in an increase in the convective heat transfer coefficient.

This in turn increases the heat transfer to the fluid for

CWT conditions. Accordingly, hm increases as j de-

creases. It is further noticed from this figure that fluc-

tuations in hm at the exit of the thin film increase as j
increases as in divergent thin films.

5. Conclusions

The effects of external squeezing of the upper plate

of a thin film that has a linearly varying thickness with

the horizontal distance have been considered on flow

and heat transfer for a wide range of squeezing Rey-

nolds numbers. In the present study, the governing

equations have been non-dimensionalized and reduced

to two categories: low and large Reynolds number flow

models. Both categories were compared at a limiting

case and were found to be in excellent agreement. It

was found that flow instabilities and flow separation

occur at lower squeezing Reynolds number for diver-

gent thin films in contrast to convergent thin films.

However, fluctuations in the axial and normal velocities

were found to be greater for convergent thin films as

compared to divergent thin films. Further, Nusselt

numbers and their amplitudes were found to decrease

when the dimensionless slope of the upper plate was

increased. Convergent thin films were found to be

thermally more stable as lubricating thin films, micro-

channels or fluidic cells of chemical or biological nano-

sensors. Finally the instability in the dynamic behavior

of divergent thin films at large squeezing Reynolds

numbers can for example eliminated by using magnetic

devices at the exit.
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