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Abstract--In this paper a three-phase model (liquid, solid and gas) of the mushy zone for investigation of 
porosity formation in solidifying castings is developed. This model takes into account the release of the 
dissolved gas from the alloy as well as heat transfer and interdendritic fluid flow in the mushy zone. An 
important aspect of this work is related to accounting for the term describing porosity formation in the 
continuity equation. The magnitude and influence of this term is estimated. Distributions of residual 
porosity in castings are calculated based on a uniform solidification assumption for the particular case of 
aluminum-rich A1-Cu castings. An analytical criterion, identifying conditions under which there will be no 

porosity formation, is established. 

1. INTRODUCTION 

An important task in modeling of casting processes is 
prediction of porosity distribution. This is because 
of the casting defecl:s which are directly attributed to 
the porosity formation. One of the approaches used 
to predict porosity distribution is based on analyzing 
a number of parameters during the casting process 
(Piwonka and Flemings [1] ; Davies [2] ; Niyama et  al. 
[3]; Pan et  al. [4]; Hansen and Berry [5]). Vis- 
wanathan et  al. [6] divided casting processes and alloy 
types into four groups, and suggested a different set 
of criteria functions for each group. Criteria functions 
are composed of thermal and solidification par- 
ameters such as temperature, fraction of solid, 
maximum thermal gradient at the end of freezing, 
isotherm velocity in the direction of the thermal gradi- 
ent, instantaneous cooling rate, and local sol- 
idification time. These parameters are usually 
extracted from the numerical solutions. If  computed 
local values of criteria functions are less than the criti- 
cal value at a given position, presence of porosity 
at that position can be expected. Huang et  al. [7] 
investigated sensitivity of criteria functions to thermal 
contact and phase change in solidification modeling. 

Though this approach for some cases is proved to 
provide acceptable agreement with experimental data, 
it has some disadvantages. The main disadvantage is 
connected with the fiact that porosity in this approach 
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is predicted not by solution of a physical problem but 
is based on some empirical correlations. Efforts to 
theoretically validate parameters governing porosity 
formation have been undertaken, for example, in 
Lecomte-Beckers [8] and Lee et al. [9]. In these 
publications interdendritic fluid flow for the two- 
phase region is considered and the criteria of porosity 
formation expressed in terms of solidification pa- 
rameters are obtained from the fluid flow solution. 

An alternative approach is based on direct analysis 
of coupled heat, mass, and fluid flow problem which 
arises from modeling of microprocesses in the mushy 
zone (Thevoz et  al. [10] ; Stefanescu et al. [11]). Kubo 
and Pehlke [12] suggested a model for shrinkage and 
gas porosity formation based on the assumption that 
the most important stage for creation of porosity 
defects is interdendritic feeding. Poirier et al. [13] con- 
sidered formation of interdendritic porosity in alumi- 
num-rich A1-Cu alloys. According to their model, 
interdendritic porosity arises in these alloys because 
solubility of hydrogen is less in the solid than in the 
liquid metal, so that some of the hydrogen is expelled 
into the interdendritic liquid. 

Even though extensive studies of porosity for- 
mation are presented in recent publications, most of 
the models which are used for describing inter- 
dendritic fluid flow proceed from the assumption that 
porosity formation does not influence the flow. In 
other words, these models proceed from a two-phase 
model of the mushy zone (only liquid and solid) 
instead of a three-phase model (liquid, solid and gas). 
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NOMENCLATURE 

a thermal diffusivity, 2/cpp [m 2 S-1] 
Cp specific heat at constant pressure [J 

kg -1 K -I] 

Cee effective specific heat per unit volume 
(with account for latent heat of fusion) 
[J m -3 K-l]  

CH0 initial (melt) concentration of 
hydrogen in the alloy [weight %] 

C L concentration of dissolved hydrogen in 
liquid phase [weight %] 

C s concentration of dissolved hydrogen in 
solid phase [weight %] 

(CH) /iverage concentration of dissolved 
hydrogen in microvolume [weight 
%] 

( C * )  saturated average concentration of 
dissolved hydrogen in microvolume 
[weight %] 

Ccu0 initial (melt) concentration of Cu in 
the alloy [weight %] 

CCuE concentration of Cu in liquid at 
eutectic temperature [weight %] 

cLu concentration of Cu in liquid phase 
[weight %] 

CSu concentration of Cu in solid phase 
[weight %] 

d base diameter of a dendrite arm 
(average size of the dendrite cell) [m] 

fE weight fraction of eutectic 
fL weight fraction of liquid 
fs weight fraction of solid 
g gravitational acceleration [m s -2] 
gE volume fraction of eutectic 
gL volume fraction of liquid 
gs volume fraction of solid 
Hz(g) gaseous hydrogen 
H hydrogen dissolved in liquid phase 
kH solute distribution coefficient for 

hydrogen 
kcu solute distribution coefficient for 

copper 
Ah latent heat of fusion [J kg-i] 
K permeability [m 2] 
Keq equilibrium constant [Pa-1/2] 
L length of the casting in vertical 

direction [m] 
Ms volumetric specific surface area of a 

typical dendrite arm [m-1] 
P pressure in the mushy zone [Pal 
ff pressure in the mushy zone calculated 

under the assumption that porosity 
formation does not influence the 
pressure distribution [Pa] 

eatm atmospheric pressure [Pal 
Pg pressure in the gas phase [Pa] 

q heat flux [W m 2] 
qinf heat flux at the casting-chill interface 

[Wm 2] 
r radius of pore [m] 
R characteristic size of the casting [m] 
S solubility of hydrogen [cm 3 of H2 per 

100 g of alloy] 
So area of the casting which has a thermal 

contact with the chill [m 2] 
t time [s] 
i duration of two-phase solidification [s] 
T temperature [K] 
v velocity [m s -1] 
Vo volume of the casting [m 3] 
x vertical coordinate [m] 

coordinate of position of pressure 
minimum in the casting at t = i [m]. 

Greek symbols 
heat transfer coefficient at the casting- 
chill interface [Wm -2 K -t] 

fl metal volume shrinkage during 
solidification 

e volume fraction of porosity 
g volume fraction of porosity calculated 

under the assumption that porosity 
formation does not influence the 
pressure distribution 

6 dimensionless criteria of uniform 
solidification 

2 thermal conductivity of the alloy [W 
m-I  K-I]  

p absolute viscosity [kg m -1 s -1] 
p density [kg m -3] 
p average density [kg m-3]. 

Subscripts 
c casting 
ch chill 
E eutectic 
g gas phase 
L liquid phase 
max maximum value 
min minimum value 
S solid phase 
0 initial. 

Other symbols 
(t~) = l/V Svv~dV, local volume average 

of a quantity 
((b) v = 1 / Vv S vv ~ d V, intrinsic local 

volume average of a quantity 
associated with phase 

{01 ~ < O  0(~) = ¢ / >  0" 
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Investigation of  influence porosity formation on heat 
and mass transfer processes in the mushy zone is of  
importance because nucleation and growth of 
porosity are important physical phenomena occurring 
in the mushy zone and accuracy of porosity prediction 
surely depends on their accounting. 

Derivation of the set of governing equations for 
the mushy zone based on mixture theory approach is 
reported in Bennon and Incropera [14] and Prescott 
et al. [15]. Derivation of the set of governing equations 
based on volume-averaging procedure is presented in 
Ganesan and Poirier [16] and in Ni and Beckermann 
[17]. Numerical modeling of solidification of alloys 
based on these set of equations is reported in Beck- 
ermann and Viskanta [18], Felicelli et al. [19, 20]. 

The present investigation proceeds from the set of 
governing equations obtained by the volume aver- 
aging technique. To take into account the influence of 
porosity formation, a three-phase model of the mushy 
zone is developed. For  this purpose, distinguished 
from previous inw~stigations, a continuity equation 
which accounts for porosity growth is suggested. The 
particular form of this equation is developed based on 
thermodynamic relationships for aluminum-rich A1- 
Cu alloys. Equations of the mathematical model are 
solved assuming uniform solidification. Distributions 
of residual porosity in castings for this case are 
obtained. 

2. PROBLEM STATEMENT AND ANALYSIS 

2.1. Governing equations 
In the present investigation Darcy's law will be uti- 

lized within the mushy zone. Darcy's law has fre- 
quently been used to model the flow in a dendritic 
mushy zone (Mehrabian et al. [21] ; Streat and Wein- 
berg [22] ; Fujii et al. [23] ; Ridder et aL [24] ; Maples 
and Poirier [25]). Ganesan and Poirier [16] showed 
that the Darcy's law is valid when the flow is slow and 
steady, the volume fraction of  liquid is uniform and 
constant, and liquid-liquid interactions are negligibly 
small. 

Equiaxial dendritic structure of the mushy zone is 
assumed. Assuming that Darcy's law can be used as a 
momentum equation for interdendritic fluid flow in 
the mushy zone, the set of equations governing the 
flow in the mushy zone is put in the following form 

2.1.1. Momentum equation. 

v = - K ( V P - p L q )  (1) 
# 

where v = (VL), P =: ( P L )  L. Poirier [26] recommends 
to use the Blake-Kozeny model for permeability when 
it is necessary to extrapolate beyond the scope of 
experimental results. Following Beckermann and Vis- 
kanta [18] and Arnpuero et al. [27] the following 
expression for permeability of the mushy zone is uti- 
lized 

g~ 
K - (2) 

5Ms2(1 --gL) 2 

where volumetric specific surface area of a typical 
dendrite arm is approximated as Ms .~ 6/d. 

Using equation (2), momentum equation (1) can be 
written as 

g~ 
v = 5#Ms2( 1 _gL)i(VP--pL.q). (3) 

2.1.2. Mass conservation equation (assuming that the 
gas and solid velocities are negligible). 

~t(psgs+pege+pse)+V'pLv = 0 (4) 

where 

gs --bgl q- g = 1. (5) 

It should be noted that permeability of the mushy 
zone is an uncertain part of modeling of the processes 
in the two-phase region. In this work the Blake-Koz- 
eny model is used for permeability when it is necessary 
to extrapolate beyond the scope of  the experimental 
results. Generally, the Blake-Kozeny model is con- 
sidered to be reliable expression. However, con- 
sidering the permeability of the three-phase mixture 
would be physically the most correct approach. 
Unfortunately, there are no experimental results avail- 
able for such an approach for the mushy zone. There- 
fore, to avoid introducing additional errors in the 
numerical calculations, the more traditional Blake- 
Kozeny model was adopted. 

Density of gas is negligibly small compared to den- 
sities of solid and liquid phases, therefore equation 
(4) can be recast as 

[Psgs + PL( 1 --gs -- e)] + V" p L v  = O. 

Assuming that densities of solid and fluid phases do 
not depend on time, this equation can be put in the 
following form 

- ~ + V . v  = 0 (6) 

where fl -- (Ps -PL)/PL (volume shrinkage during sol- 
idification). 

In the present analysis, we consider one-dimen- 
sional filtration of interdendritic fluid (only in the 
vertical direction). For  this case, substitution of equa- 
tion (3) in equation (6) results in 

-~ ~t - 5~M~ Ox ( [ 1 - g d :  

Weight fractions of liquid and solid are connected by 
the following relationship when the density of the gas 
phase is neglected 

fL+fS = 1. (8) 
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Using equation (8) along with equation (5), it is easy 
to show that 

gL ~ fe (1 - - e )  

gs ,,~ f s ( 1 - - 0 .  (9) 

Using the above result in equation (7) yields 

f l ~ ( 1 - 0 -  ~ ( 1  +flfs) 

- 5pM 2 0 x  ([1 - (1 - e ) ( 1 - f s ) ]  2 ~x 

(10) 

Equations (4), (6), (7) and (10) are different forms 
of the mass conservation equation which takes into 
account influence of not only solidification, but also 
of porosity formation processes on interdendritic fluid 
flow in the mushy zone. 

Considering that e and fl are small parameters, some 
of the terms in equation (10) are neglected in the first 
approximation. The final form of  equation (10) is 

t~e 1 ~ [(1--fs)  3 f s e  "~] 
(11) - 

It should be noted that nucleation of voids is an impor- 
tant and interesting physical phenomenon, which 
requires a separate consideration. However, in this 
work our main focus is the three-phase model, and 
we have avoided inclusion of nucleation phenomenon 
assuming that there are enough nucleation centers and 
there is no hindrance for formation of porosity. 

2.2. Determination o f  the rate o f  porosity formation 
Equation (3) and one of equations (4), (6), (7), (10) 

or (11) describe a three-phase model of the mushy 
zone (because they account for liquid, solid and gas 
phases). To obtain an equation for the second term in 
the right-hand side of the continuity equation, it is 
necessary to use thermodynamic relationships descri- 
bing porosity formation for the particular alloy. In 
the present investigations, thermodynamic relation- 
ships for Al-rich A1-Cu alloys are utilized. 

To obtain an equation for ~e/~t for this particular 
case, the thermodynamic approach to porosity pre- 
diction presented in Poirier et al. [13] is utilized. 
According to their investigation it is necessary to con- 
sider only hydrogen as a contributor to microporosity 
because it is the only gas with measurable solubility 

pressure of hydrogen in the gas phase via the equi- 
librium relationship. Concentration of the dissolved 
hydrogen in liquid phase can be calculated utilizing 
the equilibrium constant from the reaction equation 
½H2 (g) = H 

Kcq pl/2 (12) 
- - g  

where Koq can be expressed in terms of hydrogen solu- 
bility KCq = KoS and K0 = 2.822 x 10 -7. 

According to the experimental data presented in 
Opie and Grant [28], who put their results in the form 
of van't Hoff equation, solubility of hydrogen in AI-  
Cu liquid alloys can be determined as 

InS = - A / T + B  (13) 

where S is the solubility, in cm 3 of H2(g) per 100 g 
alloy, in equilibrium with 1 atm pressure of H2(g), and 
functions A and B are determined by concentration 
of copper in the A1-Cu alloy : 

, 4  L 1/2 L L 3/2 = ao+al(Ccu) -aECc~+a3(Ccu) (14a) 

B L 1/2 L L 3/2 = bo+bl(Ccu) -bECc~+b3(Cc,)  (14b) 

where a0 = 5871, a~ = 826.4, a2 = 125.4, a3 = 1.437 ; 
b0 = 6.033, bl = 0.7007, b2 = 0.1859, b~ = 0.01032 
and CLu is the weight concentration of copper in liquid 
phase. 

The solute equation for the case when macro- 
segregation is absent (it is our case because we 
assume uniform solidification) is considered in Rap- 
paz and Voller [29]. They showed that, assuming rapid 
diffusion within the liquid phase (locally uniform con- 
centration within the liquid phase) and no solute back 
diffusion within the solid phase, the concentration of 
solute (copper) in interdendritic liquid is described by 
the so-called Scheil equation 

CcL~ = Cc ,0 ( l - f s )  (k~"-'). (15) 

According to Poirier et al. [13] kc, = 0.173 in the 
above equation. 

The dependence C~ = cLn (fs, T) can be now found 
from equations (12)-(15). First equation (12) can be 
written as 

Ch = KoS(fs, T)P 1/2. (16) 

Next using equations (14) and (15) in equation (13), 
will result in eqn (17) : 

S(fs, T) = exp { 
ao + al [Ccuo(1 - f s )  (kcu 1)] 1/2 -- a2 Ccuo(1 --fs) (kc~- 1) +a3 [Ccuo(1 --fs) (kcu- o]3/2.} 

T 

x exp {bo + hi [Ccuo (1 - f s )  (k°"- ')] 1/2 _ b2 Cc,o(1 - f s )  (kc"- 1) + b3 [Ccuo(1 - f s )  @c"- ,)]3/2}. (17) 

in aluminium. It is assumed that concentration of On the other hand, assuming rapid diffusion of  dis- 
the dissolved hydrogen in metal is connected with solved hydrogen both in liquid and solid within the 
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microvolume, its concentration in interdendritic 
liquid can be calculated according to the Lever rule 
[13]: 

C'fi -- <Cu> (18) 
(1 --fs) + knfs 

where kH = 0.069. 
Equating expressions (16) and (18), the following 

equation for average concentration of hydrogen in 
microvolume is obtained 

<Cn> = KoS(fs, r)P~/Z[(1-fs)+ksfs]  (19) 

where the function S(fs, T) is determined by equation 
(17). 

Equation (19) determines average concentration of 
hydrogen in microvolume in the region where porosity 
forms. In the region where there is no porosity the 
average hydrogen concentration still equals the initial 
(melt) hydrogen concentration in the alloy 

<CH> = C~0. 

To obtain the equation for saturated concentration of 
dissolved hydrogen, <C*>, in microvolume cor- 
responding to some particular value of pressure, P, in 
the mushy zone, it is necessary to use P instead of P~ 
in equation (19) 

<CH*> = KoS(fs, T)P' /2[( l - fs)+kHfs] .  (20) 

To obtain the equation for the rate of porosity for- 
mation it is necessary to make reasonable assumptions 
concerning conditions when porosity arises in the 
mushy zone. Usually it is assumed [12, 13] that a gas 
pore is stable when the pressure in the gas phase is 
large enough to overcome the pressure of liquid metal 
within the mushy zone plus the surface tension when 
the gas phase has a radius small enough to fit in the 
inter-crystal (interdendritic) space 

2a 
P, i> P +  - - .  (21) 

Y 

In ref. [12] it is suggested that diameter of the pore is 
the same as the dendrite cell size, and to estimate the 
dendrite cell size the following correlation is utilized 

d = bA0[ ~ (22) 

where A0f is the local solidification time, and b and n 
are positive constants. 

For the uniform solidification the temperature vari- 
ation within the casting is small compared to the inter- 
val of solidification. Therefore, local solidification 

time must be relatively large and the same for all 
points of the casting (only in this case temperature 
gradients within the casting can be neglected). Conse- 
quently, from equation (22) it follows that dendrite 
cell size for uniform solidification will be considerably 
larger than for directional solidification considered in 
ref. [13]. Therefore the second term on the right-hand 
side of  equation (21) is neglected in the present analy- 
sis. 

For this case from equation (21) it follows that 
porosity will arise when pressure in the mushy zone 
becomes less than pressure in the gas phase. In other 
words, porosity arises when saturated average con- 
centration of hydrogen in microvolume becomes less 
then the initial (melt) concentration Cn0 (that is when 
the hydrogen gas can no longer be dissolved in the 
mushy zone) 

<C~> ~< C.0. 

Using equation (20) this condition can be put in the 
following form 

Cso-  KoS(fs, T)P' /2[(1-fs)  + kHfs] >>- O. (23) 

We assume that there is no macroliquation of hydro- 
gen, therefore decrease of dissolved hydrogen con- 
centration leads to gas phase formation. Using equa- 
tion (23) the mass rate of gas phase formation can be 
found as 

~mn2 1 3<CH> 

Ot 100 Ot 

× O(CHo-Kog(fs, T)el/2[(1-fs)+k.fs]) (24) 

where mrh is mass of the gas phase per 1 kg of alloy 
and 

0(0 = ~ > / o  

According to ideal gas equation of state the rate of 
change of the volume of the gas phase per 1 kg of 
alloy can be written as 

~VH 2 -RT c~mH2 
Ot Mn2P c~t " (25) 

The rate of porosity growth can be found now from 
equations (20), (24), (25) as 

05 1 .O VH2 

Ot VH2 + Vs+ VL 
O( CHo -- KoS(fs, T)P'/2[1 -fs(1 - kn)]) 

t3t ~ T  T)P'/2[1 -fs(1 -ks ) ] ]  + 100 + 
MH 2 e [CH° --  K° S ( f s '  PL 

x ~OS(Js, T) pro[1 c~P '/z ~ t }  ( ~ - -  - fs(1 -kn ) ]  + - ~ - -  S(fs, T)[1 -fs(1 --kH)]--S(fs, T)pI/2(1 -krO • 

/qT × Ko 

(26) 
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Substitution of equation (26) into equation (11) leads A T~ 
to the following equation for pressure in the mushy T L - - T s  

zone 

~R ~--~h 
TL-Ts 

(31) 

~ O(CHo-KoS(fs, T)p1/2[1 - f s (1  - k n ) ] )  RT 

fl~t + MR~13[CHo_KoX(fs, T)p1/2[l_fs(l_ku)ll+ lOO(~s+ lp-[S) Mn2 P K° 

× P~/Z[1-[~(1-k ia) l+--~-  (fs, T)[1-fs(1-kn)]-S(fs,  T)P'/Z(1-kH) 
2pt/2 

- 5 # M  2 t3x[ f~ ~ x - P i g  • 
(27) 

A scheme of solidifying casting and of pressure dis- 
tribution in it is depicted in Fig. 1. Boundary and 
initial conditions for equation (27) are : 

x = 0 P -~ eatm (28a) 

~P 
x = L ~x = PEg (28b) 

t = 0 P -- eatm+PLqX. (28C) 

Equation (28b) is obtained from equation (3) taking 
into account absence of interdendritic fluid flow at the 
bottom of the casting. 

After pressure distribution is determined, porosity 
distribution in the mushy zone can be calculated from 
the following equation : 

Thus if6 << 1, then the temperature variation within 
the solidifying casting is considerably less than the 
interval of solidification. We consider only this case 
and assume that temperature variation within the cast- 
ing can be neglected. 

The most recent investigations of heat transfer 
coefficient at the casting-mold interface are reported 
in refs. [30, 31]. Heat transfer coefficient depends on 
the magnitude of interface gap due to the thermal 
contraction of cast metal as it solidifies. However, in 
this investigation we follow the research by Berry [32] 
and assume a constant value of gap width. This 
approximation leads to a constant value of the inter- 
facial heat transfer coefficient. Additionally a constant 
temperature of the chill is assumed. 

According to AI-Cu phase diagram (Murray [33]) 
during solidification of aluminum-rich AI-Cu alloy 

8 
~2 

v.2+ Vs+ vL 

/~T 
MH2p[C.o-KoS(fs, T)p'/2 [1 - f s ( l - - k . ) l l O ( C , o - - g o S ( f s ,  T)p' /2 [1--fs(1 --kH)l) 

RT C K 100(pf ~ + fL~ M~P [ no-- oS(fs, T)p'/2[I - f s (1  - k s ) ] ]  + PL] 
(29) 

2.3. Solution of solidification problem 
For many practical cases temperature variation 

within the solidifying casing is considerably less than 
the interval of solidification. Temperature variation 
within the casting can be estimated as 

qinfR ot(T e -- Tch)g 
A T ~  2 - 2 (30) 

where qinf is the heat flux at the casting-chill interface, 
2 is the thermal conductivity of the alloy, and R is the 
characteristic size of  the casting. 

From equation (30) it follows that 

concentration of copper in liquid phase increases until 
it reaches the eutectic composition (CcuE = 32.7 
weight %). After the eutectic composition is reached, 
the rest of the liquid phase solidifies at constant tem- 
perature TE. Amount of eutectic in alloy can be cal- 
culated according to equation (15) : 

CcuE (32) 
ffECU-I = Cc,0" 

From equation (32) it follows that for the alloy 
with Ccu0 = 4.5 weight % the amount of eutectic is 
fE----0.09088. Thus there are two stages of sol- 
idification process. At  the first stage alloy solidifies 
within the temperature range TL(fL)--TE, at the 
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S c t  

$c , ~  P = Patm 

P(x) / 

av \ 
X ~xx = pLg Sc 

/ Sc 

Fig. 1. Schenmtic of the solidifying casting. 

second stage, which begins when fL =fE, the alloy 
solidifies at constant temperature TE. It is assumed 
that the second stage does not influence the porosity 
distribution in the casting, therefore we must calculate 
porosity formation only during the first stage. 

In addition it is assumed that interdendritic fluid 
flow does not significantly influence the heat transfer 
processes in the casting. Under the assumptions dis- 
cussed above the energy equation for the casting pro- 
cess can be put into the following form (using the 
enthalpy approach): 

V.Ah(1 --fE) ] ~T 
Vc L TL-- TE q-ep fi-~f = -o~(T- Tch)Sc (33) 

where Vc is the volume of  the casting, Sc is the area of 
the casting which has a thermal contact with the chill 
(Fig. 1), p = PL + pE/2, Pp = (Cp)L + (Cp)E/2. 

Solution of the equation (33) with initial conditions 
Tit =0 = TL (cooling of the metal from temperature of 
pouring to TL is no:t considered because in our model 
this period does not influence the porosity formation) 
is 

T =  T~h +(TL-- T~h)exp(--~t ) (34) 

Sc~ 
where D = 

I% [-Ah(] --rE) + ~plj 0 ' 

The first stage of solidification ends as soon as T = TE, 
consequently the time which signifies the end of this 
stage can be calculated as 

1 FTL -- Tch-[ 

Assuming that weight fraction of the solid phase is 
linearly connected with the temperature of  metal in 
the mushy zone 

TL-  T 
fs = ( 1 - - f E ) -  TL- T~ 

the equation for the volume fraction of solid can be 
obtained from equation (34) as 

TL - To. 
fs = (a--fE) TL__----~E [1--exp (--f~t)]. (35) 

It should be noted that the entire analysis presented 
in this work is based on the assumption that non- 
Darcian effects are negligible and that the local ther- 
mal equilibrium prevails. As shown in refs. [34--39] 
these effects can introduce significant errors in the 
predictions. 

3. SOLUTION 

3.1. Analytical solution of porosity formation problem 
for the simplified case 

A simplified analytical solution of equation (27) 
with boundary conditions (28a) and (28b) can be 
obtained under the assumption that porosity for- 
mation does not influence the pressure distribution. It 
is exactly the same assumption which was adopted 
by Poirier et al. [13] in analyzing porosity formation 
problem. Under this assumption the second term on 
the left-hand side of equation (27) can be neglected 
and the pressure distribution is 

, /z sJs 
P = Patm "~ PLffX-- P ~ Lx-- 

(36) 

where the function fs(t) is determined by equation 
(35). 

According to equation (29) porosity distribution in 
casting after the end of two-phase solidification (when 
fs = fr) can be calculated from the following equation: 

~ T  ~m/2 
g(x, t') = ~ u  p[Cno-KoS(1 -fE, TE)P (x, t")[1 --(1 --fE)(1 --ku)]] 

0(Cn0 - K0 S(1 --fE, Tz)lffm/2(X, ~[1 -- (1 --fE) (1 -- ku)]) 
× ~ r  + ~  ~ p  [Clio- K0S(1 -fE, TE)P'2(x, t311 --(1 -A)(1 -k~)]] + 100 1 

(37) 
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Fig. 2. Comparison of the numerical solution P of equation 
(38) and analytical solution ff given by equation (36) for 

different values of dendrite cell size d. 

Equation (37) determines distribution of residual 
porosity in the casting under the assumption that the 
porosity distribution does not influence the pressure 
distributions. 

3.2. Numerical steady-state solution of porosity for- 
mation problem 

Since the change of the pressure in the mushy zone 
is slow, the non-stationary term OP/~t in equation (27) 
can be neglected (the influence of this term is estimated 
later on) and pressure distribution can be calculated 
from the following steady-state equation 

zone which follows from the analytical solution (36) 
exceeds decrease of pressure which follows from the 
numerical solution. This is because the analytical solu- 
tion is obtained assuming that porosity formation 
does not influence the pressure distribution in the 
mushy zone. In fact, formation of porosity partly com- 
pensates the metal shrinkage. This leads to decrease 
of interdendritic fluid flow which compensates this 
shrinkage and, consequently, to a lesser pressure drop 
in the mushy zone. 

The larger the pressure drop in the mushy zone, the 
larger the deviation between the analytical and the 
steady-state pressure distributions. This is because for 
larger pressure drop more porosity forms in the cast- 
ing, thus there is a more significant influence of 
porosity formation on the pressure distribution. As 
expected, pressure drop increases with decrease of the 
dendrite size cell. 

Comparison of residual porosity distributions cal- 
culated according to equation (37) utilizing analytical 
solution for pressure distribution (36) and the steady- 
state numerical solution for different values of den- 
drite cell size is depicted in Fig. 3. All porosity dis- 
tributions are computed for duration of two-phase 
solidification i = 360 s. It can be seen that volume % 
of residual porosity calculated utilizing the analytical 
pressure distribution (36) is higher than that utilizing 
the steady-state numerical distribution. This is 
because pressure drop in the mushy zone according to 
analytical pressure distribution is overpredicted 
according to the steady-state numerical distribution 
as discussed in connection to Fig. 2. As expected from 

0(CH0--KoS(fs, T)P'/2[1 - f s ( 1 -  kH)]) RT 

KT [C.o-KoS(fs ,  T)e'/2[1-fs(1-k.)]]+ 100(;~ + PL / 
1--fs~ MH2 P K° × 

MH 2 P 

as(A, otT)P'/Z[1-fs(1-k~)]-g(fs'T)P1/Z(1-kH)~t} 5pM~l O---)'(1-fs)3 ( ~ - - P L q ) }  ' o x  ~ f~ (38) 

The function S(fs, T) in equation (38) is determined 
by equation (17) and the transient temperature dis- 
tribution, T(t) and the weight fraction of the solid 
fs(t) are determined by equations (34) and (35), 
respectively. 

To calculate residual porosity distribution e(x, 
without the assumption that porosity formation does 
not influence pressure distribution in the mushy zone, 
it is necessary to use equation (37) utilizing the 
numerical solution P(x, ~ of equation (38) instead of 
the analytical solution P(x, t"). 

Comparison of the numerical solution of equation 
(38) with boundary conditions (28a) and (28b) and 
the analytical solution (36) for different values of den- 
drite cell size is depicted in Fig. 2. All pressure dis- 
tributions are calculated for the instant i = 360 s. It 
can be seen that decrease of pressure in the mushy 

physical considerations, the residual porosity 
increases with a decrease of the dendrite size cell. 

3.3. Estimation of the error introduced by the quasi- 
stationary solution of porosity formation problem 

The influence of the non-stationary term which was 
neglected in equation (27) can be estimated by the 
following function 

A(x, t) = 

1 oP s -A(1 --kill] 2~S~ ~ -  (fs, V)[1 

~ P ' / ~ [ 1  -fs(1 - k.)]- s~ ,  T)P'J~(1 ~ k.) 

(39) 
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Fig. 3. Comparison of residual porosity distributions cal- 
culated according to equation (37) utilizing analytical solu- 
tion for pressure distribution (36) and the steady-state 
numerical solution for different values of dendrite cell size : 

g, analytical ; e, steady-state numerical. 
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Fig. 4. Influence of non-stationary pressure term in equation 
(27) calculated fc,r different values of the ratio t/i. 

The function A(x, t) shows the influence of the non-  
stationary part of  t:he second term in equation (27). 
The derivative OP/Ot in equation (39) can be estimated 
from equation (36). 

Figure 4 depicts the dependence A(x) for different 
values of the ratio t/i, where i signifies the time that it 
takes to reach the e atectic temperature. Calculations 
are carried out for durat ion of two-phase solidification 
i = 360 s and dendrite cell size d = 350 #m. As it 
follows from the figure, the steady-state approxi- 
mation introduces raaximum error at the end of the 
two-phase solidification process. This is because 
maximum decrease of pressure in the mushy zone is 
when the amount  of liquid phase is minimum, that 
is at the end of two-phase solidification. Therefore 
influence of non-stat ionary part on the second term 
in equation (27) is maximum at the end of two-phase 
solidification. It can be seen that the maximum error 

introduced by neglecting the non-stat ionary part in 
the second term is about  17%. The error quickly 
decreases with decrease of  the ratio t/i. 

3.4. Analytical criterion for the absence of porosity in 
the casting process 

From equation (37) it follows that no porosity 
arises at the end of the first stage of solidification if 

0(CHo -- Ko S(1 - fE,  TE)p'/2 [1 -- (1 --fE)(1 -- kH)]) = 0. 

(40) 

Equation (40) is satisfied if 

CH0 -- K0 S(1 --fE, 1/2 TE)emin[l - (1 --fr)(1 --ks)]  ~ 0 

(41) 

where emin is the min imum pressure in the casting at 
t = i. Because we are interested in the case when no 
porosity forms in the casting, equation (36) can deter- 
mine the pressure distribution in the casting. Using 
equation (36), the location for min imum pressure, 2, 
in the casting process can be determined from the 
following equation 

~x ,=f 5" M 2¢2 Ors OP = PLY B ~" s j s  (L- -2)  = 0 
- -r  ~ Ot t=i 

(42) 

where according to equation (35) 

~?fs ,=i = (1 TL -- TCh 
a t  --fE) a ~ exp (--  at'). 

F rom equation (42) it follows that 

97 = L PLY A(0 (43) 

where 

,5#M2(1- - fE)  3 ~ TL-- Tch . ~ .  

A(i) = p ~ SZ T~_ T~ exp (-L~t ). 

Equation (43) is valid while L -  (pLg/A(i)) >10. When 
the value of L -  (pLg/A(i)) becomes negative, the pos- 
ition of pressure min imum in the casting is 2 = 0. 
Finally, the coordinate of pressure min imum in the 
casting is determined by the following equation 

PLg L (44) X- j' 

From equations (36) and (44) it follows that 

-A(0[L- pLg](_L + PLg OLg 

From equations (41) and (45) it follows that no 
porosity arises in the casting if 
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Fig. 5. Dependence of the maximum initial hydrogen con- 
centration (Cn0)m~x in the alloy on the size of dendrite cell d 
for different duration of two-phase solidification ~ so that 

porosity does not arise. 

porosity formation increases with an increase in the 
pressure drop. 

It is also shown that for no porosity formation the 
maximum initial hydrogen concentration in the alloy 
has to increase with an increase of the dendrite cell 
size until it reaches some constant value. This constant 
value does not depend on duration of the two-phase 
solidification and corresponds to the situation when 
pressure in the mushy zone at the end of two-phase 
solidification approximately equals the atmospheric 
pressure. 

Analysis carried out in this work establishes useful 
and practical criterion for absence of porosity in cast- 
ing during uniform solidification. 
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Cno - KoS(1 -fE,  TE)[1 -- (1 -fE) (1 --kH)] 

x PEg L - ~ t ~  - A ( O [ L -  PEg 

[L  loVL P gll 

Equation (46) gives the analytical criterion of absence 
of porosity in the casting. 

Figure 5 depicts dependence of the maximum initial 
hydrogen concentration (CH0)max in the alloy on the 
size of dendrite cell d for different duration of two- 
phase solidification i so that porosity does not arise. 
It can be seen that (CH0)max increases with an increase 
of the dendrite cell size until it reaches some constant 
value. This constant value also does not depend on 
duration of two-phase solidification and corresponds 
to the situation when P(x,  i) ~ Patm. Until this con- 
stant value is reached, (CH0)max is larger for larger 
values of L This is because the larger the duration of 
two-phase solidification, the less interdendritic fluid 
flow is required to compensate metal shrinkage, a 
lesser pressure drop is required in the mushy zone and, 
consequently, the maximum initial hydrogen con- 
centration has to be larger so that porosity does not 
arise. 

4. CONCLUSIONS 

In this work the three-phase model (liquid, solid 
and gas) of the mushy zone is suggested. Using this 
model, influence of porosity formation on pressure 
and residual porosity distributions in the mushy zone 
is investigated. For this investigation thermodynamic 
relationships for the particular case of Al-rich A1- 
Cu alloys are utilized. It is shown that the porosity 
formation leads to less pressure drop and an under- 
prediction of the residual porosity. The influence 
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