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Abstract

Heat transfer enhancements are investigated inside channels by controlling thermal dispersion effects inside the fluid.

Different distributions for the dispersive elements such as nanoparticles or flexible hairy fins extending from the channel

plates are considered. Energy equations for different fluid regions are dimensionalized and solved analytically and

numerically. The boundary arrangement and the exponential distribution for the dispersive elements are found to pro-

duce enhancements in heat transfer compared to the case with a uniform distribution for the dispersive elements. The

presence of the dispersive elements in the core region does not affect the heat transfer rate. Moreover, the maximum

Nusselt number for analyzed distributions of the dispersive elements are found to be 21% higher than that with uni-

formly distributed dispersive elements for a uniform flow. On the other hand, the parabolic velocity profile is found

to produce a maximum Nusselt number that is 12% higher than that with uniformly distributed dispersive elements

for the boundary arrangement. The distribution of the dispersive elements that maximizes the heat transfer is governed

by the flow and thermal conditions plus the properties of the dispersive elements. Results in this work point towards

preparation of super nanofluids or super dispersive media with enhanced cooling characteristics.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The heat flux of VLSI microelectronic components

can reach up to 1000 kW/m2. As such, many methods

are proposed to eliminate excess of heating associated

with the operation of these components. One of these

methods is to utilize two-layered microchannels [1].

Two-phase flow are utilized for cooling which was found

to be capable of removing maximum heat fluxes gener-
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ated by electronic packages yet the system may become

unstable near certain operating conditions. This can be

shown in the work of Bowers and Mudawar [2]. The

use of porous blocks inside channels [3–5] was found

to be efficient in eliminating the excess of heat. However,

the porous medium creates a substantial increase in the

pressure drop inside the cooling device. Recently,

Khaled and Vafai [6] demonstrated that expandable sys-

tems can provide an efficient method for enhancing the

cooling rate. The performance of expandable systems

and other cooling systems can be further improved when

nanofluids are used as their coolants [6–9].

Nanofluids are mixtures of a pure fluid with a small

volume of suspensions of ultrafine particles such as
ed.
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Nomenclature

B channel length

C* dispersive coefficient (dependent on the dis-

persive elements properties)

cp average specific heat

E0 thermal dispersion parameter

h half channel height

hc convective heat transfer coefficient

k thermal conductivity

k0 effective static thermal conductivity of the

nanofluid

Nu Nusselt number

Nufd Nusselt number at fully developed condition

Pe Peclet number

q heat flux at the channel walls

T, T1 fluid�s temperature and the inlet temperature

U, u dimensionless and dimensional axial veloci-

ties

X, x dimensionless and dimensional axial coordi-

nates

Y, y dimensionless and dimensional normal

coordinates

Greek symbols

h, hm dimensionless temperature and dimension-

less mean bulk temperature

hW dimensionless temperature of the channel

plates

q density

Subscripts

f pure fluid

nf nanofluid

p particle

A.-R.A. Khaled, K. Vafai / International Journal of Heat and Mass Transfer 48 (2005) 2172–2185 2173
copper nanoparticles or nanotubes. They were found to

possess a large effective thermal conductivity. For exam-

ple, the effective thermal conductivity of nanofluids could

reach 1.5 times that of the pure fluid when the volume

fraction of the copper nanoparticles is 0.003 [10]. This

enhancement is expected to be further increased as the

flow speed increases resulting in an increase in the mixing

effects associated with the Brownian motion of the nano-

particles. This mixing effect is referred in literature as the

thermal dispersion effect [11]. Other aspects of dispersion

effects can be found in some of the recent works [12–17].

Li and Xuan [18] reported an increase of 60% in the

convective heat transfer inside a channel filled with a

nanofluid, having 3% volume fraction for copper nano-

particles, compared to its operation with the pure fluid.

This significant increase indicates that thermal dispersion

is the main mechanism for heat transfer inside convective

flows. The challenge is to find new ways to improve the

performance of the cooling systems.

In this work, a method for enhancing the heat trans-

fer characteristics through the use of nanofluids with

proper thermal dispersion properties is proposed and

analyzed. This can be accomplished by having a proper

distribution for the ultrafine particles. Physically, the

distribution of the ultrafine particles can be controlled

using different methods: (i) having nanoparticles with

different sizes or physical properties, (ii) applying appro-

priate magnetic forces along with using magnetized

nanoparticles, (iii) applying appropriate centrifugal

forces, and (iv) applying appropriate electrostatic forces

along with using electrically charged nanoparticles. Dif-

ferent distribution for the nanoparticles can be obtained

using any combination of the above methods.
For example, denser nanoparticles such as copper

nanoparticles or those with a larger size tend to suspend

at lower altitudes in coolants. However, nanoparticles

with lower density such as carbon nanoparticles or those

having a lower size tend to swim at higher altitudes with-

in denser liquids such as aqueous solutions and liquid

metals. As such, non-homogenous thermal dispersion

properties can be attained. Centrifugal effects tend to

produce concentrated thermal dispersion properties near

at least one of the boundaries. On the other hand, non-

homogenous thermal dispersion properties inside the

coolant can be obtained by attaching to the plates of

the cooling device flexible thin fins like hair with appro-

priate lengths. The Brownian motion of the suspended

hairy medium will increase the thermal dispersion prop-

erties mainly near the plates of the cooling device and it

can be used with a proper suspension system to obtain

any required thermal dispersion properties.

Heat transfer enhancements are analyzed inside a

channel filled with a coolant having different thermal

dispersion properties. Different arrangements for the

nanoparticles or the dispersive elements are considered

in this work. The nanoparticles or the dispersive ele-

ments are considered to be uniformly distributed near

the center of the channel for one of the arrangements.

In another arrangement, they are uniformly distributed

near the channel plates. Exponential or parabolic distri-

butions for the dispersive elements are also analyzed in

this work. The energy equations for the corresponding

fluid regions are non-dimensionalized. Solutions for

the Nusselt number and the temperature are obtained

analytically for special cases and numerically for general

cases. They are utilized to determine the appropriate
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distribution for the dispersive elements that will result in

the maximum heat transfer with the same total number

of nanoparticles or the dispersive elements.
2. Problem formulation

Consider a flow inside a two-dimensional channel

with a height 2h and a length B. The x-axis is aligned

along the centerline of the channel while the y-axis is

in the traverse direction as shown in Fig. 1. The fluid

which could be a pure fluid or a nanofluid is taken to

be Newtonian with constant average properties except

for the thermal conductivity to account for thermal dis-

persion effects. The energy equation is

qcpu
oT
ox

¼ o

oy
k
oT
oy

� �
ð1Þ

where T, q, cp and k are the temperature, effective fluid

density, fluid specific heat and thermal conductivity,

respectively. The velocity field u in the channel is taken

to be fully developed. The volume of the dispersive ele-

ments is very small such that the velocity profile is

parabolic.

u
um

¼ 3

2
1� y

h

� �2� �
ð2Þ

where um is the mean flow speed.

For nanofluids or in the thermally dispersed region,

the parameter qcp will be (qcp)nf and it is equal to

ðqcpÞnf ¼ 1� uð Þ qcp
� �

f
þ u qcp

� �
p

ð3Þ

where the subscript nf, f and p denote the nanofluid or

the dispersive region, pure fluid and the particles, respec-

tively. The parameter u is the nanoparticles or the dis-

persive elements volume fraction which represents the

ratio of the nanoparticles or the dispersive elements vol-

ume to the total volume. A nanofluid composed of pure

water and copper nanoparticles suspensions with 2%

volume fraction has a value of (qcp)nf equal to 99% that
q=const. 

x, u

y 

q=const. 

B 

2h 

Fig. 1. Schematic diagram and the coordinate system.
for the pure water which is almost the same as the ther-

mal capacity of the pure fluid.

The ultrafine suspensions such as nanoparticles,

nanotubes or any dispersive elements in the fluid plays

an important role in heat transfer inside the channel as

their Brownian motions tend to increase fluid mixing.

This enhances the heat transfer. The correlations pre-

sented in the work of Li and Xuan [18] for Nusselt num-

bers in laminar or turbulent flows show that the heat

transfer is enhanced in the presence of nanoparticles

and it increases as the nanoparticles volume fraction,

the diameter of the nanoparticles or the flow speed in-

crease. Xuan and Roetzel [11] suggest (consistent with

the dispersion model given in [17]) the following linear-

ized model for the effective thermal conductivity of the

nanofluid:

k ¼ k0 þ C� qcp
� �

nf
uhu ð4Þ

where C* is a constant depending on the diameter of the

nanoparticle and its surface geometry. Physically, Eq.

(4) is a first approximation for the thermal conductivity

of the nanofluid that linearly relates it to thermal capac-

itance of the flowing nanoparticles or flowing dispersive

elements. The constant k0 represents the effective ther-

mal conductivity of the nanofluid or the dispersive re-

gion under stagnant conditions, at u = 0. This constant

can be predicted for nanofluids from the formula sug-

gested by Wasp [19] which has the following form:

k0
kf

¼
kp þ 2kf � 2u kf � kp

� �
kp þ 2kf þ 2u kf � kp

� � ð5Þ

where kp and kf are the thermal conductivity of the

nanoparticles and the pure fluid, respectively.

According to formula (5), a 2% volume fraction of

ultrafine copper particles produces 8% increase in k0
when compared to the thermal conductivity of the pure

fluid. On the other hand, the experimental results illus-

trated in the work of Li and Xuan [18] shows that the

presence of suspended copper nanoparticles with 2%

volume fraction produced about 60% increase in the

convective heat transfer coefficient compared to pure

fluid (Table 1). This indicates that thermal dispersion

is the main mechanism for enhancing heat transfer inside

channels filled with nanofluids under convective condi-

tions. Non-dimensionalizing Eq. (1) with the following

dimensionless variables:

X ¼ x
h
; Y ¼ y

h
; U ¼ u

um
; h ¼ T � T 1

qh=kf
ð6Þ

leads to the following dimensionless energy equation:

PeU
oh
oX

¼ o

oY
k
kf

oh
oY

� �
ð7Þ

where q, T1 and Pe are the heat flux at the channel�s
plates, the inlet temperature and the Peclet number



Fig. 2. Different arrangements for the thermal dispersion

region: (a) central arrangement, and (b) boundary arrangement.

Table 1

Variations of (qcp)nf/(qcp)f and k0/kf for various ultrafine copper

particles volume ratios

u (%) (qcp)nf/(qcp)f k0/kf

0 1 1

1 0.998 1.040

2 0.996 1.083

3 0.995 1.127

4 0.993 1.173

5 0.991 1.221
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(Pe = (qcpumh)/kf), respectively. It is assumed that the

heat flux is constant and equal at both plates.

For simplicity, the term k/kf will be rearranged in the

following form:

k
kf

¼ k0
kf

þ k
ðqcpÞnf
ðqcpÞf

uUnf ; k ¼ C�Pef ð8Þ

where Pef = (qcp)fumh/kf.
A portion of the fluid�s volume are considered in part

of this work to be subjected to thermal dispersion effects

due the suspensions of nanoparticles or any dispersive

elements while the other portion contains only the pure

fluid. The most obvious way to obtain specific distribu-

tions for thermal dispersive elements is to have conduc-

tive hairy fins extending from the channel plates or from

a carefully designed fixed or flexible structure placed in

the channel. The volume of this structure is small en-

ough such that the parabolic assumption for the velocity

profile is still valid. Also, non-homogenous thermal dis-

persion properties can be achieved by having nanoparti-

cles with different densities or different sizes. Heavier

nanoparticles or dispersive elements tend to swim closer

to the lower plate due to gravitational forces while

lighter nanoparticles or dispersive elements tend to swim

closer to the upper force due to buoyancy forces. The

dispersive elements such as nanoparticles can be further

concentrated near the channel�s plates by having these

particles magnetized along with applying appropriate

magnetic fields. As such, the difference in the thermal

dispersive properties of the nanofluid can be achieved.

Appropriate thermal dispersive properties can be ob-

tained by utilizing the different methods discussed in

Section 1.

The dimensionless energy equation for the part

involving thermal dispersion is

Peð Þf
qcp
� �

nf

qcp
� �

f

 !
Unf

ohnf

oX
¼ o

oY
k0
kf

þ k
qcp
� �

nf

qcp
� �

f

uUnf

 !
ohnf

oY

 !

ð9Þ

while the energy equation for the volume containing the

pure fluid is
Peð ÞfU f

ohf

oX
¼ o2hf

oY 2
ð10Þ

Different distributions for the nanoparticles of the dis-

persive elements will be analyzed in this work. In one

of these distributions, the region that is active with ther-

mal dispersion effects is considered to be a rectangular

region of height 2‘ around the channel�s centerline as

shown in Fig. 2(a). Another distribution considers the

region comprising thermal dispersion effects to be pres-

ent only at the two identical rectangular regions of

height ‘ attached to the channel�s plates as shown in

Fig. 2(b). The boundary conditions for the central

arrangement are

dhnf X ;0ð Þ
dY

¼ 0;
k0
kf

þ k
qcp
� �

nf

qcp
� �

f

uU Kð Þ
 !

dhnf X ;Kð Þ
dY

¼ dhf X ;Kð Þ
dY

;hf X ;Kð Þ ¼ hnf X ;Kð Þ;dhf X ;1ð Þ
dY

¼ 1

ð11a–dÞ

while the boundary conditions for the second arrange-

ment (boundary arrangement) are

dhf X ;0ð Þ
dY

¼ 0;

k0
kf
þk

qcp
� �

nf

qcp
� �

f

uU 1�Kð Þ
 !

dhnf X ;1�Kð Þ
dY

¼ dhf X ;1�Kð Þ
dY

;

hf X ;1�Kð Þ ¼ hnf X ;1�Kð Þ;

k0
kf
þk

qcp
� �

nf

qcp
� �

f

uU 1ð Þ
 !

dhf X ;1ð Þ
dY

¼ 1 ð12a–dÞ
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where K = ‘/h. Other distributions for the dispersive ele-

ments will be considered later such as the parabolic dis-

tribution and the exponential distribution.

For thermal fully developed conditions, axial gradi-

ent of the temperature reaches a constant value equal

to dT/dx. That is, the heat flux is equal to

q ¼ dT
dx

1� ucfð Þ qcp
� �

f
umð Þf þ ucf qcp

� �
nf

umð Þnf
� �

h ð13Þ

where ucf is the ratio of the volume comprising thermal

dispersion effects to the total channel volume. (um)f is the

average velocity in the fluid phase while (um)nf is the

average velocity in the nanofluid or the region contain-

ing the thermal dispersive elements. As such, Eqs. (9)

and (10) reduce to

AUnf ¼
o

oY
K þ EuUð Þ ohnf

oY

� �
ð14Þ

GU f ¼
o
2hf

oY 2
ð15Þ

where A ¼ Pef
ðqcpÞnf
ðqcpÞf

� �
dhnf
dX , K = k0/kf, E ¼ k ðqcpÞnf

ðqcpÞf
u and

G ¼ ðPeÞf
dhf
oX . Since (qcp)nf does not vary significantly

when the volume fraction of the ultrafine particles or

the dispersive elements is less than 4% as used in the lit-

erature, A and G are almost equal to unity

Pef
dh
dX

¼ qcpumh
k

� �
dðTk=ðqhÞÞ
dðx=hÞ ¼ qcpumh

q
dT
dx

¼ 1:0

� �
:

3. Analytical solutions

Consider a uniform flow inside the channel such that

U = 1. Eqs. (14) and (15) reduce to

o2hnf

oY 2
¼ 1

K þ Eð Þ ;
o2hf

oY 2
¼ 1 ð16a;bÞ

The solution to Eqs. (16a) and (16b) for the central

arrangement of the dispersive elements is

hW ðX Þ�hnf X ;Yð Þ
hW ðX Þ�hmðX Þ

ffi
1:5 K2�Y 2
� �

þ1:5 KþEð Þ 1�K2
� �

K3� KþEð Þ K3�1:5K2þ0:5
� �

þ1:5 KþEð Þ 1�K2
� � ;

0< Y <K ð17aÞ

hW ðX Þ�hf X ;Yð Þ
hW ðX Þ�hmðX Þ

ffi
1:5 1�Y 2
� �

KþEð Þ
K3� KþEð Þ K3�1:5K2þ0:5

� �
þ1:5 KþEð Þ 1�K2

� � ;
K< Y < 1 ð17bÞ
where hW is the plate temperature at a given section X.

The parameter hm is the mean bulk temperature. It is

defined as

hmðX Þ ¼
Z 1

0

UðY ÞhðX ; Y ÞdY ð18Þ

As such, the fully developed value for the Nusselt num-

ber is

Nufd ¼
hch
kf

¼ 1

hW ðX Þ�hmðX Þ
¼ 1

hfðX ;1Þ�hmðX Þ

ffi 3ðKþEÞ
K3�ðKþEÞ K3�1:5K2þ0:5

� �
þ1:5ðKþEÞð1�K2Þ

ð19Þ

where hc is the convective heat transfer coefficient at the

channel�s plate.
For the second type of arrangements for the thermal

dispersion region. The solution for Eqs. (16a) and (16b)

is

hW ðX Þ � hf X ; Yð Þ
hW ðX Þ � hmðX Þ

ffi
1:5 1þ 1� K2

� �
K þ Eð Þ 1� Y 2

� �
� 1� Kð Þ2

� �
K � K � 1ð Þ K3 � 3K2 þ 3K

� �
þ E 1� Kð Þ3

;

0 < Y < K ð20aÞ

hW ðX Þ � hnf X ; Yð Þ
hW ðX Þ � hmðX Þ

ffi
1:5 1� Y 2
� �

K � K � 1ð Þ K3 � 3K2 þ 3K
� �

þ E 1� Kð Þ3
;

K < Y < 1 ð20bÞ

The corresponding fully developed value for Nusselt

number for this case is

Nufd ¼
hch
kf

¼ 1

hW ðX Þ � hmðX Þ
¼ 1

hnf X ; 1ð Þ � hmðX Þ

ffi 3 K þ Eð Þ
K � K � 1ð Þ K3 � 3K2 þ 3K

� �
þ E 1� Kð Þ3

ð21Þ
3.1. Volume fraction of the dispersive elements

The total number of dispersive elements is considered

to be fixed for each distribution. As such, the volume

fraction of the dispersive element for the central or the

boundary arrangements is related to their thickness

according to the following relation:

u ¼ u0h
‘

¼ u0

K
ð22Þ

where u0 is the volume fraction of the dispersive ele-

ments when they are uniformly filling the whole channel

volume. Utilizing Eq. (22), the parameter E utilized in
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Eqs. (14) and (15a) can be expressed according to the

following:

E ¼ E0

h
‘

� �
¼ E0

K
ð23Þ

where E0 is named as the thermal dispersion parameter.

3.2. Other spatial distribution for the dispersive elements

Practically, it is difficult to have the dispersive ele-

ments concentrated in a region while the other region

is a pure fluid. As such, two other distributions for the

dispersive elements are considered in this work. They

are the exponential and the parabolic distributions as

illustrated in the following:

u ¼ u0 1þ Dc

1

3
� y

h

� �2� �� �
ð24Þ

u ¼ u0De

eDe � 1
eDeY ð25Þ

Note that the average volume fraction for each distri-

bution is u0 irrespective to values of De and Dp. One of

the objectives of our work is to obtain the values of Dc

and De and K that produces maximum heat transfer in-

side the channel.

The excess in Nusselt number j is defined as the ratio

of the maximum Nusselt number that can be obtained

by having a certain volume fraction distribution (Nund)

to the Nusselt number corresponding to a uniform dis-

tribution of the dispersive elements (Nuud). It is ex-

pressed as follows:

j ¼ Nund
Nuud

ð26Þ

It can be shown that Eq. (26) exhibits a local maxi-

mum or minimum value at specific thermal dispersion

parameter ðE�
0Þcritical for the boundary arrangement. This

is related to the dimensionless thickness of the dispersive

region through the following relation:

E�
0

� �
critical

KK

¼ �1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K K3 � 3K2 þ 3
� �

þ 1� Kð Þ K � 2ð Þ
� �

1� Kð Þ3

s

ð27Þ
4. Numerical methods

Eqs. (9) and (10) were discritized using three points

central differencing in the Y direction while backward

differencing was utilized for the temperature gradient

in the X-direction. The resulting tri-diagonal system of

algebraic equations at X = DX was then solved utilizing
the well-established Thomas algorithm [20]. The same

procedure was repeated for the consecutive X-values un-

til X reached the value of B/h. Eqs. (13) and (14) were

also discritized using three points central differencing

and solved using Thomas algorithm.
5. Discussion

5.1. Thermal dispersion effects for the central and

boundary arrangements

Fig. 3 shows the variation of the fully developed Nus-

selt number with the thermal dispersion parameter E0

and the dimensionless thickness of the thermally dis-

persed region K for the central arrangement. For lower

values of K, the Nusselt number does not change due

to concentrations of the thermal dispersive elements

around the center of the channel. However, as the thick-

ness of the dispersive region increases, it will have a pro-

found effect on the Nusselt number. The motion of

nanoparticles or the dispersive elements within the core

flow of the channel produces a negligible change in the

heat transfer characteristics as shown in Fig. 3. The Nus-

selt number increases as K increases to a maximum value

and then starts to decrease when the dispersive elements

are concentrated according to the boundary arrangement

(Fig. 4). The arrangement shown in Fig. 4 illustrates that

a specific distribution for the same dispersive elements

can enhance the heat transfer. This distribution is a func-

tion of E0 and the velocity profile as shown in Fig. 4. In

this figure, the thermal dispersive region thickness K that

produces the optimum enhancement in the Nusselt num-

ber is shown to increase as the E0 increases. As such, flow

and thermal conditions along with the properties of the

dispersive elements such as their sizes and their surface

geometry determine the distribution of the dispersive ele-

ments that result in a maximum enhancement in the heat

transfer.

5.2. Thermal dispersion effects for the central and

boundary arrangements at thermally developing

conditions

Fig. 5 illustrates the effects of the dispersion coeffi-

cient C* on the Nusselt number at the exit for various

thicknesses of the thermally dispersed region K arranged

with the central configuration. These values are for a

thermally developing condition as the minimum Nusselt

number in this figure is greater than the corresponding

value at thermally developed conditions illustrated in

Fig. 3. This figure shows that when K is below 0.35, heat

transfer is almost unaffected by thermal dispersion. As

can be seen, the average plate temperature shown in

Fig. 6 (Pef = 670) is almost unchanged when K is below

0.37 while it is below 0.5 in Fig. 7 (Pef = 1340) for the
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central arrangement. Similarly, the maximum Nusselt

number or the minimum average plate temperatures at

lower Pef values occur at higher values of K compared

to those at higher Pef values for different boundary
arrangements as can be noticed from Figs. 4, 8–10. This

is because temperature gradients near the core flow

increase as Pef decreases thus thermal dispersion effects

are increased.
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5.3. Thermal dispersion effects on the excess in the

Nusselt number at thermally fully developed conditions

Figs. 11 and 12 illustrate various proposed volume

fraction distributions for the same nanoparticles. As
shown in Fig. 13, the Nusselt number reaches a maxi-

mum value when E0 > 0 for the exponential distribution

of the dispersive elements while the parabolic distribu-

tion produces no maxima in the Nusselt number (Fig.

14). The excess in Nusselt number j is always greater
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than one for the boundary arrangement while it is greater

than one for the exponential distribution when the

velocity is uniform as shown in Fig. 15. The excess in

Nusselt number increases as E0 increases and reaches a
constant value equal to 1.12 for the parabolic velocity

profile along with the boundary arrangement for the dis-

persive elements while it is 1.21 for the uniform velocity

profile. This indicates that almost 12% increase in the
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heat transfer can be achieved in highly dispersive media

when the dispersive elements are concentrated near the

boundary for the parabolic velocity profile. The expo-

nential distribution produced a maximum excess in the
Nusselt number equal to 1.18 for uniform velocity pro-

file. The latter results can be used to model Darcian flow

inside a channel filled with a porous medium having a

uniform porosity and comprising dispersive elements
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exponentially distributed along the center line of the

channel. These figures illustrate the importance of flow

conditions and the distribution of the dispersive ele-

ments on the degree of enhancement in heat transfer.
6. Conclusions

Enhancements in heat transfer are investigated inside

channels filled with a fluid having different thermal
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dispersive properties. Different distributions for disper-

sive elements such as nanoparticles or flexible hairy

tubes extending from the channel plates are considered.

The dispersive elements are considered to be uniformly

distributed in the central region, near the boundaries,

having an exponential distribution and having a para-

bolic distribution.
The boundary arrangement and the exponential dis-

tribution of the dispersive elements were shown to pro-

duce substantial enhancements in heat transfer

compared to the case when the dispersive elements are

uniformly distributed. The presence of the dispersive

elements in core region produced no significant change

in the heat transfer. The maximum excess in Nusselt
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number was found to be 1.21 using the boundary

arrangement for the volume fraction with uniform flow

while the parabolic velocity profile produced a maxi-

mum excess in Nusselt number equal to 1.12. The vol-

ume fraction distribution that maximizes the heat

transfer is governed by the flow and thermal conditions

as well as the properties of dispersive elements. This

work demonstrates that super nanofluids or super dis-

persive media can be prepared by controlling the ther-

mal dispersion properties inside the fluid.
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