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Thermal Analysis of Buried Land Mines Over a
Diurnal Cycle

Khalil Khanafer and Kambiz Vafai

Abstract—The passive infrared (IR) imaging signature of buried have focused their attention toward the development of the
mines under three different soil surface conditions is investigated signal processing algorithms and the associated performance of
in this work. The three-dimensional (3-D) nature of the mine, the 1,0 sansors while ignoring several pertinent effects such as solar
site, and the temporal attributes of surrounding climate and ex- heating, soil disturbances, and temporal climate variations
posed radiation are accounted for large and moderate-scale clutter g, ’ p 3 : >
surfaces as well as a smooth surface. The effect of the short- andBetter knowledge of these effects on the landmine signature is

long-wavelength radiation as well as the convective heat transfer required to properly use demining IR sensors and to interpret
is incorporated in this analysis and the temporal development of |R imagery.

the temperature distribution over a diurnal cycle is presented for Reference [1] investigated the influence of the emissivity on
different surface conditions. The occurrence of false alarm mine 9 y

spots is demonstrated using the moderate scale clutter surface andthe signatures of a specific target in the context of their two-
a critical period of time for the landmine signature is established color IR system. The time development for both buried and sur-

for different soil surface conditions. The present results show that face mines using several sensors is examined by [2]. Their re-
mines buried at moderate depths in the soil would not produce a gjts showed that the surface laid targets are visible during the
direct signature. . : . L
whole diurnal cycle while the buried targets are only visible
during sunrise and sunset. A similar study is conducted by [3]
to measure the temperatures of both live and substitute mines
through multiple diurnal cycles. Reference [4] investigated ex-
perimentally a systematic approach to improve landmine de-
. INTRODUCTION tection capability using passive IR imaging camera. Polariza-
EMINING processes are generally slow, expensi\,éi,on—sensitive IR sensing.is also used to assist distinguishing
manpower-intensive, and suffer from high false alarfgétween a man-made object f’:lnd the backgrou_nd [5], [6]. Ref_.
rates. Current mine detection methods vary from simple man§gnce [7] used a preprocessing algorithm dedicated to polari-
probing to a variety of high-tech electronic schemes, chemicgl€tric IR imager in order to help the discrimination between
and biological detection methods. Examples include magnéfgtural and man made objects. Reference [8] presented spectro-
resonance imaging, infrared (IR), thermal images, thermfopic data collected by a nonimaging sensor.
neutron activation (TNA), acoustic sensors, and ground-peneReference [9] conducted an experimental work for surface
trating radar, to name just a few. land mine detection. They used polarization-sensitive IR
Infrared mine detection is a promising technique in the déensing to highlight the polarization signature of man-made
tection and discrimination of the landmines from other burie@rgets such as land mines over natural features in the image.
objects based on the knowledge of the physical propertiegzzy rule-based fusion technique on the processed polar-
of land mines and the soil containing the mines. A burie@ation resolved image was used to reduce the number of
mine can be detected if its thermal signature exists on the Jailse alarms. Another work related to this area is by [10]. A
surface. The landmine signatures are controlled essentidlyee-dimensional (3-D) dynamic thermal imaging of structural
by the environmental conditions and the differences in tfil@ws using dual-band IR computed tomography is analyzed in
thermo-physical properties of the soil and the mine, respdbis study. The measurements out of this study are compared
tively. The lack of knowledge of the landmine signature mawe” with calculations based on a 3-D finite element thermal
result in improper performance of the mine detection systefodel (TOPAX3D).
Due to the differences in the physical properties of the soil The enhancement of thermal landmine signatures using IR
and the mine, a thermal contrast exists above the mine a®hsors was investigated experimentally by [11]. They used mi-
consequently, IR cameras can be used successfully to captrmvave energy source to penetrate the soil and to provide a
the changes in temperatures over the mine. volumetric heating of the site. In their investigation, they pre-
Buried landmine detection using IR imaging technology is sented a one-dimensional (1-D) model of microwave absorp-
subject of interest by many researchers. Most of the researchers and heat dissipation by moisture-laden soils, which contain
landmine-like buried objects. Detection of antipersonnel land-

Index Terms—Buried mines, false alarm mine spots, infrared
imagining signature, shallow and moderate depth mines, surface
roughness.
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from the water blocked and reflected by the surface of the burie . .
wind blowing

object and the heating of the object itself due to the heat tran: . -
ferred from the water-jet. The time history of the soil surface W T B convectveand adilhe et ranslr, gt
temperature is obtained using IR after the water-jets are applie N

A generalized model on the effect of the buried landmines o1 A A, VA AV o [
the soil temperature over a diurnal cycle is not well-establishe: y PANANNNANA NN
in the literature. Only a few preliminary theoretical studies have RN R p - S|
been conducted in this area similar to the analysis by [13], whicly A B 4 mine i
is drawn from a classical solution [14]. References [15]-[17] A N AR A
conducted a study in the absence of the mine for a 1-D model i T A NN

. s o T B A A NN NN NN AR NN NN NN NN NN
which the temperature depends only on the depth from the sc HOmperalure 3o s s A A A
surface. Recently, Baertliet al. [18] conducted a preliminary L R NN NN NN
3-D study to illustrate the effect of the buried landmines on the deep ground condition, T.
surface temperature distribution. In this study, they showed that )

the effect of the landmines on the structure of the soil's temper-
ature could not be obtained using a 1-D model due to the 3-
heat transfer through the soil and the mine. However, sevel
pertinent effects were ignored in their study.

The objective of the present work is to develop a 3-D therme
model for soil containing the buried landmine over a diurna
cycle and accounting for the surface roughness. This model w
help improve the performance of thermal IR imagery and lea
to the development of more robust signal processing techniqut
Simulant anti-tank mine will be used in the present investige
tion. Most mines normally have a few very small components
Such components include the insert which represents the min
striker mechanism to initiate the explosion. Since the insert
composed of different physical properties than the TNT mate
rial, the effect of the insert on the soil temperature distributiol
also will be included in this analysis.

(b)

Il. MATHEMATICAL FORMULATION Fig. 1. (a) Schematic diagram of the problem and (b) model of the simulant

. . anti-tank mine used in this investigation.
A. Governing Equations g

In this work, single-phase 3-D transient heat conduction 2y gt the insert surface:
equations for the soil and mine are utilized. The soil and mine
are modeled as isotropic solids. A surrogate anti-tank mine w.kiVT = 7k VT, (5)
buried beneath the soil is used in this simulation as shown in
Fig. 1 and 2. Assuming that the temporal variation of the mois- 3) at the mine surface:
ture content is negligible, the resulting governing equations for N N
the soil, insert, an% 'the mine can be vg\]/r?tten as fglloevs: W oks VI = 10 Fin Vo ©)

4) at the deep soil below the mine:

for soil:
g

57 (peD)s =V(RVT), €)) T, — T (7)
for the insert: 9 where?’ represents the normal unit vect@t,, is the deep soil

5 (pcT)r =V (EVT); (2) temperature below the buried mine, apg: is the net heat flux
for TNT: into the top surface of the soil and is given by the following

' 9 expression:
g (peT)p, =V (EVT),, 3)
Gnet = Qeonwv + Gsun + Qsky — Qemis — Qevap (8)

wherep, ¢, k, andT are the density, specific heat, thermal con- _ _
ductivity, and temperature respectively. The subscriptsl, whereqcoﬁ is the convective heat trgnsferlbe'.(ween the surface
andm denote the soil, insert, and the mine, respectively. TI9é the soil and the atmospherg,.,, is the incident solar en-

boundary conditions for the afore-mentioned equations can &gy reduced by cloud cover, atmospheric absorption, albedo,
summarized as follows: and the cosine of the zenith angle. The sky brightness with a

small correction for cloud cover is representediby,, gemis iS
the gray body emission from the soil’s surface apg,;, is the
Wk VT, = Gnet (4) latent cooling of the ground caused by evapotranspiration and

1) at the soil surface:
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¢ ¢ ¢ wheres = 5.67 x 10~® W/m2K* is the Stephan—Boltzman
> constante is the mean emissivity of the surface, afig, is the
J’ y 0.076 m T_ _00993m 01593 m effective sky radiance temperature given by

T Ty = 0.9 X Ty, (12)

TNT
The long-wave radiation emission from the ground'’s surface is
given by the following equation:

|
|
|
I
I
! Qemis = asAT;L (13)
[
| whereT} is the soil's surface temperature.

| The short-wavelength incident solar radiation can be ex-
i pressed as follows:

[

|

Gsun = (1 - CL)SO(]- - C)M(d)) COS((f)) (14)

(a) where C,(=0.2) is the cloud cover((=0.3) is the ground
> albedo, ands,(=1385 W/m?) is the solar constand/ () is the
approximate atmospheric transmissivity and is given as [19]

T

!

: M(¢) =1—0.2cos(¢)™"? (15)
|

where ¢ is the zenith angle and can be determined from the

| / following expression
T A cos Acos <—COS <2W2tflh)> + sin Asin 6) .

cos(¢) = if >0

oy ——

|

[

! otherwise cos(¢) =0

! (16)
! where A is the local latitudeg/=45°) and 6 is the declination
|

given by

< Lu " § = —23.43° cos <27FT72°””‘> . 17)
(b)

Fig. 2. (a) Sectional view of the TNT and insert objects and (b) top view ofhe initial condition for (1)—(3) corresponds to typical condi-
the mine objectLy =2L,, = 2771). tions and iS given as

. . o - T, =T, =T = 293K. 18
condensation. In this investigation, the soil is assumed to be dry ! (18)

and therefore.,, is set to zero in this model. Convective heat
transfer between the soil and the surrounding air is given by B. Rough Surface Approximation

In general, the soil is not smooth and has variations in dif-
9) ferent directions. These variations should be taken into consid-
eration due to their significant effects on the mine signature and
consequently the performance of IR sensors. Ignoring the ef-

K based on the typical average wind speed of 2 m/s) and A is tfrc?é:t of the surface fluctuations may result in false alarm by IR

exposure surface area. A general ambient temperature variafigHSo’s: AS sugh, the top surface of the soil is represented by
is imposed as couple of generic rough surface models. Three types of surface

conditions will be used for our study; namely the sloping rough
surface, the periodically rough surface, and the smooth surface.
2m(t — 2)) (10) 1) Sloping Surface Description (Large Scale ClutteA:
24 generic rough surface is constructed with a full-cycle sine in the

x-direction and a half-cycle cosine in the y-direction as follows:
wheret is given in hours (starting from midnight). The sky irra-

diance based on the long-wavelength radiation downward from z(x, y) = Asin(nx /Ly ) cos(my/2L,1) (29)
the atmosphere can be expressed as

Qeony = Ah(T(171 - T@)

wherer is the convective heat transfer coefficieht{ 5 W/m?

Toir =293 — 5cos <

where A (=1.5 cm) is the amplitude of the surface variation
about the mean antl,; andL,; are the xand y dimensions. For
Qsky = asATjky (11) Ly = Ly = 1 m, this will produce a surface having a 3-cm
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Fig. 3. (a) Sloping rough surface and (b) periodically rough surface.

310

peak-to-peak variation. This surface goes smoothly to zero :
the edges, so assumptions of periodic boundary conditions in
and y directions will not produce any surface discontinuities. A_ ol
sketch of the sloping rough surface is shown in Fig. 3(a).

2) Periodically Rough Surface (Moderate Scale Clutteln:
this part a generic surface that has a flat area in the center a
some “bumps” away from the center is utilized. A generic form
of such variation is given by

Temperature (K]
»n n
@
=3

260

z =0.15cos[nx /(2L,1 )] cos[ny/(2Ly1)]

Lower surface of the mine

T T a T

Surface Temperature

2=7.6¢cm

2=15.93 cm —.

2=9.93cm
Top of the insert

x sin[m (1 — cos(maB/L.1))]
x sin[r(1 — cos(ryB/Ly1))]

250
0

(20)

where B is a user-defined parameter ang and L, are the

Time (Hours)

(b)

correlation lengths in the x and y directions respectively. In thitace and (b) moderate-scale clutter surface.

work, L,; = L,; = 1m. This expression produces zero surface
slope in the center and symmetrically placed bumps.#ct
0.4, we obtain four bumps (one in each quadrant). The surface

TABLE |
SPECIFICATION OF TNT

25

Fig. 4. Comparison between the ambient temperature and the temporal
variation of the soil average temperature at various depths (a) large-scale clutter

also goes smoothly to zero at each of the boundaries. The rolme type

D H k c

surface constructed by (20) is shown in Fig. 3(b). mm mm W/m.K Jhkg K kg?m’

Anti-Tank 250 83.3 0.223442 1289.29 1560

I1l. NUMERICAL SCHEME
TABLE I
A Galerkin-based FEM is employed to solve the governing SPECIFICATION OF THEINSERT MATERIAL

equations for the present study. The application of this proce- :
dgre i; wglll documented [20]. The segregat_ed solution algo- Em gm 'V‘me ;/kgK I‘Zg/m’
rithm is utilized to solve the system of equations. The advan-
tage of using this method is that the global system matrix is de- 40 60 0.0263 1007 1.164
composed into smaller submatrices and then solved in a sequen-
tial manner. This technique will result in considerably fewer
storage requirements. Extensive numerical experimentation was TABLE Il

performed to attain grid-independent results for all the field vari-
ables. Variable time step was implemented successfully in this
model without any loss in the accuracy of the results. One di-
urnal cycle (24 h) was found to take about 36 h on an SGI Octane
Workstation. This was necessary to increase the accuracy of the
present results.

SPECIFICATION OF THESOIL (SANDY GRAVEL)

k c p
W/mK J/kg. K kg/m®
2.5116 837.2 2000
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Fig. 5. Temporal variation of the temperature at various depths of the soil (a) large scale clutter surface and (b) moderate scale clutter surface.

IV. DISCUSSION OFRESULTS of the rough soil surfaces. A simulant anti-tank mine buried at

7.6 cm beneath the soil is used in this simulation as shown in

As we mentioned previously, three basic types of surfacEfgy. 1. The mine is modeled as an object of circular shape having
are investigated to illustrate their impact on the mine signatutbe same thermal properties as that of TNT. Typical dimensions
These are composed of a smooth surface and two generic modéthe mine and the insert are used in this investigation as shown
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Fig. 6. Effect of the presence of the mine on the depth-wise temperature

distribution (plane A—A) at various times (every 6 h) for large scale clutte¥ig. 7. Periodicity of the depth-wise temperature distribution (plane A-A) at

surface; t= 6-48 h. various periods of time for an anti-tank simulant buried at 7.6 cm beneath a
large-scale clutter surface= 12, 18, 21, and 23 h, respectively.

in Fig. 2. The thermophysical properties of the sail, insert, and
the anti-tank mine are tabulated in Tables I-II. The two sectiof@sult is due to two competing effects, the short-wavelength ab-
(AA and BB) in Fig. 3 will be used in later figures to present theorbed solar energy and the long-wavelength radiation loss into
temperature distribution at these sections. For large- and m#e Sky.
erate-scale clutter cases, Fig. 4 shows a comparison of the sofDver the period of 18 to 24 h, more heat is absorbed by the
average temperature at various depths. It is qualitatively seemiime causing the insert to become hotter than the surrounding
Fig. 4, as illustrated by the contour curvature variations, that tbge to its smaller thermal conductivity as seen in Fig. 5. During
temperature of the surface of the soil as well as the variatioife night, the mine tends to block the upward heat transfer by
at different depths incorporate the ambient and sky temperatganduction through the soil and allows downward heat transfer
variations. and as a result, the area of the soil above the mine becomes
The effect of the presence of the mine on the temperature%’lO'er- In addition, the weak effect of the short-wavelength ra-
the soil at different sections and periods of time is clearly shovg#ation from the sun during this period of time leads to lower
in Fig. 5 for large and moderate scale clutter surfaces. Figi@nperatures above the mine.
shows that the surface temperature over the mine is cooler thafrig. 5 also shows that the insert within the mine has a signif-
the surface temperature beneath thearinh after midnight. icant effect on the soil depth-wise temperature distribution due
This can be attributed to the fact that the mine tends to resist thglifferent physical properties of the media surrounding the in-
conduction heat transfer through the soil as a result of its lowg@rt. This sudden variation in the temperature is clearly shown
thermal conductivity as compared to the soil thermal conduenly along the top surface of the insert. This trend of reversal in
tivity. Moreover, the incoming short-wavelength radiation fronthe temperature pattern can lead to an improvement in the mine
the sun depends on the sunset and sunrise times and for thisdgéection method such as IR imaging method while neglecting
riod of time, this effect is negligible resulting in a cooler minghis effect can lead to substantial errors.
surface at dawn. Furthermore, higher radiation heat loss fromThe effect of the buried mine on the depth-wise temperature
the surface to the surrounding is occurring until the sunrise mistribution over two complete diurnal cycles starting six h after
sulting in a lower temperature above the mine. As time proceea&lnight for large-scale clutter surface is observed in Fig. 6.
(after 12 h), Fig. 5 shows that the temperature distribution pdthis figure provides a vivid picture of the effect of the mine
tern reverses in such way that the temperature of the soil ower the soil depth-wise temperature at various periods of time.
the mine becomes hotter than the surface beneath the mine. Titie isotherms around the insert are split identically due to the
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Fig. 8. Periodicity of the soil top surface temperature distribution over the anti-tank simulant buried at 7.6 cm beneath a large-scale detter sarif, 19,
21, and 24 h, respectively.

symmetric emplacement of the insert within the mine. It catonsequently, more heat is transferred by conduction into the
be seen from Fig. 6 that the mine tends to block the condusmil layer above the mine. This effect continues up to 3 h from
tive heat transfer through the soil beneath the mine until dawoon. Thereafter, the mine acts as a heat sink till sunset at which
where the effect of the short-wavelength sun radiation is nediime it starts to transfer heat downward by conduction through
gible. For later times, the soil top surface temperature rises dhe soil during the night while the soil temperature above the
to the effect of the incident sun radiation on the soil surface antine cools promptly due to the effect of radiation from the soill
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Fig. 9. Effect of the presence of the mine on the top surface temperature of the moderate scale clutter surface at various times.

top surface. This process repeats the same sequence of ejantfures. It can be seen clearly that the temperature pattern re-
for the second diurnal cycle and this can be attributed to the faoetats itself over a diurnal cycle. Fig. 7 displays in detail the iden-
that the results become independent after some time followitigal nature of the depth-wise temperature distribution over a di-
an initial period (e.g., 12:36 h, 18:42 h, and 24: 48 h). urnal cycle (e.g., 12:36 h, 18:42 h, and 21: 45 h). In addition,
This is clearly shown in Figs. 7 and 8. These two figures elte mine signature at the soil top surface repeats itself every di-
tablish the periodicity of landmine signatures at different timernal cycle. The reason for the existence of this periodicity is



KHANAFER AND VAFAI: THERMAL ANALYSIS BURIED LAND MINES 469

TEMPERATURE,
TEMPERATOURE
SQUTOUR PLOT COWTOUR PLOT

LEGEND

LEGERND

0.301E+03
0.3008+03
0.299E+03
0.298E+03
0.2978+03
0.296E403

0.300E+03
0.2%9E403
0.298E+03
0.297E+03
D0.2968+03
0.2958+403
0.2958+03
0.2948+403

MINIMUM
0.292838403

MAX TMOM
0.30213E+03

MINIMOM
0.29288E+03

MARIMOM
0.300712+07

Time= 19 firs Time= 20 hrs

TEME ERATURE
CONTOUR PLOT. TEMEERATORE
CONTOUR PLOT

LEGEND

LEGEND

0.2972403
0.2965+03
0.2958+03
0.295B+H03
0.294E+03

0.298E+03
0.297E+03

0.2938+03
0.2928403
i 0.291E+03

MINIMOM MININY
0.29182E+403

MAX TMUM
0.29925E403

M

0.29021£+03

MAX TMUM
0.298087+403

Time=21 hrs Time= 22 hrs

TEMPERATURE.
CONTOUR PLOT

LEGRHD

TEMPERATURE,
CONTOUR_PLOT.

LEGEND

0.2962+03
0.2858403
0.294E403
¢ 0.2938403
TRt 0.292R403
0,292£403

0.2918+03

0.295E403
0.2948403
0.2936+03
0.292E403
0.2918+03
0.291E403
0.290B+03
210, 2098403

MINTMOM
0,288372+403

MAX TMOM
0.29698E+403

MIN IMOM
0.28774E403

0.296198.403

Time= 23 hrs Tirne= 24 hrs

Fig. 10. Depth-wise temperature distribution along a plane (B-B) taken diagonally of a moderate scale clutter surface at various times.

due to the fact that the transient effects die out after the passageentered in the middle of the field for this investigation.
of an initial period, which is typically of the order of 12 h. Fig. 9 shows that the signature pattern changes substantially
An interesting situation observed in Fig. 8, demonstrat@gth time. After midnight (Time< 6 h), the mine is at a
(Time = 19 h) that the mine signature on the soil surface varelatively cooler temperature and as the time advances, the top
ishes due to the convergence of the soil surface and the ambmnface contrast changes rapidly due to the short-wavelength
temperatures as depicted in Fig. 4. In order to predict the tirgelar influx (7 < Time < 17 h). The signature disappears
at which the signature disappears, the temporal informationarbund the same time (Time 19 h) as in the case of large-scale
the landmine signature on the soil top surface is necessarychatter. In order to capture the mine at that critical period of
resolve this critical time line. time, the temporal surface signature will provide the necessary
The effect of a buried landmine on the soil surface temperatunéormation regarding the location of the mine. This can be
for moderate-scale clutter surface is shown in Fig. 9. The miaecomplished by sweeping the mine site using an IR technique
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Fig. 11. Periodicity of the soil top surface temperature distribution over the anti-tank simulant buried at 7.6 cm beneath a moderate-saaifactifterts-
12, 17, 18, and 22 h, respectively.

at different periods of time where the mine signature does notThe target of any mine detection method is to achieve a high
exist. This is confirmed in Figs. 8 and 9 where the signatupFobability of detection while at the same time maintaining a
of the mine appears again after few hours (Time21 h) low probability of false alarm. Thus, reducing the false alarm
from the critical period of time at which the signature vanishaate is of immediate importance. Fig. 9 demonstrates that there

(Time = 19 h). are other distinguished spots on the top surface of the soil other
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Fig. 12. Comparison of the mine signature on the soil top surface between shallow and moderate depth mine for=£aj.6epthand (b) deptk 15.2 cm.

than the mine locations. These spots represent false alarm nsngace is also investigated in this study as shown in Fig. 11. Itis
locations as the real mine is located at the center of the sailearly seen in this figure that the moderate scale clutter surface
Consequently, a simple snap-shot at a given time can provigigablishes periodicity at the same times as that of large-scale
a false reading. Fig. 10 illustrates the depth-wise temperatutatter surface. The effect of soil depth at which the mine is
distribution taken over a diagonal cut B-B as shown Fig. 3(buried is studied in this analysis. Fig. 12 shows a comparison
within the mine’s field at various periods of time. This plan@f the mine signature on the top surface of the soil for the case
passes through the center of the mine and two false alaofrmoderate scale clutter between shallow and moderate depths
spots. It is evident from Fig. 10 that only one object is buriedf mines buried at various times. Fig. 12 shows that the inten-
beneath the top surface of the soil. To avoid a false readisity of the mine’s signature deteriorates as the depth at which the
incidence, the temporal signature pattern of the mine ovemane is buried increases. The mine’s signature contrast is more
number of snap shots in time is necessary to detect the bun@dnounced for shallower buried mines as depicted in Fig. 12.
landmine. This is due to the more pronounced heat transfer interaction be-

The periodicity of the soil top surface temperature distribuween the mine and the soil’s top surface in case of shallow
tion of an anti-tank mine buried beneath a moderate scale cluttiepth buried mines.
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Fig. 13. Effect of the presence of the mine on the soil top surface temperature and the depth-wise temperature distribution (plane A—A) of aaoeooth surf

Finally, the effect of the buried landmine on the soil’'s top suis evident from this figure that the temperature of the soil above
face temperature and the depth-wise temperature distributiontioe mine is lower than the temperature of the soil underneath the
a site with a smooth top surface is shown in Fig. 13. For brevitiyuried mine until dawn. This is associated with the significant
only a portion of the results will be presented for this case. dffect of the long-wavelength radiation loss into the sky, which
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