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ANALYSIS OF FLOW AND HEAT TRANSFER INSIDE
NONISOTHERMAL SQUEEZED THIN FILMS

A.-R. A. Khaled and K. Vafai
Department of Mechanical Engineering, University of California, Riverside,
Riverside, Culifornia. USA

Flow and heat transfer are analyzed inside a nenisothermal squeezed thin film. The govern-
ing equations are dimensionalized and transformed to similarity or nonsimilarity equations
for a certain time variation of the thin film thickness. Both analytical and numerical
approaches are utilized in solving the different forms of the transformed energy equation.
It is found that while thin films can support larger loads under larger squeezing velocities,
they may transfer heat at lower rates ay the squeezing velocity increases. Morcover, the
effects of thermal squeezing parameter on local Nusselt numbers and temperatuve profiles
are discussed for various thermal boundary conditions. A correlation for a critical value of
the squeezing velocity is obtained, below which heat transfer across squeezed thin films can
be transferved efficiently.

1. INTRODUCTION

Thin films are widely used in lubrication applications in order to support a
load. For example. in a squeezed thin film bearing, the squeeze action causes the
plates of the thin film bearing to approach each other. As a result, positive gauge
pressures are regenerated inside the thin film bearing, which provides a cushioning
effect through increased pressures as the thin film thickness shrinks. preventing con-
tact between the plates. This phenomenon occurs with no requirement for any exter-
nal pressurizing of the thin film, and it is responsible for supporting external loads
inside squeezed thin films (see Sezri [1] and Gross et al. [2]).

Many studies have analyzed the flow inside squeezed thin films, such as
Langlois [3]. who solved analytically for the hydrodynamic pressure in isothermal
squeezed thin films with fluid density varying as a function of the pressure. However.
few of these works have analyzed heat transfer inside squeezed thin films. Radakovic
and Khonsari [4] considered the influence of heat transfer on the dynamic behavior
of a thin film bearing subject to squeezing motion. However, they did not discuss the
thermal behavior of the squeezed thin film. Recently, Khaled and Vafai [5-8]
considered comprehensive and fundamental aspects of heat transfer in thin films
subject to general oscillatory squeezed motion as related to thin films under external
disturbances.
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982 A-R. A. KHALED AND K. VAFAI

NOMENCLATURE
B thin film length T fluid temperature
Fl specific heat of the fluid Ty.ds lower and upper plates’
h dynamic load on the upper plate temperatures for uniform wall
per unit width temperature conditions
I3 transformed dimensionless tou dimensionless and dimensional
temperature axial velocities
I, convective heat transfer coetficient Vor dimensionless and dimensional
H. h h, dimensionless. dimensional, and normal velocities
reference thin film thickness v, reference squeezing speed at the
k thermal conductivity of the fluid upper plate
Nuy. Nug lower and upper plates” Nusselt X dimensionless and dimensional
numbers axial coordinates
P fluid pressure T dimensionless and dimensional
Py load power acted on the upper normal coordinates
plate of the thin film per unit n variable transformation for the
width dimensionless ¥ coordinate
Py thermal squeezing parameter 0. 0, dimensionless lemperature and
PHF prescribed heat flux condition dimensionless mean bulk
PWT prescribed wall temperature temperature
condition u dynamic viscosity of the fluid
ey reference heat (Tux at the lower p density of the fluid
and upper plates T dimensionless time
Ry squeezing Reynolds number Q dimensionless total power
t time transferred 1o the thin film

Similar and nonsimilar solutions of the flow and heat transfer equations have
been comprehensively studied in the literature. For instance, Rees and Pop [9]
examined the combined effect of spatially stationary surface waves and the presence
of fluid inertia on the free convection from a vertical plate embedded in a porous
medium. Similar and nonsimilar results of the boundary-layer equations were
obtained. Merkin and Pop [10] studied mixed-convection boundary-layer flow on
a horizontal surface embedded in a porous medium. Similarity solutions were
obtained for specific outer flow variations. Free convection driven by an exothermic
reaction on a vertical surface embedded in a porous medium was analyzed by Minto
et al. [11]). The authors reduced the governing equations to a pair of coupled,
parabolic partial differential equations for the temperature and the concentration
of the fluid reactant. Valid similarity solutions were obtained near the leading edge
of the surface in that study. Rupture of a thin viscous film on a solid substrate under
a balance of destabilizing van der Waals pressure and stabilizing capillary
pressure was analyzed by Zhang and Lister [12]. That study possessed many similar
solutions.

Forced-convection phenomena in a porous medium with a microchanneled
structure subject to an impinging jet were studied by Kim and Jang [13] using a simi-
larity transformation. The effects of the Darcy number, the Prandtl number, and the
Reynolds number on local thermal nonequilibrium were studied systematically by
comparing the temperature of the solid phase with that of the fluid phase as each
of these parameters was varied. The Brinkman model for the mixed-convection
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boundary-layer flow past a horizontal circular cylinder in a porous medium was
investigated numerically by Nazar et al. [14]. Similar and nonsimilar selutions were
obtained for skin friction coefficient and local Nusselt number for various mixed-
convection parameters. Hong et al. [15] analyzed non-Darcian effects on vertical-
plate natural convection in porous media with high porosities. The authors of that
study produced nonsimilar solutions for the governing equations. Also. similar
solutions were obtained by the authors for simplified governing equations. For
low-porosity media, Cheng and Minkowycz [16] obtained a4 similarity solution for
free convection about a vertical plate embedded in a porous medium. Boundary
and convective effects were neglected in that study. Non-Darcian effects on mixed
convection about a vertical cylinder embedded in a saturated porous medium was
analyzed numerically by Chen et al. [17]. The momentum and energy equations were
transformed into nonsimilar equations using appropriate nondimensional variables.
Solutions for local heat transfer and velocity distribution were developed in that
investigation.

Combined free- and forced-convection flow about inclined surfaces in porous
media were analyzed on the basis of boundary-layer approximations by Cheng [18].
Similarity solutions were obtained for the special case in which the free-stream velo-
city and wall temperature distribution of the inclined surface varied according to
the same power function of distance. Merkin [19] studied free-convection boundary
layers on axisymmetric and two-dimensional bodies of arbitrary shape in a satu-
rated porous medium. Similarity solution was developed for the boundary-layer
equations.

It is of value to study heat transfer aspects inside thin films subject to other
types of squeezed motions as related to physical applications such as hydrodynamic
lubrication. In this work, the continuity, momentum, and energy equations for a thin
film bearing having a pure squeezing motion are dimensionalized. Analytical expres-
sions for simplified cases are obtained for the velocity field for conditions under
which flow Reynolds numbers are small, leading to negligible flow convective terms.
Further, the dimensionless heat transfer equation is transformed to different simi-
larity or nonsimilarity forms for certain thermal boundary conditions as well as
for a specific time variation for the thin film thickness. Finally, the transformed
thermal energy equation is solved analytically and numerically and a parametric
study for various thermal characteristics of the thin film is performed.

2. PROBLEM FORMULATION

Consider a two-dimensional thin film of length 2B with its plates being
squeezed such that the thin film thickness is #(7) at time r, where ¢ > 0. The x and y
axes are taken in the direction of the length of the thin film £ and along the thin film
thickness /. respectively. as shown in Figure 1. The lower plate of the thin film is
fixed. while the upper plate of the thin film is moving. Since the thin film considered
is symmetric with respect to the flow patterns, our analysis will be concerned with
the right half of the thin film shown in Figure . It is assumed that the working fluid
is Newtonian. with constant average properties. The general two-dimensional
continuity equation, velocity field, Reynolds equations, and the energy equation
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Squeezing
(V,=-dh/dt)

Flow
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+— e h(t
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Figure 1. Schematic diagram and system coordinates.

for laminar flat thin films having negligible flow convective terms are given as

Qu O
A=) 1
ox O )
- L 2)
_2;,1{}.\"1 i
,0°p . dh
e = AUl — .%
e W (3)
ar 8T ©F T .
o e ol i [ 4
PG (a: tes T ar) 82 @

where u, v, i, T. p, p, W, ¢,, and k are the axial fluid velocity, normal velocity, thin film
thickness, fluid temperature, density. pressure, dynamic viscosity, specific heat, and
thermal conductivity of the fluid, respectively. The model utilized is adopted because
most applications utilizing thin films, as in lubrication and biological applications,
possess relatively low Reynolds numbers such that flow convective terms can be elimi-
nated. In this work, the flow inside the thin film is taken to be due to the squeezing
action at the upper boundary. That is. the boundary conditions for Eq. (3) are

ap(0.0)
ay

=) (B 1= p. S(a.b)

The solution of Eq. (3) leads to the following pressure distribution inside the thin film:

oudh Ll rxy2
Py {(E) —1] (6)
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As a result, the axial and normal velocity components are
oxdh [ v
==l Pl ) [ (7)
“TTh {(h) (h” k
dh N2 IS
(] ) L R ) 8
YT { (h) (h) } 15

The following dimensionless variables are utilized:

é:% n:% Ou. h)

= Ehl = ﬁ e d)

- W[;Tj))(/h,} 9(e)

i ;":. Hi s Bl = ;:?I or O(&.n.1) = (;;_; 9f. g

7

where h,. V,, U, and V are reference thin film thickness (taken to be the initial thick-
ness), reference squeezing velocity (taken to be the initial squeezing velocity).
dimensionless axial velocity. and dimensionless normal velocity, respectively. For
prescribed wall temperature conditions (PWT), T and 7> are the inlet temperature
and wall temperatures, respectively, unless stated otherwise. The quantity ¢, is a
reference wall heat flux for prescribed heat flux conditions (PHF). Therefore,
Egs. (4) and (6)-(8) reduce to the following:

Ps H3§)+H3L-‘§‘2+H(V—-n%§)$};jﬁ (30
L m

:%if—i{(nl -1 (12)

v %’(3”3 e (13)

where Pgand H are the thermal squeezing parameter due to squeezing and the dimen-
sionless thin film thickness, respectively. They are defined as follows:

pep Vo, h
= H _ —
k f?,,

P 14{a, b)
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Figure 2. Effects of Pg on () the correction factor and (f) the temperature profile.
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Figure 3. Effects of Ry on the total power transferred to the thin film.

The load on the upper plate thin film, f;, per unit width can be obtained by
integrating the pressure, Eq. (11), over the thin film length. It has the following form:

4 dH (uV,B%)

Rt (15)

Equation (10) can further be reduced to the following:

Py H2 + 6EH dH(Q— )i—l;Jer—H(“m —2’—71)2—B

_0°0
e
2.1. Nonsimilarity Equation

Similarity or nonsimilarity solutions can be obtained for the energy equation,
Eq. (16), if the dimensionless spacing H has the following form:

H(t) = V1 - 2t (17)

A similar time variation for the thin film thickness was obtained by Hamza [20]. In
his work, he analyzed flow and heat transfer between two squeezed disks in the pres-
ence of a magnetic field. Then, the dimensionless energy equation at low squeezing
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Figure 4. Effects of Py on Nusselt number for both PHF and PWT conditions.

Reynolds numbers and the load on the upper plate reduce to the following:

%0 } 00 5 3 a0
~—5— Ps 6qn(ln)m+(2n'3n‘+n)ﬁ}=0 (18)
n- g an

on

. 4wV, B \
— 19
.73 BH? (19)
Equation (18) represents a nonsimilar equation. The following are suggested bound-
ary conditions for this case.

Qe e e
pHp: St RS g, 5 (20)
an cn

PWT: 0(£.0) =0(E. 1) =1 when&>£,>0 (21)

where £, is a constant less than unity. The Nusselt numbers are defined as follows:

heh | l
Mgy St . Mupise—ee (B 22
ST T et 4 22
k1 20(0) -1 a1
NUL - T . Je= em aT] Nu{ B | em @n (PWT) (23)
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where 0, is the mean bulk temperature. It is defined as follows:

o \ -
U(g. niBE.n)d
iy a5 WA EMIn (24)

Jy Utg. m)dn

2.2. Analytical Solution

Equation (18) reduces to the following at £ = 0 or for zero axial temperature
gradient:
o0
n?

3 A o0
= Ps(2n” = 30"+ M) ﬁzf) (25)

The resulting temperature profile, when the dimensionless temperatures at the lower
and upper plates are taken to be 0 and 1, respectively, is as follows:

4 2
3
(26)

A 4 Z
: n o
_({ exp[P_g(—z——n - 2)}dn

Accordingly. the heat fluxes at the upper and lower plates are equal to

n

Jexp
- 0

B(n) =

== [MTE =1 )} L S : (27)

h H | & 2
" 3 n i.hn
JCXD[Ps(z n +2)

where CF is the correction factor for the calculated wall heat flux. Ideally, the cor-
rection factor approaches unity as the flow inside the thin film becomes more uni-
form, and this can be used to approximate flows of suspensions or molten
polymers. This is because the effect of normal thermal convection, the second term
of Eq. (25), is minimized as the flow becomes more uniform. Therefore, factors that
increase the uniformity or decrease the thermal squeezing parameter tend to increase
the heat transfer through the thin film. The dynamic power capacity, P;. per unit
width of the thin film can be obtained by multiplying Eq. (19) by the speed of upper
plate, resulting in

dn

4H3B3 3

P — T T xR iz g
- p2hiHS

(28)

where R is the squeezing Reynolds number [Rs = (pV,h,)/p]. Both the heat transfer
and the load capacity of the thin film increase as the thin film decreases, but squeezing
speed enhances the thin film dynamic load while it reduces the thermal load.
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Figure 5. Effects of P on g for both PHF and PWT conditions.

The dimensionless total power transferred to the thin film, Q, is then

g

P{‘JrqB |

o . L -
(4p*B*) /(p*hy H) ! . % . p
_[{ exp{RS Pr(% -0 + 2)}dn

k(T — T)p*htH?
L= YNEN:Z

| o

where Pr is the Prandtl number (Pr = (pc,)/k].

2.3. Similarity Equation

Similarity solutions can be obtained if the dimensionless temperature is linearly
related to & according to the following:

B(E, n) = &g(m) (30)

Further, the heat fluxes at the lower and upper plates are restricted to the following
for prescribed heat flux (PHF) conditions in order to obtain similarity solutions:

i]:q“% (31)
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Figure 6. Effects of Py on Nu, for both PHF and PWT conditions.

For prescribed wall temperature (PWT) conditions. the thermal boundary conditions
are restricted to have linear functions of axial distance. For example, the following
boundary conditions produce similarity solutions:

(-)(g 0, r:) =0.0 (32)
06 1 ) =¢
Accordingly. Eq. (18) reduces to
g' = Ps|(2n' =307+ n)g' + 6n(l —n)g] =0 (33)

The corresponding thermal boundary conditions for PHF and PWT conditions are
gO)=-1 g=1 (34)

g(0)=0 g(l)=1 (35)

Moreover, the corresponding Nusselt numbers for PHF and PWT conditions are

heh 1 1
Ny=—=——— Nuy =——7-— PHF 36
: k g(,o) — Em f g(l) — 8m ( ) ( )
hoh 1 -1
Nuy=—=—g(0) Nug = g (1) (PWT) (#2}
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Figure 7. Effects of Py on 8,, (PHF).

3. NUMERICAL ANALYSIS

Equations (18) and (33) were descretized using three-points central differencing
with respect to n and two-point backward differencing with respect to &. The result-
ing tridiagonal system of algebraic equations was then solved using the well-estab-
lished Thomas algorithm (Blottner, {21]). The value of 0.0015 was selected for An.

4. DISCUSSION OF THE RESULTS
4.1. Analytical Solution

Equation (27) shows that the wall heat flux increases during squeezing as the
thin film thickness diminishes. However. this increase becomes inefficient with an in-
crease in the thermal squeezing parameter Py, as illustrated in Figure 2a. This figure
shows that the correction factor CF decreases as Ps increases. This is due to the flow
and transient factors which produce a net flow effect directed from the plates toward
the center of the thin film as Eq. (25) predicts. This effect opposes the heat transfer
process such that heat transfer is reduced as Pg increases. That is, temperature gra-
dients near the thin film plates decrease with an increase in Pg, as shown in Figure 2b.
There is a critical value for the squeezing speed that minimizes the capability of the
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thin film to transfer power, as shown in Figure 3. This power includes both mechan-
ical and thermal energy transfer to the thin film. The following correlation prescribes
the critical Reynolds number, ( R¢)itical:

0.6341
Pr

(RS) eriticat = —3 % 1077(CTPr) + 0.0072(Cy Pr) + R =109998 (38)

where R” is the correlation coefficient. In designing a squeezed thin film, R should
be set such that it will be much lower than (Rg).ijeg- This maximizes the heat
transfer across the thin film.

4.2. Similarity Solutions

The effects of Pg on Nu,; and Nu,. obtained from the solution of Eq. (33) are
shown in Figure 4 for both PHF and PWT conditions. The Nusselt number at the
lower plate is found to be equal to that at the upper plate for PHF conditions.
The values of Nu, for PHF conditions and Nu,, for PWT conditions are observed
to increase as Pg increases. since axial temperature gradients are considered to be

0.3
0.2 -
0.1
0.0 T T T T
0.0 0.1 0.2 03 04 0.5

g

Figure 8. Effects of Pson 8, (PWT).
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Figure 9. Axial Nu, behavior for both PHE and PWT conditions.

constant. However, the values of Nu, for PWT conditions decrcase as Pg increases,
as shown in Figure 4. Dimensionless temperature profiles as functions of Pg are seen
in Figure 5 for both PHF and PWT conditions.

4.3. Nonsimilarity Solutions

Figure 6 illustrates the effects of Py on Nu,; obtained from the solution of
Eq. (18) for both PHF and PWT conditions. The value ¢, is taken to be 0.005 in
the analysis (when & < &, 0(E. n) = 0). It is found that Nu; and Nu, are equal
at both boundaries. Further, it is noticed that Nu; values for both thermal con-
ditions decrease slightly as Pg increases. This is because the thermal storage effects
suppress heat conduction at the plates. Also. the mean bulk temperature 6,
decreases as P increases, due to an increase in thermal convection. This is depicted
in Figures 7 and 8 for PHF and PWT conditions, respectively. Notice that Figure 7
shows that the slopes of 6, are almost inversely propertional to &.

Figure 9 shows the axial behavior of the Nu, which is obtained from the sol-
ution of Eq. (18) for both PHF and PWT conditions. The value of Nu, reaches its
fully developed trend. almost a constant value, after a certain distance from the inlet.
This thermal entrance effects increase as Py increases, as shown in Figure 9. In the
fully developed region. the ratio (8 — 6)/(0y — 8,,) reaches a constant value, as
illustrated in Figure 10.
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Figure 10. Dimensionless temperature profiles.

5. CONCLUSIONS

The flow and heat transfer inside an incompressible squeezed thin film have
been considered in this work. Although flow inside thin films has been studied in
the past, the heat transfer characteristics have received less attention. especially when
relating the heat transfer across the thin film to the squeeze speed. In the present
work, the proper energy equation was dimensionalized and transformed to similarity
or nonsimilarity forms for a certain family of squeezing motions. An analytical sol-
ution was obtained for a limiting case. It was found that heat transfer across the thin
film decreases as the thermal squeezing parameter increases. Also, an increase in the
thermal squeezing parameter causes an enhancement in the cooling effects inside the
thin film while it results in a slight reduction in local Nusselt numbers, especially in
the absence of axial temperature gradients. Finally, a correlation for a critical value
of the squeezing Reynolds number was obtained, below which heat can be trans-
ferred efficiently across the squeezed thin film.
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