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Abstract

Local thermal equilibrium is an often-used hypothesis when studying heat transfer in porous media. Examination
of non-equilibrium phenomena shows that this hypothesis is usually not valid during rapid heating or cooling. The

results from this theoretical study con®rm that local thermal equilibrium in a ¯uidized bed depends on the size of
the layer, mean pore size, interstitial heat transfer coe�cient, and thermophysical properties. For a porous medium
subject to rapid transient heating, the existence of the local thermal equilibrium depends on the magnitude of the

Sparrow number and on the rate of change of the heat input. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Flow and heat transfer in porous media have broad

applications in engineering practice. They extend over

a wide range of applications such as in geological [1±

3], food processing [4,5], building insulation and in®l-

tration [6±9], nuclear reactor design [10,11], nuclear

waste processing [12], fundamental ¯ow, and heat and

mass transfer research [13±30]. Summaries of earlier

work are included in monograms and books [31±34].

In general, various analytical studies used in dealing

with ¯ow and heat transfer in porous media hypoth-

esize the existence of local thermal equilibrium (LTE);

that is, the solid and the neighboring liquid are at the

same temperature. This paper establishes conditions

when early departure from local thermal equilibrium

occurs in the presence of a rapidly changing volumetric

heat source or surface heat ¯ux.

In the absence of local thermal equilibrium, the

single energy equation needs to be replaced with two

energy equations, one for the solid and another for the

¯uid. Investigations by Vafai and Sozen [35], which

were based on the two-phase equation model, reported

signi®cant discrepancies between the ¯uid and the solid

phase temperature distributions. Later Amiri and

Vafai [36,37] investigated the validity of local thermal

equilibrium (LTE) conditions for steady state as well

as transient incompressible ¯ow through a porous

medium. Also, in Lee and Vafai [38], a theoretical in-

vestigation of forced convective ¯ow through a channel

®lled with a porous medium was presented. In their

work, conceptual assessment and an analytical charac-

terization of ¯uid and solid temperature di�erentials as

well as the breakdown of the LTE assumption were

established.
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Nomenclature

ac parameter in Refs. [36,37]
am gmÿbm
Ap pore surface area, m2

C ECf+(1ÿ E )Cs

C (1ÿ E )Cs/C
Cf ¯uid heat capacitance, J mÿ3 Kÿ1

Cs solid heat capacitance, J mÿ3 Kÿ1

Fn (r) eigenfunction
Fo Fourier number, ket/CL

2

h interstitial heat transfer coe�cient, W mÿ2 Kÿ1

ke equivalent thermal conductivity, W mÿ1 Kÿ1

L Cfu0L/ke
L porous layer thickness, m

L operator, H�(keH)ÿCfV�H
m, n indices
Nn norms

Pe Peclet number, vLv
q heat ¯ux, W mÿ2

q0 heat ¯ux amplitude, W mÿ2

rh hydraulic radius, DVp/DAp, as de®ned after Eq. (2), m
Rc contact resistance, m2 K Wÿ1

S volumetric heat source, W mÿ3

S �n see Eq. (15)
Sp Sparrow number, hL 2/kerh
t time, s
�t Fo(Pe )2

T temperature, K
u0 mean velocity, m sÿ1

V velocity vector

V volume, m3

x coordinate, m
�x Cfu0x/ke
w(r) weighting function.

Greek symbols
a thermal di�usivity, m2 sÿ1

bn parameter related to gn, Eq. (13)
gn eigenvalue
E Vf /V
ln parameter related to gn, Eq. (14)
n 2p� frequency, rad sÿ1

t dummy variable and Green's function parameter
te (1ÿ E )Cstt/C, s
tq lag time, heat ¯ux, s

tt lag time, tt1 rhCf /h, s
on see Eq. (17).

Subscripts

f ¯uid
p pore
s solid.
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This paper presents a modi®ed energy equation that
can be solved for very early departures from LTE con-

ditions while assuming the velocity ®eld is known from
the solution of continuity and momentum equation. A
numerical solution requires the knowledge of a new set

of parameters. Clearly, there is a paucity of needed in-
formation for in-depth evaluation of this departure
from the local thermal equilibrium phenomena. In this

paper, the emphasis is on the demonstration of the
underlying physical phenomena for an early departure
from LTE conditions. To this end, this work considers

a simpli®ed ¯ow model.
Parametric studies reported here describe the role of

a dimensionless quantity that identi®es the early depar-
ture from local thermal equilibrium in the presence of

a rapidly changing heat source. The numerically
obtained data reveal the implication of nonequilibrium
thermal phenomena in a ¯uid-saturated porous med-

ium in the presence of a volumetric heat source. In this
work, early departure from the local thermal equili-
brium in applications where there is a rapid change in

the surface heat ¯ux, e.g., in combustors and in laser
heating applications, is analyzed.

2. Theoretical model

The concept of local thermal equilibrium is widely
used in the majority of heat transfer applications invol-
ving porous media. An in-depth analysis of non-ther-

mal equilibrium is reported by Amiri and Vafai [36,37]
for both steady state and transient conditions. Also, in
their work the impact of dispersion and non-Darcian
e�ects on LTE is analyzed. A study of LTE for

compressible ¯uid ¯ow is presented in Vafai and Sozen
[35]. Their results indicate that the Darcy number and
the particle Reynolds number are in¯uential par-

ameters in determining the validity of local thermal
equilibrium. In these works, Vafai and coworkers
consider the solid and ¯uid as two independent systems

that exchange energy by convection at the local porous
¯uid interface. This paper investigates the conditions
when there is a relatively small departure from local
thermal equilibrium due to rapid transient heating.

This non-equilibrium phenomenon occurs depending
on the nature of the transient heat source, ratio of the
characteristic length to pore size, velocity ®eld, and the

thermophysical properties of the medium. These vari-
ables can be cast into a set of dimensionless groups
that will emerge through analysis presented later in

this work. They will be used as a guide to indicate
whether the LTE condition exists or the solid and ¯uid
should be treated as di�erent systems.

2.1. Energy equation

When the thermophysical properties are independent
of temperature and ¯ow is incompressible, the continu-
ity and momentum equation [36,37] yield the velocity

distribution. Next, consideration is given to a di�eren-
tial element in the ¯ow ®eld that contains both solid
and ¯uid phases. The energy equation applied to a

control volume under a locally non-equilibrium ther-
mal condition leads to the following set of governing
equations [36,37]:

ECf
@Tf�r, t�
@ t

� CfV � rTf

� ÿr � qf�r, t� � hApac�Ts ÿ Tf�
�1a�

�1ÿ E�Cs
@Ts�r, t�
@ t

� ÿr � qs�r, t� ÿ hApac�Ts ÿ Tf� �1b�

Adding Eqs. (1a) and (b), replacing qf+qs with q, and
including the contribution of a volumetric heat source,
S(r, t ), yields the relation

ÿr � q�r, t� � S�r, t�

� ECf
@Tf�r, t�
@ t

� CfV � rTf � �1ÿ E�Cs
@Ts�r, t�
@ t

�1c�

where E=Vf /V is the fraction of the volume the ¯uid
occupies. Under a local thermal equilibrium condition,
it is assumed that the solid and the adjacent ¯uid are

at the same temperature, Ts=Tf . Under a rapid heat-
ing condition, which is analyzed in this work, the ¯uid
and solid are not at the same temperature at a local
level. It is hypothesized that, before the onset of equili-

brium, the ¯uid temperature undergoes a transient
process de®ned by the relation

CfDVp
@Tf

@ t
� hDAp�Ts ÿ Tf� �2�

where DVp and DAp are volume and surface area of a
mean pore, and h is the interstitial heat transfer coe�-
cient. As a shorthand notation, let rh=DVp/DAp,

where rh can be considered to be a pore hydraulic
radius. Eq. (2) can then be stated as

Ts�r, t� � Tf �r, t� � rhCf

h

@Tf �r, t�
@ t

�3�

Under a local thermal equilibrium condition, Tf=Ts,

and the Fourier equation is

q�r, t� � ÿkerTf �r, t� �4�

where ke is the equivalent thermal conductivity of the
porous medium. It is reported that under a rapid heat-
ing process, e.g., by Fournier and Boccara [39], Eq. (4)
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does not hold. A comprehensive literature survey of
earlier work is in Ref. [37]. In the absence of local

equilibrium, when the departures of q and HT from
local equilibrium are small, it is suggested in Ref. [40]
that the Fourier equation, as given in Eq. (4), needs to

be modi®ed to

q�r, t� � Dq�r, t� � ÿkefrTf�r, t� � D�rTf�r, t��g �5�

Since the di�erential changes on both sides of Eq. (5)
are time dependent, Eq. (5) can be written as

q�r, t� � tq
@q�r, t�
@ t

� ÿke
�
rTf�r, t� � tt

@

@ t
�rTf �r, t��

�
�6�

According to Eq. (3), the relaxation time tt is approxi-
mated by tt1 rhCf /h. Based on the physical reasoning,
one can hypothesize that tq 1 CsRcDVs/DAs, where

DVs is the volume of a solid structure while Rc and
DAs are the contact resistance and contact area
between individual solid structures, respectively. The
derivation of this approximate relation for tq is in a

later section.
One can use Eqs. (3) and (6) to eliminate Ts and q

in Eq. (1c), resulting in

L�Tf� � tq
@

@ t
�L�Tf�� � �tt ÿ tq�@ �r � �kerTf ��

@ t

�
�
S� tq

@S

@ t

�

� C
@

@ t

�
Tf � �te � tq�@Tf

@ t
� tetq

@ 2Tf

@ t2

�
�7�

where Tf=Tf (r, t ), S=S(r, t ), L�Tf� �
r � �kerTf � ÿ CfV � rTf , C � ECf � �1ÿ E�Cs, and
te � �1ÿ E�Cstt=C. Since tetq < (te+tq)

2/2!, the third-
order derivative on the right-hand-side of Eq. (7) is

small and can be neglected. This is consistent with ear-
lier derivations where the terms of the second-order in
Eqs. (3) and (6) are neglected; therefore, this

approximation reduces Eq. (7) to

L�Tf� � tq
@

@ t
�L�Tf�� � �tt ÿ tq�@ �r � �kerTf ��

@ t

�
�
S� tq

@S

@ t

�

� C

�
@Tf

@ t
� �te � tq�@

2Tf

@ t2

�
�8�

For a few special cases, Eq. (8) has an exact solution;
however, in general, the solution requires a numerical
procedure. One special case is the study of the tem-

perature ®eld in a porous medium when V=0. In this
case, Eq. (8), without the term CfV � rTf , is similar to
the thermal conduction equation for energy exchange

in microscale systems. Therefore, the solution of Eq.
(8) for no-¯ow or negligible ¯ow rate, as given in Ref.

[41], is

Tf�r,t� � TI�r,t� � TS�r,t� �9�

where the solution given in Eq. (9) is composed of two
parts, the contribution from the initial condition, TI,
and the contribution from the volumetric heat source,

TS. It should be noted that TS may also contain the
contribution of the nonhomogeneous boundary con-
ditions. The contribution from the initial condition is

TI�r,t� �
X1
n�1

Fn�r�
Nn

eÿ�gnÿbn�t

8><>:sinh�
������������������
�b2n ÿ l2n�

q
t�������������������

�b2n ÿ l2n�
q

�
24�gn ÿ bn�

�
V

Fn�r 0�Ti�r 0� dV 0

�
�
V

Fn�r 0�Tii�r 0� dV 0
35

� cosh�
������������������
�b2n ÿ l2n�

q
t�
�
V

Fn�r 0�Ti�r 0� dV 0
9>=>;

�10�

where Ti (r) and Tii (r) are the temperature and the
time derivative of temperature at t=0. The contri-
bution of the volumetric heat source is

TS�r, t� �
X1
n�1

�t
t�0

�
V

�
Fn�r�Fn�r 0�

CNn

�
eÿgn�tÿt�

�

8><>:ebn�tÿt� sinh�
������������������
�b2n ÿ l2n�

q
�tÿ t��

�tq � te�
������������������
�b2n ÿ l2n�

q
9>=>;

�
�
S�r 0, t� � tq

@S�r 0, t�
@t

�
dV 0 dt

�11�

In Eqs. (10) and (11), the eigenfunction Fn (r) is the
solution of equation

r � �kerFn�r�� � ÿgnCFn�r� �12a�

and Nn is the norm

Nn �
�
V

w�r��Fn�r��2 dV �12b�

with a weighting function w(r). The symbols bn, ln,
and S �n (t ) are shorthand notations de®ned by the
relations
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bn � gn

�
1ÿ 1

2

tt
tq � te

ÿ 1

2gn�tq � te�
�

�13�

ln � gn
�
1ÿ tt

tq � te

�1=2
�14�

S �n�t� �
egnt

NnC�tq � te�

�
V

w�r�Fn�r�
�
S�r,t� � tq

@S�r, t�
@ t

�
dV �15�

Eqs. (10) and (11) are cast in the form of Green's func-
tion solution in [41], and they are derived when V=0.

In general, when velocity is ®nite, the computation of
temperature requires a numerical scheme. However,
Eqs. (10) and (11) can also be used in the presence of

a ¯ow when V=constant with an additional restric-
tion, that is, tq=tt. For this speci®c case, Fn (r) in Eqs.
(10), (11), and (12b) is the solution of equation

L�Fn�r�� � ÿgnCFn�r� �16�

instead of Eq. (12a).

3. Results

The temperature solution and relevant steps will be
demonstrated through two numerical examples.

Example 1 considers a porous layer with no through
¯ow, Fig. 1a. In the presence of a ¯ow, Fig. 1b, as
discussed in Example 2, major modi®cations of the sol-
ution technique are necessary. The examples will ident-

ify both the required conditions for the local thermal
equilibrium and the e�ect of departure from the equili-
brium condition.

3.1. Example 1. Conduction solution

To study the parameters that govern the local ther-
mal equilibrium condition, a porous plate with thick-
ness L is examined, as shown in Fig. 1a. The plate is
insulated on one side, x=L, and the other side, at

x=0, is subject to a periodic surface heat ¯ux, and
there is no ¯ow through the porous slab. This porous
slab is initially at a uniform temperature so that

Ti=Tii=0. Now, one can simulate di�erent periodic
heat inputs by studying the e�ects of harmonically
varying heat inputs. This is a systematic method of

studying the e�ect of heat ¯ux for various functional
forms since any such function can be decomposed into
a series of sines and cosines using the Fourier series, or

using the Fourier integral. It should be noted that the
evaluation of the e�ective conductivity is in itself an
important problem as discussed in detail in Tien and

Va®a [42].
Therefore, the volumetric heat source S is taken as

S=d(xÿ 0)q0 sin(nt ) in Eq. (11), where the Dirac delta

function d(xÿ 0)=1 when x=0, otherwise d(xÿ 0)=0.
The eigenfunctions of Eq. (12a) for the above-men-
tioned boundary conditions are cos(mpx/L ) that yield

the eigenvalues gm=(mp/L )2ke/C for m=0, 1, 2, . . . ,.
The temperature solution of Eq. (11), retaining tq, tt,
and te, and de®ning the parameters am=gm ÿ bm,
gm=(mp/L )2ke/C, and om=(b 2

mÿl 2
m)

1/2 is

keTf

q0L
�
X1
m�0

LFm�x�
Nmom�te � tq� f�L1 � ntqL2�

� exp�ÿamket=�CL2�� � �Gs1 � ntqGs2�

� sin�nt� � �Gc1 � ntqGc2� cos�nt�g=

�n4 � �a2m ÿ o 2
m�2 � 2n2�a2m � o 2

m��

�17�

wherein the eigenfunction is Fm (x )=cos(mpx/L ) and

the norm is Nm=L when m=0 and Nm=L/2 when
m>0. Other parameters appearing in Eq. (17) are:

L1 � n�2amom cosh�omt�

� �n2 � a2m � o 2
m� sinh�omt��

�18a�

L2 � �om�n2 ÿ a2m � o 2
m� cosh�omt�

ÿ �n2 � a2m ÿ o 2
m� sinh�omt��

�18b�

Fig. 1. Schematic of a ¯uid-saturated porous medium; (a) no

¯ow, (b) with ¯ow.
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Gs1 � Gc2 � ÿom�n2 ÿ a2m � o 2
m�

and Gc1 � ÿGs2 � ÿ2namom

�18c�

This parametric study considers two limiting cases.
The ®rst limiting case, corresponding to tq=0, shows a
relatively larger departure from the LTE condition,

that is, a small tq enhances the nonequilibrium transi-
ent behavior of a system. The second limiting case, for
tq=tt, produces a relatively smaller departure from

LTE for most of the frequencies.
An observation of the governing equations shows

that the local thermal equilibrium holds when Cfrh/h is
small. When time t is cast in dimensionless form as

Fo=ket/CL
2, the other dimensionless parameters that

control the state of local thermal equilibrium are Cs/C
and Sp=hL 2/kerh. The surface heat ¯ux in terms of

dimensionless parameters is q0 sin[(nCL 2/ke)Fo ], where
nCL 2/ke is the dimensionless frequency. The dimen-
sionless quantity Sp contains the contributions of the

¯ow in porous media, interstitial heat transfer, and
general thermal conduction. It is proposed that it be
called the Sparrow number because of numerous pio-
neering contributions of Professor E. M. Sparrow to a

broad range of heat transfer topics including porous
media. The following numerical results show that the
local thermal equilibrium, Tf3Ts, exists when Sp is

large.
The solution, using Eq. (17), describes the para-

metric behavior of the system. The dimensionless solid

and ¯uid temperatures are calculated as a function of
the Fourier number, for nCL 2/ke=10, and Sp=10.
The results are plotted in Fig. 2a for x=0 and in Fig.

2b for x=L. The data clearly show the di�erence
between solid and ¯uid temperatures due to the non-
equilibrium thermal behavior of the ¯ow. Also, the
data in the ®gures show that the dimensionless quan-

tity, C=(1ÿ E )Cs/C, in¯uences the temperature values.
There is a relatively larger spreading of temperature
data in Fig. 2b than in Fig. 2a. The computation is

repeated using Sp=100 and the results are shown in
Figs. 3a and b. The data in Fig. 3a, for x=0, show a
near thermal equilibrium condition, that is, Tf3Ts.

Also, Fig. 3b shows a similar behavior indicating the
existence of near local thermal equilibrium throughout
the porous medium, and the in¯uence of the variations
in the parameter C is substantially diminished.

Accordingly, for most practical applications, the local
thermal equilibrium is satis®ed when Sp>100; how-
ever, for very fast transients, Sp should be as much as

500 or more. The next set of data demonstrates this
e�ect.
To show the e�ect of slowly and rapidly changing

surface heat ¯ux, the periodic terms in Eq. (17) are
cast in the form sin(ntÿf ) where f is the phase angle.
The phase angle and the amplitude can be considered

as indicators of the thermal performance of a porous

layer subject to a rapidly changing heating condition.

Fig. 4a shows the computed values of the phase angle

and Fig. 4b describes the amplitude at x=L. The data

are plotted for Sp=10, 50, and 100 and for three

speci®c heat ratios, C=0.2, 0.5, and 0.8. Fig. 4a shows

that for high frequency surface heat ¯ux, especially

when C is small, much higher values of the Sparrow

number are needed to achieve the condition of local

thermal equilibrium. According to Fig. 4b, the ampli-

tudes behave nearly the same as those for the local

thermal equilibrium except for the Sp=10 line when

C=0.2. The logarithmic scale in Fig. 4b enables one to

observe small departures from the LTE condition. The

solid lines, designated as Sp=1 in Figs. 4a and b, are

solutions in the presence of the LTE condition.

Numerical data are collected to show the limiting

performance of this solution when tq=tt. This is a

favorable condition for occurrence of the local thermal

equilibrium condition. Prior to examining the numeri-

cal data, this limiting tendency is apparent after

Fig. 2. (a) Fluid and solid temperature at x=0 when q(0,

t )=q0 sin(nt ), Sp=10, u0=0, tq=0, and nCL 2/ke=10. (b)

Fluid and solid temperature at x=L when q(0, t )=q0 sin(nt ),
Sp=10, u0=0, tq=0, and nCL 2/ke=10.
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rewriting Eq. (8) as�
L�Tf� � Sÿ C

@Tf

@ t

�

� tq
@

@ t

�
L�Tf� � Sÿ C

@Tf

@ t

�

� �tt ÿ tq�@ �r � �kerTf��
@ t

� tt �C
@ 2Tf

@ t2

�19a�

When tq=tt, the ®rst term on the right-hand-side of
Eq. (19a) vanishes. For this special case, the equili-
brium solution satis®es equation

L�Tf� � Sÿ C
@Tf

@ t
� 0 �19b�

and it will satisfy Eq. (19a) if C=(1 ÿ E )Cs/C 4 0

because both remaining terms in the square brackets,
Eq. (19a), contain the left-hand-side of Eq. (19b). In
general, the solution of Eq. (19a), when tq=tt, shows

the departure from the local thermal equilibrium con-
dition due to the in¯uence of the term ttC @2Tf /@t

2.
The computed phase angles and amplitudes at x=L

for heat ¯ux inputs of di�erent frequency, in Figs. 5a
and b, show this tendency.
The phase angles shown in Fig. 5a have generally

higher phase angles than those in Fig. 4a. The phase
angles, when Sp=100, have nearly the same phase
angles as those for the local thermal equilibrium values

up to the dimensionless frequency of 15. For higher
frequency heat inputs, the deviations from the local
thermal equilibrium solutions are smaller than those
shown in Fig. 4a. Furthermore, the amplitudes plotted

in Fig. 5b are approximately the same as those for the
LTE solution when nCL 2/ke < 15. This implies that
when tq=tt and Sp>100, the condition of the local

thermal equilibrium is satis®ed for all practical appli-
cations. A comparison between Figs. 4a±b and Figs.
5a±b shows that, for a given Sparrow number, it is

more likely to approach LTE as tq approaches tt.

3.2. Example 2. Uniform-¯ow solution

To demonstrate the di�erences between this solution
and the solution in Example 1, it is assumed that there

is a given heat ¯ux at x=0 and the surface at x=L is
insulated. There is a ¯ow with a constant mean vel-
ocity u0 in the x- or opposite to the x-direction. For

this example, it is assumed that tq=tt for two reasons:
(1) the availability of an exact solution for this case,
and (2) this is a favorable condition for occurrence of

Fig. 3. (a) Fluid and solid temperature at x=0 when

q(0, t )=q0 sin(nt ), Sp=100, u0=0, tq=0, and nCL 2/ke=10.

(b) Fluid and solid temperature at x=L when q(0, t )=q0
sin(nt ), Sp=100, u0=0, tq=0, and nCL 2/ke=10.

Fig. 4. Variation (a) phase angle (b) amplitude with dimen-

sionless frequency, nCL 2/ke, at x=L when tq=0 and u0=0

for di�erent Sparrow numbers, Sp.
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the local thermal equilibrium. For this speci®c case,
other boundary conditions can be accommodated by
the classical approach. Accordingly, Eq. (17) can pro-

vide a solution to this problem following other modi®-
cations described below.
Consideration is given to ®nding the temperature

®eld when a ¯uid with velocity u0 is passing through a
porous medium along the x-direction. Preliminary to
®nding such a solution, it is essential to ®nd a particu-

lar solution of the equation

ke
@ 2y
@x 2
ÿ Cfu0

@y
@x
� C

@y
@ t

�20�

This is a classical one-dimensional conduction in a

moving body whose solution is readily available, see
[43], p. 69. A schematic of the porous medium set-up
corresponding to this case is shown in Fig. 1b. If a
¯uid ¯ows in the opposite direction of the coordinate

x, then u0 is negative. When the independent variables
are cast in the dimensionless form, this equation
becomes

@ 2y
@ �x 2
ÿ @y
@ �x
� @y
@ �t

�21�

where

�x � Cfu0x=ke �22a�

and

�t � C 2
f u

2
0t=Cke � �ket=CL2��Cfu0L=ke�

� Fo�Pe�2 �22b�

The Peclet number Pe=Cf vu0vL/ke and the Fourier
number Fo=ket/CL

2 are based on the mean thermal
conductivity value. The eigenfunctions and eigenvalues

for this partial di�erential equation are

Fm� �x � � 1ÿ �x=2 when m � 0 �23a�

Fm� �x � � �cos�mp �x= �L � ÿ �L sin�mp �x= �L �=2mp

� exp� �x=2�

for m � 1, 2, . . . ,1
�23b�

and

gm � �mp= �L �2 � 1=4 for m � 0, 1, 2, . . . ,1 �23c�

where vLv=Pe. The particular solution to be used to
construct the general solution is

y �
X1
m�0

cm�cos�mpx=L�

ÿ
�L

2mp
sin�mpx=L�� e �x =2 eÿgm �t

�24�

Therefore, it is possible to compute the temperature
distribution from Eq. (17) after replacing the eigen-

functions by Eqs. (23a, b), the eigenvalues by Eq.
(23c), and by a new value for the norm. The new value
of the norm for inclusion in Eq. (17) is calculated

using the weighting function w�x� � exp�ÿ �x � and Eq.
(12b); that is

Nm � �L �1� �L
2
=12ÿ �L=2� for m � 0 �25a�

Nm � �L �1� �L
2
=�2mp�2�=2 for m � 1, 2, . . . , �25b�

Depending on when u0 is positive or negative, the tem-

perature solution at x=0 and x=L are expected to
behave di�erently. Because temperature depends on a
large number of variables, typical values are selected
for the sake of brevity. Data are obtained when tq=tt,
Sp=10, and nCL 2/ke=10 but for di�erent Pe=0, 0.1,
0.2, 0.5, and 0.8. Fig. 6a shows the temperature of the
solid and the liquid at x=0 when Sp=10,

nCL 2/ke=10, and Cs/C=0.2. Fig. 6b describes the
temperature at the x=L surface for the same par-
ameters. When u0>0, Fig. 6b shows that the tempera-

ture amplitude increases as Pe increases while there are
negligible phase shifts for the extremums. The increase
in temperature is due to an increase in the convective

Fig. 5. Variation (a) phase angle (b) amplitude with dimen-

sionless frequency, nCL 2/ke, at x=L when tq=tt and u0=0

for di�erent Sparrow numbers, Sp.
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component of the energy transfer. This is demon-

strated by reversing the direction of ¯ow. The ¯uid
and solid temperature are computed when velocity u0
is opposite to the x-direction and using the same par-
ameters as those in Figs. 6a and b. Figs. 7a and b

show that this process will be reversed when u0 < 0,
that is, the temperature amplitude decreases as Pe

increases.

To show the e�ect of higher frequency heat input
values for this latter case, u0 < 0, the phase angle and

amplitude at x=L are computed and plotted in Figs.
8a and b for Cs/C=0.2. The solid lines in the ®gures

are for Sp=1 and correspond to the condition of

LTE while the dash lines and dot±dash lines are for
Sp=100 and 10, respectively. The data show that the

Pe has a profound e�ect on the phase angle at higher
values of dimensionless frequency. Figs. 9a and b and

10a and b are prepared for C=0.5 and 0.8, respect-
ively. They clearly show some unexpected results for

phase angle and amplitude at higher ranges of dimen-
sionless frequency. The most notable one is a rapid
drop in the phase angle for ®nite values at dimension-

less frequency values larger than 50 when Pe is large
and Sp is small. Based on this study, one should expect
a larger departure from the local thermal equilibrium

as tq4 0. A discussion concerning the expected value
of tq is presented in the next section.

4. Remarks and discussions

The majority of studies concerning heat transfer in

porous media are based on the local thermal equili-
brium assumption. The study of nonequilibrium
phenomena in porous media indicates that the assump-

tion of local thermal equilibrium is not universally
valid. In the presence of rapid surface heat input, the
local thermal equilibrium fails to exist and large errors

Fig. 6. (a) The e�ect of the Peclet number on ¯uid and solid

temperature at x=0 when q(0, t )=q0 sin(nt ), Sp=10, u0>0,

C=0.2, tq=tt, and nCL 2/ke=10. (b) The e�ect of the Peclet

number on ¯uid and solid temperature at x=L when

q(0, t )=q0 sin(nt ), Sp=10, u0>0, C=0.2, tq=tt, and nCL 2/

ke=10.

Fig. 7. (a) The e�ect of the Peclet number on ¯uid and solid

temperature at x=0 when q(0, t )=q0 sin(nt ), Sp=10, u0< 0,

C=0.2, tq=tt, and nCL 2/ke=10. (b) The e�ect of the Peclet

number on ¯uid and solid temperature at x=L when

q(0, t )=q0 sin(nt ), Sp=10, u0< 0, C=0.2, tq=tt, and nCL 2/

ke=10.
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can be realized, depending on the value of the thermo-
physical properties. The value of the Sparrow number

appears to be indicative of the presence of local ther-
mal equilibrium for applications dealing with rapidly
changing heat sources.

It is important to present a simple method of esti-
mating the Sparrow number hL 2/kerh. For no ¯ow

condition, one can show that the heat transfer is by
natural convection. Since the Rayleigh number is gen-
erally small, the heat transfer is dominated by conduc-

tion and one can show that Nurh=hrh/kf is a constant.
The value of the interstitial heat transfer h is constant
for the no ¯ow case. The value of h can be estimated
based on the hypothesis that the mean solid tempera-

ture Ts and the mean ¯uid temperature Tf in a di�er-
ential element are constant. If the Rayleigh number is
small, the natural convection in a pore is dominated

by conduction. The heat transfer coe�cient is com-
puted assuming a pore to have one of the following
shapes: spherical, cylindrical prism, or square prism.

The respective values Nurh=hrp/kf=1.09, 1.45, or 1.23
show relatively small di�erences.
In general, the Sparrow number can be rewritten in

terms of the Nusselt number as

Sp � Nurh
�kf=ke��L=rh�2 �26�

In the presence of a forced ¯ow, Nurh=hrh/kf 1 0.92 is
analogous to the Nusselt number for laminar ¯ow in a
circular passage. If the ¯ow-passage pro®le, with a

mean cross-section area Ac, is slightly di�erent from
circular, the empirical relation Nurh=0.92/[1+(Ac ÿ
4pr 2h)/Ac] should provide an improved Nusselt number
for that passage. Accordingly, Eq. (26) describes a

simple method of estimating the Sparrow number;
however, for an accurate estimate, the Sparrow num-

Fig. 8. The e�ect of the Peclet number on (a) the phase angle

and (b) the amplitude for di�erent Sparrow number at x=L

when C=0.2 and u0<0.

Fig. 9. The e�ect of the Peclet number on (a) the phase angle

and (b) the amplitude for di�erent Sparrow number at x=L

when C=0.5 and u0<0.

Fig. 10. The e�ect of the Peclet number on (a) the phase

angle and (b) the amplitude for di�erent Sparrow number at

x=L when C=0.8 and u0<0.
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ber should be determined experimentally. Usually, kf
< ke and, according to Eq. (26), any value of Sp1 10

or less can be realized only if the thermal conductivity
of the ¯uid is much smaller than ke. The Sparrow
number also provides an estimate of the lag time tt,
that is

kett
CL2
� Cf=C

Sp
�27�

Another parameter that enters the analysis is tq.
Experimental studies are needed to ascertain the
proper value of tq. However, it is possible to provide
an estimate of tq values using existing information in

the literature. According to the Fourier equation, the
heat ¯ux across a control volume is related to HT.
However, prior to onset of LTE, the actual heat ¯ux is
larger because thermal energy must be supplied to the

individual structures within the control volume across
contact surfaces and through constrictions. To account
for the change in heat ¯ux, one can set DAsDq 1
DVsCs @(DTs)/@t where DTs is the temperature di�er-
ence across a contact surface. Substituting for
DTs=qRc results in the relation

Dq � �DVs=DAs�CsRc�@q=@ t� �28�

where Rc is the contact resistance. A comparison with

Eq. (6) suggests that tq 1 CsRcDVs/DAs. The value of
Rc depends on various factors including geometry,
applied pressure, and the constriction e�ect; hence, it
is di�cult to develop an accurate prediction in the

absence of experimental data.
The Sparrow number also controls the state of local

thermal equilibrium under steady-state operation. One

can consider a one-dimensional porous layer with
thickness L and assume ¯ow in the pores is similar to
¯ow in small passages whose hydraulic radius is rh.

The energy balance applied to a ¯uid element in a
passage yields

Ts ÿ Tf � Pe

Sp
� @Tf

@ �x=L� �29�

For x/L of the order of 1, the Sp/Pe of more than 100
ensures that the local value of TsÿTf will be less than
one percent of the temperature variation in the ¯uid.

Therefore, Sp/Pe introduces a simple method of verify-
ing the existence of LTE under a steady state operating
condition.

5. Conclusion

Usually an estimate of the Sparrow number is su�-
cient to ascertain the state of the LTE condition. It is

interesting to note that the heat transfer coe�cient in a
pore can be very large but the Nusselt number, as

de®ned here, is nearly constant; 01.0 for the conduc-
tion case and 00.9 for incompressible laminar ¯ow in
the pores. Using these values, Eq. (26) provides a

quick method of predicting the size of the Sp number.
For the case of conduction, a large Sp number is in-
dicative of the existence of LTE. However, in the pre-

sence of ¯ow, the analysis presented here is valid only
if Sp/Re is large. For a general case when LTE is
absent, one should treat solid and liquid as two di�er-

ent systems [35±38].
The study presented here con®rms that, in various

situations, the commonly used assumption of local
thermal equilibrium is satisfactory. However, in con-

junction with studies in Vafai and Sozen [35,44], Amiri
and Vafai [36,37], and Lee and Vafai [38], the assump-
tion of local thermal equilibrium does fail in a substan-

tial number of applications depending on the criteria
speci®ed in those studies. This work establishes one
such area of failure corresponding to the presence of

rapidly changing surface heat ¯ux. In general, for
rapidly changing heat sources, it is important to esti-
mate the Sparrow number. A su�ciently large

Sparrow number is indicative of the presence of a local
thermal equilibrium condition.

References

[1] P. Cheng, W.J. Minkowycz, Free convection abut a ver-

tical ¯at plate embedded in a saturated porous medium

with application to heat transfer about a dike, Journal

of Geophysical Research 82 (1977) 2040±2044.

[2] A.B. Kazanskiy, A.N. Zolotokrylin, Missing component

in the equation for the land surface heat balance as

applied to the heat exchange between the desert or semi-

desert surface, Boundary-Layer Meteorology 71 (1994)

189±195.

[3] D.M. Manole, J.L. Lage, Numerical simulation of

supercritical Hadley circulation within a porous layer,

induced by inclined temperature gradients, International

Journal of Heat and Mass Transfer 38 (1995) 2583±

2593.

[4] R.M. Abalone, M.A. Lara, R. Gaspar, R.D. Piacentini,

Drying of biological products with signi®cant volume

variations. Experimental and modeling results for

potato drying, Drying Technology 12 (1994) 629±647.

[5] L. Zhang, P.J. Fryer, Models for the electrical heating

of solid±liquid food mixtures, Chemical Engineering

Science 48 (1993) 633±642.

[6] K.G.T. Hollands, K. Iynkaran, Analytical model for the

thermal conductance of compound honeycomb trans-

parent insulation, with experimental validation, Solar

Energy 51 (1993) 223±227.

[7] J.R. Leith, A. Haji-Sheikh, A transient technique for

®nding e�ective thermal conductivity of ¯uid saturated

porous media. Symposium on Heat Transfer in Porous

W.J. Minkowycz et al. / Int. J. Heat Mass Transfer 42 (1999) 3373±3385 3383



Media. Beck, Yao (Eds.), ASME HTD-Vol. 22, Bk. No.

H00250 (1982) 93±101.

[8] J. Selih, A.C.M. Sousa, T.W. Bremner, Moisture and

heat ¯ow in concrete walls exposed to ®re, Journal of

Engineering Mechanics of ASCE 120 (1994) 2028±2043.

[9] L.W. Hrubesh, R.W. Pekala, Thermal properties of or-

ganic and inorganic aerogels, Journal of Materials

Research 9 (1994) 731±738.

[10] A.I. van Heek, Increasing the power of the high tem-

perature reactor module, Nuclear Engineering and

Designs 150 (1994) 183±189.

[11] T.C. Chawla, D.R. Pedersen, W.J. Minkowycz,

Governing equations for heat and mass transfer in heat

generating porous beds. Part I: coolant boiling and tran-

sient void propagation, International Journal of Heat

and Mass Transfer 28 (1985) 2129±2136.

[12] T.C. Chawla, D.R. Pedersen, W.J. Minkowycz,

Governing equations for heat and mass transfer in heat

generating porous beds. Part II: particulate melting and

substrate penetration by dissolution, International

Journal of Heat and Mass Transfer 28 (1985) 2137±

3148.

[13] I. Catton, M. Chung, Two-phase ¯ow in porous media

with phase change: post dryout heat transfer and steam

injection, Nuclear Engineering Designs 151 (1994) 185.

[14] K. Vafai, J. Ettefagh, Analysis of the radiative and con-

ductive heat transfer characteristics of a waste package

canister, ASME Journal of Heat Transfer 110 (1998)

1011±1014.

[15] M. SoÈ zen, K. Vafai, L.A. Kennedy, Thermal charging

and discharging of sensible and latent heat storage

packed beds, Journal of Thermophysics and Heat

Transfer 5 (1991) 623±625.

[16] M.S. Bohn, L.W. Swanson, A comparison of models

and experimental data for pressure drop and heat trans-

fer in irrigated packed beds, International Journal of

Heat and Mass Transfer 34 (1991) 2509±2519.

[17] K.B. Lee, J.R. Howell, Theoretical and experimental

heat and mass transfer in highly porous media,

International Journal of Heat and Mass Transfer 34

(1991) 2123±2132.

[18] C.-K. Chen, C.-H. Chen, W.J. Minkowycz, U.S. Gill,

Non-Darcian e�ects on mixed convection about a verti-

cal cylinder embedded in a saturated porous medium,

International Journal of Heat and Mass Transfer 35

(1992) 3041±3046.

[19] B.A. Masha, G.S. Beavers, E.M. Sparrow, Experiments

on the resistance law for non-Darcy compressible gas

¯ows in porous media, Journal of Fluids Engineering 96

(1974) 353±357.

[20] L.B. Younis, R. Viskanta, Experimental determination

of the volumetric heat transfer coe�cient between

stream of air and ceramic foam, International Journal

of Heat and Mass Transfer 36 (1993) 1425±1434.

[21] D. Getachew, D. Poulikakos, W.J. Minkowycz, Double

di�usion in a porous cavity saturated with non-

Newtonian ¯uid, Journal of Thermophysics and Heat

Transfer 12 (1998) 437±446.

[22] K. Vafai, C.-L. Tien, Boundary and inertia e�ects on

convective heat transfer in porous media, International

Journal of Heat and Mass Transfer 34 (1981) 195±203.

[23] D. Getachew, W.J. Minkowycz, D. Poulikakos,

Macroscopic equations of non-Newtonian ¯uid ¯ow

and heat transfer in a porous matrix, Journal of Porous

Media 1 (1998) 273±283.

[24] E.M. Sparrow, G.S. Beavers, B.A. Masha, Laminar

¯ow in a rectangular duct bounded by a porous wall,

Physics of Fluids 17 (1974) 1465±1467.

[25] A. Bejan, K.R. Khair, Heat and mass transfer by natu-

ral convection in a porous medium, International

Journal of Heat and Mass Transfer 28 (1985) 909±918.

[26] G.S. Beavers, A. Hajji, E.M. Sparrow, Fluid ¯ow

through a class of highly-deformable porous media Part

1: experiments with air, Journal of Fluids Engineering

103 (1981) 432±439.

[27] G.S. Beavers, K. Wittenberg, E.M. Sparrow, Fluid ¯ow

through a class of highly-deformable porous media Part

II: experiments with water, Journal of Fluids

Engineering 103 (1981) 440±444.

[28] M. Sozen, K. Vafai, Analysis of the non-thermal equili-

brium condensing ¯ow of a gas through a packed bed,

International Journal of Heat and Mass Transfer 33

(1990) 1247±1261.

[29] P.C. Huang, K. Vafai, Passive alteration and control of

convective heat transfer utilizing alternate porous cav-

ity/block wafers, International Journal of Heat and

Fluid Flow 15 (1994) 48±61.

[30] G.P. Peterson, C.S. Chang, Two-phase heat dissipation

utilizing porous-channels of high-conductivity material,

ASME Journal of Heat Transfer 120 (1998) 243±252.

[31] J. Bear, Dynamics of Fluids in Porous Media, Dover,

New York, 1972.

[32] D.A. Nield, A. Bejan, Convection in Porous Media,

Springer, New York, 1992.

[33] M. Kaviany, Principles of Heat Transfer in Porous

Media, Springer-Verlag, New York, 1991.

[34] C.-L. Tien, K. Vafai, Convective and radiative heat

transfer in porous media, Advances in Applied

Mechanics 27 (1989) 225±282.

[35] K. Vafai, M. Sozen, Analysis of energy and momentum

transport for ¯uid ¯ow through a porous bed, ASME

Journal of Heat Transfer 112 (1990) 690±699.

[36] A. Amiri, K. Vafai, Analysis of dispersion e�ects and

non-thermal equilibrium, non-Darcian, variable porosity

incompressible ¯ow through porous media,

International Journal of Heat and Mass Transfer 37

(1994) 939±954.

[37] A. Amiri, K. Vafai, Transient analysis of incompressible

¯ow through a packed bed, International Journal of

Heat and Mass Transfer 41 (1998) 4259±4279.

[38] D.Y. Lee, K. Vafai, Analytical characterization and

conceptual assessment of solid and ¯uid temperature

di�erentials in porous media, International Journal of

Heat and Mass Transfer 42 (1999) 423±435.

[39] D. Fournier, A.C. Boccara, Heterogeneous media and

rough surfaces: a fractal approach for heat di�usion stu-

dies, Physics (A) 157 (1989) 587±592.

[40] D.K. Tzou, Macro- to Microscale Heat Transfer,

Taylor and Francis, New York, 1997.

[41] K.J. Hays-Stang, A. Haji-Sheikh, A uni®ed solution for

heat conduction in thin ®lms, International Journal of

Heat and Mass Transfer 42 (1999) 455±465.

W.J. Minkowycz et al. / Int. J. Heat Mass Transfer 42 (1999) 3373±33853384



[42] C.L. Tien, K. Vafai, Statistical bounds for the e�ective

thermal conductivity of microsphere and ®brous insula-

tion, AIAA Progress Series 65 (1979) 135±148.

[43] J.V. Beck, K.D. Cole, A. Haji-Sheikh, B. Litkouhi,

Heat Conduction Using Green's functions, Hemisphere,

Washington, DC, 1992.

[44] K. Vafai, M. Sozen, An investigation of a latent heat

storage packed bed and condensing ¯ow through it,

ASME Journal of Heat Transfer 112 (1990) 1014±1022.

W.J. Minkowycz et al. / Int. J. Heat Mass Transfer 42 (1999) 3373±3385 3385


