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Abstract

The present work achieves an accurate representation of the effective boundary conditions at the aperture plane of a

two-dimensional open-ended structure for wide range of pertinent parameters. The presented effective boundary

conditions are correlated in terms of Rayleigh number, Prandtl number, and the aspect ratio of the open-ended ge-

ometry. The numerical procedure used in this work is based on the Galerkin weighted residual method of finite-element

formulation. Comprehensive comparisons between the present investigation using the effective boundary conditions for

the anticipated closed-ended model and the results for the fully extended computational domain confirm successful

implementation of the proposed model. Implementation of this representation reduces the main difficulties associated

with specifying the open-ended boundary conditions and results in very substantial savings in CPU and memory usage.

The present work plays an important role on modeling a basic and generic set of effective boundary conditions at the

aperture plane for several applications of practical interest. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Natural convection in open-ended cavities has re-

ceived considerable attention by many researchers both

experimentally and numerically. This attention stems

from the importance of such geometry in solar receiver

systems, fire research, electronic cooling, brake housing

of an aircraft, and many environmental geothermal

processes. Most of the studies in this area have been

aimed at two-dimensional analysis of rectangular cavi-

ties.

Bejan and Kimura [1] conducted both theoretical and

experimental studies to investigate the penetration of

natural convection into a horizontal cavity. It was

shown theoretically that the flow consists of a horizontal

counter flow that penetrates the cavity over a distinct

length, which is proportional to the cavity height and the

square root of the Raleigh number. In addition, it was

also shown that the Nusselt number for the cavity is

proportional to the square root of the Rayleigh number

and is relatively unaffected by the Prandtl number. The

theoretical results were validated by a flow visualization

experiment.

Penot [2] conducted a numerical study of two-di-

mensional natural convection in an isothermal open

square enclosure. The governing equations were solved

in an enlarged computational domain by utilizing the far

field boundary conditions. The effect of inclination and

Grashof number were studied in this investigation. Two

kinds of unsteady motion were observed inside the

cavity. One was isothermal in nature and occurs for

Grashof numbers higher than 105 for a vertical cavity.

The other instability is hydrodynamic and existed for an

upward facing cavity. In this case, the lower wall acts as

an independent inclined flat plate, producing an up-
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ward-directed flow. This flow is in conflict with the main

flow penetrating inside the cavity. This unsteadiness was

observed for low Grashof numbers. The same configu-

ration with variable properties using primitive variables

was studied by LeQuere et al. [3]. The authors in this

investigation demonstrated that the flow unsteadiness

takes place for large values of Grashof number and the

penetration of the flow field into the open cavity depends

on the far field boundary conditions. The effect of cavity

aspect ratio, cavity inclination, inside wall temperature,

and Grashof number was studied. Unsteady flow was

observed inside the cavity for Grashof numbers higher

than 106. The results of this investigation showed that

the thermal losses diminished with an increase of the

inclination angle. This due to stable stratification of the

flow and decreased unsteadiness. It was also shown that

an increase in the inner wall temperature resulted in

enhanced heat transfer rates from the top wall while

reducing the losses from the lower wall. The overall heat

transfer rates from the cavity were found to increase

with an increase in the values of Grashof numbers and

aspect ratios.

Other problems involving two-dimensional natural

convection in open enclosures were studied by Doria

[4] for predicting fire spread in a room and by Jacobs

et al. [5,6] in modeling circulation above city streets

and geothermal reservoirs. Experimental studies were

also done by Humphrey and co-workers [7] and Sernas

and Kyriakides [8] in modeling solar systems. Sernas

and Kyriakides [8] studied two-dimensional, laminar

natural convection in an open cavity filled with air as a

working fluid with cavity aspect ratio of unity. The

results of this study showed that the heat flux distri-

bution and the velocity profiles along the inner vertical

hot wall agreed well with the analytical results for an

isothermal vertical flat plate at the same Grashof

number.

Experimental results for natural convection in a

rectangular enclosure were illustrated by Hess and

Henze [9]. The flow fields in both fully open and par-

tially open cavities were studied by using laser doppler

velocimetry. The Rayleigh numbers used in this inves-

tigation were in the range 3� 1010–2� 1011. The vertical

wall of the enclosure was maintained at a uniform high

temperature while the top and bottom surfaces were

kept insulated. For partially open cavity, the results

showed that the transition to turbulence was found to

occur at local Rayleigh numbers of 2� 1010–3� 1010.

Chan and Tien [10] performed a numerical steady-

state study of laminar natural convection in a two-di-

mensional square open cavity with a heated vertical wall

and two insulated horizontal walls. Calculations were

made in an extended computational domain beyond the

aperture plane for cavity with a heated vertical wall and

two horizontal insulated walls. Results obtained for

Rayleigh numbers ranging from 103 to 109 were found to

approach those of natural convection over a vertical

isothermal flat plate. Later on, the same authors [11]

conducted a numerical study for a two-dimensional,

shallow rectangular open enclosure for Rayleigh num-

bers up to 106. The computational domain was restricted

to the cavity region and approximate boundary condi-

tions were applied directly at the aperture plane. This

approach did not predict some of the important features

of the flow field near the aperture plane of the cavity

since the corner and outer regions were not included in

the analysis.

Chan and Tien [12] performed an experimental study

for natural convection in a two-dimensional open rect-

angular cavity. Water was used as the working fluid in

Nomenclature

A aspect ratio of the enclosure (A ¼ w=H )

H height of the enclosure, m

Lx extended computational domain length in

x-direction, m

Ly extended computational domain length in

y-direction, m

n outward normal to a surface

Nu Nusselt number

p pressure, Pa

P dimensionless pressure

Pr Prandtl number (m=a)
q heat flux vector

Ra Rayleigh number (gbH 3DT=ma)
T temperature, �C
Tw enclosure wall temperature, �C

H dimensionless temperature

u velocity in the x direction, m s�1

v velocity in the y direction, m s�1

U dimensionless velocity in the x-direction

V dimensionless velocity in the y-direction

w width of the enclosure, m

x, y cartesian coordinates, m

Greek symbols

a thermal diffusivity, m2 s�1

b coefficient of volume expansion, K�1

l dynamic viscosity, kg m�1 s�1

m kinematic viscosity, m2 s�1

q density, kg m�3

Subscripts

1 condition at infinity

w wall of the enclosure
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this experiment. It was observed at low Rayleigh num-

bers that the fluid exits the cavity as a buoyant ‘‘plume’’

while at higher Rayleigh numbers, the exit velocities are

high enough to form a buoyant ‘‘jet’’. The effect of the

open boundary was found to consist of two parts: the

outgoing hot fluid exhibiting strong characteristics of

the cavity conditions and incoming flow influenced by

the outside conditions.

A comprehensive study was conducted by Vafai and

Ettefagh [13] for investigating basic aspects and physics

of the flow field within the open-ended structures and

the effect of extended computational domain on flow

and heat transfer inside the open-ended cavity and its

immediate surroundings. They demonstrated that the

required extent of the enlarged computational domain

for obtaining accurate results was much larger than that

shown by previous investigators. In addition, they

showed that the far field flow characteristics were sen-

sitive to the type of boundary conditions used. The

transient behavior of the flow field through the forma-

tion of vortices and the opposing interactions of the

buoyant and suction mechanisms leading to an oscil-

lating central vortex were analyzed. Their study also

included the effect of the Rayleigh number, Prandtl

number, temperature ratio (between the upper and lower

blocks), and the aspect ratio of the cavity. The thermal

and fluid flow instabilities in natural convection in open-

ended cavities were analyzed by Vafai and Ettefagh [14].

They showed, at higher Rayleigh numbers, the existence

of periodic oscillations in the Nusselt number corre-

spond to the central vortex’s oscillations and its location

inside the cavity. The frequency of these oscillations was

found to increase linearly with the Rayleigh number.

Although for a closed cavity it is possible to specify

the boundary conditions on all the boundaries of the

enclosure, the main difficulty associated with the study

of fluid flow in open-ended structure is the specification

of the boundary conditions at the open end. Most nu-

merical studies of open cavities rely on solving the

governing equations in a domain extended outside the

opening side of the enclosure and applying the far field

conditions at the boundary of the extended domain due

to lack of known physical boundary conditions at the

aperture plane. Vafai and Ettefagh [13,14] have shown

that the extent of the extended computational domain

must be much larger than previously utilized and as such

they have shown substantial inaccuracies associated with

the later approach.

The extension of the open-ended domain requires

substantially larger memory and computational time.

An appropriate set of effective boundary conditions at

the aperture plane of the open-ended structure will

drastically reduce the storage capacity and the CPU

requirements of the computer resources. Recently,

Khanafer and Vafai [15] conducted a comprehensive

study for the elimination of the extended boundaries in

open-ended structures for both two- and three-dimen-

sional geometries. An accurate set of effective boundary

conditions for both the flow and the temperature fields

was obtained covering a range of Raleigh numbers and

aspect ratios for a partially open-ended geometry for the

fixed value of Prandtl number (Pr ¼ 0:71). The authors

showed that the use of the presented two- and three-

dimensional closed-ended models results in substantial

savings in CPU and memory usage while producing re-

sults which are shown to compare very well with the

fully extended models. This has a great advantage when

dealing with complex problems that require large CPU

time such as fire research, energy conservation in

buildings, and cooling of aircraft brakes. As a result,

there is a need to have approximate yet fairly accurate

boundary conditions at the open side of the geometry.

The present work focuses on modeling an accurate

representation for a basic and generic set of effective

boundary conditions for two-dimensional open-ended

structure at both ends (open-ended sides). In this ap-

proach, the velocity and temperature variations at the

aperture plane (open-ended side) are correlated in terms

of the controlling parameters for a wide range of Ray-

leigh number, aspect ratio, and Prandtl numbers. This

will give the present correlations an advantage over the

other approximate boundary conditions in the literature.

Such approximate boundary conditions at any plane

should be represented by the physical parameters of the

problem since these parameters have a significant effect

on the accuracy of any approximate boundary condi-

tions. The numerical simulations will be carried out

using both an extended outer computational domain

through the implementation of the far field boundary

conditions as well as elimination of the extended domain

through an appropriate use of the effective boundary

conditions thus reducing the problem to a closed-ended

geometry.

2. Physical model and assumptions

Consider the two-dimensional open-ended cavity

shown in Fig. 1(a). It should be noted that due to

symmetry consideration, half of the open-ended cavity is

used in the present study as shown in Fig. 1(b). The

validity of using the symmetry conditions at the cen-

terline of the cavity was checked through a series of

numerical runs. The coordinate system for the open-

ended enclosure under consideration is illustrated in Fig.

1. This model is similar to the configuration used by

Vafai and Ettefagh [13]. The lower and upper walls of

the enclosure are maintained at constant temperatures

Tw, while the surrounding fluid communicating with the

open-ended geometry is at an ambient temperature T1,
which is lower than Tw. The problem is modeled as a

two-dimensional, incompressible, steady natural con-
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vection. The fluid physical properties are assumed con-

stant and the Boussinesq approximation is invoked.

The physical governing equations for the present

problem are based on the balance laws for mass,

linear momentum, and thermal energy. Taking into

account the above-mentioned assumptions, these

equations, expressed in non-dimensional form, can be

written as

oU
oX

þ oV
oY

¼ 0; ð1Þ

ffiffiffiffiffiffi
Ra
Pr

r
U
oU
oX

�
þ V

oU
oY

�
¼ � oP

oX
þ o2U

oX 2

�
þ o2U

oY 2

�
; ð2Þ

ffiffiffiffiffiffi
Ra
Pr

r
U
oV
oX

�
þ V

oV
oY

�
¼ � oP

oY
þ o2V

oX 2

�
þ o2V

oY 2

�

þ
ffiffiffiffiffiffi
Ra
Pr

r
H; ð3Þ

ffiffiffiffiffiffi
Ra
Pr

r
U
oH
oX

�
þ V

oH
oY

�
¼ o2H

oX 2
þ o2H

oY 2
: ð4Þ

The resultant three non-dimensional parameters in the

above equations are the Rayleigh number defined as

Ra ¼ gbH 3DT=ma, the Prandtl number, Pr ¼ m=a, and

the aspect ratio, A ¼ w=H .

Eqs. (1)–(4) were made dimensionless by using a

proper set of scaling parameters:

X ¼ x
H
; Y ¼ y

H
;

U ¼ uH

a
ffiffiffiffiffiffiffiffiffiffi
RaPr

p ; V ¼ vH

a
ffiffiffiffiffiffiffiffiffiffi
RaPr

p ; P ¼ pH 2

la
ffiffiffiffiffiffiffiffiffiffi
RaPr

p ;

H ¼ T � T1
DT

; DT ¼ Tw � T1:

ð5Þ

In the above equations, u and v are the velocity com-

ponents in the x- and y-directions, T is the fluid tem-

perature, p is the fluid pressure, b is the volumetric

expansion coefficient,H is the height of the enclosure, Tw
is the enclosure wall temperature, and m, l, and cp are

the kinematic viscosity, dynamic viscosity, and the spe-

cific heat, respectively.

2.1. Boundary conditions

The boundary conditions on the extended computa-

tional domain based on the analysis present in Vafai and

Ettefagh [13,14] can be written as

(I) For the left wall of the enclosure at x ¼ 0

ðSymmetry lineÞ

u ¼ w ¼ ov
ox

¼ oT
ox

¼ 0: ð6Þ

Fig. 1. (a) Physical domain, (b) physical domain utilizing the symmetry condition, and (c) computational domain utilizing the sym-

metry condition.
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(II) For the upper and lower walls of the enclosure at

y ¼ 0;H

u ¼ v ¼ 0 and T ¼ Tw: ð7Þ

(III) For the x-far field open boundaries x ¼ Lxþ w
and � Ly 6 y6 Ly þ H

oT
ox

¼ ov
ox

¼ ou
ox

¼ 0: ð8Þ

(IV) For the y-far field open boundaries at y ¼ � Ly ;
Ly þ H and w6 x6 Lx þ w

oT
oy

¼ ov
oy

¼ ou
oy

¼ 0: ð9Þ

3. Numerical scheme

A Galerkin-based FEM is employed to solve the

governing equations for the present study. The appli-

cation of this technique is well described by Taylor and

Hood [16] and Gresho et al. [17], and its application is

also well documented [18]. The segregated solution al-

gorithm is utilized to solve the system of equations. The

advantage of using this method is that the global sys-

tem matrix is decomposed into smaller submatrices and

then solved in a sequential manner. This technique will

result in considerably fewer storage requirements. The

conjugate residual scheme is used to solve the sym-

metric pressure type equation systems, while the con-

jugate gradient squared is used for the non-symmetric

advection–diffusion type equations. Extensive numeri-

cal experimentation was performed to attain grid-in-

dependent results for all the field variables.

4. Heat transfer calculations

In the present investigation, the local Nusselt number

is defined as

Fig. 2. Comparison of the streamlines and isotherms between

the two-dimensional model utilizing the extended boundaries

and that of Vafai and Ettefagh [13] for Rayleigh number

Ra ¼ 104.

Fig. 3. Comparison of the streamlines and isotherms between

the two-dimensional model utilizing the extended boundaries

and that of Vafai and Ettefagh [13] for Rayleigh number

Ra ¼ 105.
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Nu ¼ oH
on

; ð10Þ

where n denotes the outward pointing normal from

the surface over which the heat flux is calculated. This

definition of the local Nusselt number is used to

represent all the heat transfer results in the present

study.

4.1. Model validation

The present numerical scheme is validated against the

finite difference solution of Vafai and Ettefagh [13] for a

wide range of Rayleigh number by utilizing the full ex-

tent of the extended boundaries. Figs. 2 and 3 show a

very good agreement between the present work utilizing

an extended domain and the results reported by Vafai

and Ettefagh [13] for open-ended cavity with extended

outer boundaries.

As an additional check on the accuracy of the

present results, Table 1 shows a comparison of the

Nusselt number measured at the top and bottom walls

of the enclosure between the present numerical scheme

and that of Vafai and Ettefagh [13] for different

Rayleigh numbers. It can be seen from the table that

both solutions are in excellent agreement.

Table 1

Comparison of the average Nusselt numbers between the present numerical scheme and the two dimensional results of Vafai and

Ettefagh [13] for various Rayleigh numbers

Ra ¼ 104 Ra ¼ 105

Present Vafai and

Ettefagh [13]

Percent diff. (%) Present Vafai and

Ettefagh [13]

Percent diff. (%)

Nu (lower) 1.99 2.0 0.5 3.15 2.98 5.7

Nu (upper) 1.09 1.05 3.8 2.9 3.1 6.5

Fig. 4. Comparison of the streamlines and the isotherms be-

tween the present effective boundary conditions model and that

of full model by Vafai and Ettefagh [13] for Ra ¼ 103, A ¼ 1,

and Pr ¼ 0:71.

Fig. 5. Comparison of the streamlines and the isotherms be-

tween the present effective boundary conditions model and that

of full model by Vafai and Ettefagh [13] for Ra ¼ 104, A ¼ 1,

and Pr ¼ 0:71.

2532 K. Khanafer, K. Vafai / International Journal of Heat and Mass Transfer 45 (2002) 2527–2538



5. Two-dimensional model based on effective boundary

conditions

The physical governing equations for the present

investigation are solved numerically for a wide range

of pertinent parameters to obtain a set of appropriate

effective boundary conditions for the velocity and

temperature fields at the aperture plane of the two-

dimensional enclosure. The effect of the outer ex-

tended boundaries was fully taken into account in this

analysis. The results were then correlated in terms of

the pertinent controlling parameters. These controlling

parameters include the Rayleigh number, Prandtl

number, and the aspect ratio of the enclosure. A wide

range of Rayleigh numbers was selected for this in-

vestigation as 103 6Ra6 105, Prandtl number was

varied in the range of 0:76 Pr6 7. Also, a wide range

of the aspect ratios, A ¼ w=H of the enclosure, was

selected as 0:256A6 1. For the two-dimensional open

cavity case, after a detailed and comprehensive set of

simulations, the effective boundary conditions at the

open side of the enclosure were found to be well

presented by the following.

5.1. 103 6Ra6 104

For the range of 0:756A6 1:0; 0:716 Pr6 1:5, the
field variables at the aperture side were found to be very

well represented by

U ¼ a1þa2Y þa3Y 2þa4Y 4þa5Y 5þa6Y 6

þa7Raþa8ðYRaÞþa9ðYRaÞ2þa10ðYRaÞ3;

where a1¼0:00984; a2¼�3:46899;

a3¼11:78402; a4¼�55:28402;

a5¼89:7516; a6¼�42:7625;

a7¼�8:72�10�6; a8¼2:539�10�5;

a9¼�2:65562�10�9; a10¼2:0716�10�13:

Fig. 6. Comparison of the streamlines and the isotherms be-

tween the present effective boundary conditions model and that

of full model for Ra ¼ 103, A ¼ 0:5, and Pr ¼ 4:92.

Fig. 7. Comparison of the streamlines and the isotherms be-

tween the present effective boundary conditions model and that

of full model for Ra ¼ 5� 103, A ¼ 0:5, and Pr ¼ 4:92.
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V ¼ b1 þ b2Y 5 þ b3Y 6 þ b4Ra4 þ b5ðYRaÞ
þ b6ðYRaÞ2 þ b7ðYRaÞ3 þ b8ðYPrÞ
þ b9ðYPrÞ2 þ b10ðYPrÞ3; ð11Þ
where b1 ¼ 0:03294; b2 ¼ 2:99781;

b3 ¼ �3:80476; b4 ¼ �1:806� 10�18;

b5 ¼ �5:518� 10�5; b6 ¼ 8:0774� 10�9;

b7 ¼ �2:894� 10�13; b8 ¼ 2:2522;

b9 ¼ �9:38728; b10 ¼ 11:19303:

H ¼ c1 þ c2Y 2 þ c3Y 4 þ c4Y 5 þ c5Ra2 þ c6ðYAÞ

þ c7ðYAÞ3 þ c8ðYRaÞ3 þ c9ðPrRaÞ;
where c1 ¼ 1:13266; c2 ¼ 25:93947;

c3 ¼ 41:61256; c4 ¼ �13:98949;

c5 ¼ 2:628386� 10�9; c6 ¼ �7:17108;

c7 ¼ �46:42616; c8 ¼ 1:58688� 10�13;

c9 ¼ �8:025� 10�5:

For the range of 0:256A6 0:5; 1:56 Pr6 7:0, the field

variables at the aperture side were found to be very well

represented by

U ¼ a1 þ a2Y þ a3Y 5 þ a4Y 6

þ a5 Pr2 þ a6ðYAÞ þ a7ðYAÞ2

þ a8ðYAÞ3 þ a9ðYRaÞ3 þ a10ðYPrÞ2;

where a1 ¼ �0:08961; a2 ¼ 0:51137;

a3 ¼ 1:34046; a4 ¼ �1:46304;

a5 ¼ 0:00235; a6 ¼ �2:93232;

a7 ¼ 10:84539; a8 ¼ �11:41043;

a9 ¼ 5:135� 10�14; a10 ¼ �0:00698:

V ¼ b1 þ b2Y þ b3Y 2 þ b4Y 3 þ b5Y 6

þ b6A4 þ b7Ra2 þ b8ðYAÞ þ b9ðYAÞ2

þ b10ðYRaÞ þ b11ðYRaÞ2 þ b12ðYPrÞ2

Fig. 8. Comparison of the streamlines and the isotherms be-

tween the present effective boundary conditions model and that

of full model for Ra ¼ 104, A ¼ 0:5, and Pr ¼ 4:92.

Fig. 9. Comparison of the streamlines and the isotherms be-

tween the present effective boundary conditions model and that

of full model for Ra ¼ 5� 103, A ¼ 0:5, and Pr ¼ 2:5.
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þ b13ðARaÞ þ b14ðARaÞ2 þ b15ðAPrÞ2

þ b16ðRaPrÞ þ b17ðRaPrÞ2;

where b1 ¼ �0:01332; b2 ¼ 1:20063;

b3 ¼ �2:06295; b4 ¼ 1:73838;

b5 ¼ �0:67042; b6 ¼ 1:2234;

b7 ¼ �1:7948� 10�10; b8 ¼ �1:22023; ð12Þ
b9 ¼ 1:69804; b10 ¼ �1:09� 10�5;

b11 ¼ 1:3357� 10�9; b12 ¼ �0:00111;

b13 ¼ �4:374� 10�5; b14 ¼ 3:480179� 10�9;

b15 ¼ �0:00804; b16 ¼ 5:31� 10�6;

b17 ¼ �5:4756� 10�11:

H ¼ c1 þ c2Y þ c3Y 2 þ c4Y 3 þ c5Y 4

þ c6Y 5 þ c7ðYAÞ3 þ c8ðYRaÞ3

þ c9ðARaÞ þ c10ðARaÞ2;
where c1 ¼ 1:15346; c2 ¼ �7:29914;

c3 ¼ 26:01647; c4 ¼ �43:99807;

c5 ¼ 34:55099; c6 ¼ �9:43208;

c7 ¼ 1:58346; c8 ¼ 9:50159� 10�14;

c9 ¼ �1:4385� 10�4; c10 ¼ 1:498081� 10�8:

5.2. 104 6Ra6 105

For the range of 0:756A6 1:0 and 0:716 Pr6 7:0,
the field variables at the aperture were found to be very

well represented by

U ¼ a1 þ a2Y þ a3Y 2 þ a4Y 4 þ a5Y 5

þ a6Y 6 þ a7Pr2 þ a8ðYAÞ þ a9ðYAÞ2

þ a10ðYRaÞ þ a11ðYPrÞ2 þ a12ðYPrÞ3;

where a1 ¼ �0:08305; a2 ¼ �1:45324;

a3 ¼ 8:33439; a4 ¼ �46:16284;

a5 ¼ 76:10035; a6 ¼ �36:34571;

a7 ¼ 0:00315; a8 ¼ �0:93987;

a9 ¼ 0:75178; a10 ¼ �2:71768� 10�7;

a11 ¼ �0:01404; a12 ¼ 0:00080843

V ¼ b1 þ b2Y þ b3Y 2 þ b4Y 5 þ b5Y 6 þ b6Ra4

þ b7ðYAÞ3 þ b8ðYRaÞ þ b9ðYRaÞ2

þ b10ðYPrÞ3 þ b11ðAPrÞ þ b12ðRaPrÞ2 þ b13ðRaPrÞ3;

Fig. 10. Comparison of the streamlines and the isotherms be-

tween the present effective boundary conditions model and that

of full model for Ra ¼ 1� 104, A ¼ 0:5, and Pr ¼ 2:5.

Fig. 11. Comparison of the streamlines and the isotherms be-

tween the present effective boundary conditions model and that

of full model for Ra ¼ 1� 103, A ¼ 0:25, and Pr ¼ 3:5.
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where b1 ¼ 0:06168; b2 ¼ 0:56029;

b3 ¼ �1:54346; b4 ¼ 6:33908; ð13Þ
b5 ¼ �5:39448; b6 ¼ �7:5415� 10�22;

b7 ¼ 0:09886; b8 ¼ �2:22� 10�6;

b9 ¼ 2:1137� 10�11; b10 ¼ �2:8717� 10�4;

b11 ¼ �0:01659; b12 ¼ �8:9291� 10�12;

b13 ¼ 3:30422� 10�16:

H ¼ c1 þ c2Y þ c3Y 2 þ c4Y 3 þ c5Y 4

þ c6Y 5 þ c7Y 6 þ c8ðAPrÞ þ c9ðRaPrÞ;
where c1 ¼ 1:01677; c2 ¼ �12:3993;

c3 ¼ 68:02645; c4 ¼ �192:82469;

c5 ¼ 290:4974; c6 ¼ �218:19187;

c7 ¼ 64:91869; c8 ¼ 0:01441;

c9 ¼ �1:85� 10�6:

The validity of the above effective boundary conditions

(11)–(13) at the aperture plane of the open-ended enclo-

sure was validated against both published results in the

literature and with results obtained by utilizing the far

field boundary conditions of the open-end cavity shown

in Fig. 1. The accuracy of the above effective boundary

conditions is shown in Figs. 4–13. The present effective

boundary conditions were validated against the work of

Vafai and Ettefagh [13]. These comparisons are shown in

Figs. 4 and 5. These figures illustrate an excellent com-

parison of the isotherms and the streamlines between the

present closed-ended model and the fully extended

boundary model for various controlling parameters.

Moreover, the accuracy of the above-mentioned effective

boundary conditions were benchmarked against the re-

sults obtained by utilizing the far field boundary condi-

tions for various physical parameters such as Rayleigh

number, Prandtl number, and aspect ratio of the enclo-

sure as shown in Figs. 6–13. These figures show that the

effective boundary closed-ended model is in excellent

agreement with the fully extended model.

An additional check on the accuracy of the present

effective boundary conditions is made by comparing

the upper and lower Nusselt numbers for both models

at various controlling parameters as shown in Tables

2–5. The results for the Nusselt number were first

verified with the results reported by Vafai and Ette-

fagh [13] as shown in Table 2. It is clearly seen in this

table that both the set of results are in very good

agreement. In addition, the accuracy of the average

upper and lower Nusselt numbers of the enclosure

using the effective boundary conditions were verified

Fig. 12. Comparison of the streamlines and the isotherms be-

tween the present effective boundary conditions model and that

of full model for Ra ¼ 5� 103, A ¼ 0:25, and Pr ¼ 3:5.

Fig. 13. Comparison of the streamlines and the isotherms be-

tween the present effective boundary conditions model and that

of full model for Ra ¼ 1� 104, A ¼ 0:25, and Pr ¼ 3:5.
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Table 4

Comparison of the Nusselt numbers between the present model (no outer boundaries) and the results based on utilizing the fully

extended outer boundaries (A ¼ 0:25, Pr ¼ 3:5)

Ra n Nu Present (with outer boundaries) Present (closed-ended model) Percentage error (%)

(a) Upper Nusselt number

1� 103 2.76 2.75 0.36

5� 103 4.19 4.06 3.1

1� 104 5.04 4.88 3.17

(b) Lower Nusselt number

1� 103 2.61 2.36 9.6

5� 103 3.65 3.32 9.04

1� 104 4.35 4.16 4.36

Table 2

Comparison of the Nusselt numbers between the present model (no outer boundaries) and the results based on utilizing the fully

extended outer boundaries (A ¼ 1, Pr ¼ 0:71)

Ra n Nu Present (with outer boundaries) Present (closed-ended model) Vafai and Ettefagh [13]

(a) Upper Nusselt number

1� 103 0.7554 0.676 0.806

5� 103 1.4739 1.392 NA

1� 104 2.1579 2.074 2.15

(b) Lower Nusselt number

1� 103 1.2547 1.2411 1.2415

5� 103 2.5408 2.420 NA

1� 104 3.1563 3.174 3.16

Table 3

Comparison of the Nusselt numbers between the present model (no outer boundaries) and the results based on utilizing the fully

extended outer boundaries (A ¼ 0:5, Pr ¼ 2:5)

Ra n Nu Present (with outer boundaries) Present (closed-ended model) Percentage error (%)

(a) Upper Nusselt number

1� 103 1.64 1.49 9.15

5� 103 2.97 2.90 2.03

1� 104 4.04 3.82 4.5

(b) Lower Nusselt number

1� 103 2.13 1.97 7.51

5� 103 3.51 3.36 4.27

1� 104 4.20 4.21 0.24

Table 5

Comparison of the Nusselt numbers between the present model (no outer boundaries) and the results based on utilizing the fully

extended outer boundaries (A ¼ 0:5, Pr ¼ 4:92)

Ra n Nu Present (with outer boundaries) Present (closed-ended model) Percentage error (%)

(a) Upper Nusselt number

1� 103 1.59 1.48 6.92

5� 103 2.83 2.83 0.0

1� 104 3.83 3.52 8.09

(b) Lower Nusselt number

1� 103 2.09 1.99 4.78

5� 103 3.50 3.52 0.57

1� 104 4.38 4.39 0.23
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against the results obtained by utilizing the fully ex-

tended model as shown in Fig. 1. The results were

found to be in very good agreement as depicted in

Tables 3–5.

The cited correlations in Eqs. (11)–(13) result in large

reduction in CPU time and memory usage for simula-

tions involving open-ended structures. The solution for

the enlarged computational domain requires large CPU

time and memory storage to overcome the problem of

unknown boundary conditions for the open-ended re-

gion. Table 6 shows a substantial reduction in CPU time

for two-dimensional model using the effective boundary

conditions presented in Eqs. (11)–(13).

6. Conclusions

An accurate set of effective boundary conditions for

flow and temperature fields at the aperture plane for two-

dimensional open-ended structure was obtained for a

wide range of pertinent parameters such as Rayleigh

number, Prandtl number, and aspect ratio. Comprehen-

sive comparisons for the streamlines and the isotherms

within the enclosure were presented for various control-

ling parameters between the two-dimensional closed-

ended model (based on the use of effective boundary

conditions) and the fully extended domain utilizing the far

field boundary conditions. The simulations demonstrated

very good agreements between the two models. More-

over, detailed assessment of the average Nusselt number

was carried out between the two models establishing the

validity of the present effective boundary conditions. The

implementation of the presented two-dimensional effec-

tive boundary conditions results in very substantial sav-

ings in CPU and memory usage. The present correlations

represent a design tool for several applications of practical

interest that require large CPU time
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Table 6

Comparison of the CPU time reduction for the two-dimensional model at various Rayleigh numbers and an aspect ratio of 1

Ra CPU (with outer boundaries) CPU (using effective boundary

conditions)

Reduction (%)

1� 103 76 9.0 88.2

5� 103 85 7.0 91.8

1� 104 178 6.13 96.6
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