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Abstract-The present work consists of a numerical and experimental investigation of the effects of the 
presence of a solid boundary and inertial forces on mass transfer in porous media. Particular emphasis is 
placed on mass transfer through the porous medium near an impermeable boundary. The local volume- 
averaging technique has been used to establish the governing equations. The numerical solution of the 
governing equations is used to investigate the mass concentration field inside a porous medium close to an 
impermeable boundary. In conjunction with the numerical solution, a transient mass transfer experiment has 
been conducted to demonstrate the boundary and inertia effects on mass transfer. This is accomplished by 
measuring the time and space-averaged mass flux through a porous medium. The results clearly indicate the 
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presence of these effects on mass transfer through porous media. 

NOMENCLATURE 

blowing coefficient, v,/u,; 
Darcy number, K/L2 ; 
effective mass diffusion coefficient 

C m2 s-l]; 
function used in expressing inertia terms 
in equation (13); 
permeability of the porous structure 

Cm’] ; 
horizontal extent of the external boun- 

dary [ml; 
rate of production of species j per unit 
volume [kg mm3 s-l]; 
mass fraction of component j; 
dimensionless mass concentration, 

bj - mjseqMmj. m - mj,eq); 

equilibrium mass concentration at the 
boundary ; 
free-stream mass concentration; 
pressure [N m - ‘1; 
mass transfer Reynolds number, 

P&LlPi ; 
effective Schmidt number, h 6/p, Dj,e; 
Sherwood number defined in equation 

(17); 
time-averaged Sherwood number; 

time and length-averaged Sherwood 
number, defined in equation (19); 
time [s] ; 
dimensionless time, t/(K/Dj ,) ; 
x-component velocity [m s’ ‘I; 

K dP 
convective velocity, - - - [m s ‘1; 

/+ dx 
velocity vector [m] ; 
y-component velocity [m s- ‘I; 

V WY) 

x, 
Y, 

blowing velocity [m s- ‘I; 
spatial coordinate, horizontal [m] ; 
spatial coordinate, vertical [ml. 

Greek symbols 

Y? porous media shape parameter, (6/K)‘/’ 

[m-l]; 
4 porosity of the porous medium ; 

tlj, dimensionless vertical length scale, 
y/(x/ScjRe,Da”2); 

Pf, dynamic viscosity of the fluid [kg m-l 
s-11; 

(3 dimensionless horizontal length scale, 

+-; 
P e, mass-averaged density 1 Pj [kg m-“1 ; 

density of species j [kg m-“1 ; 
mass transfer boundary parameter, 

(scj/YL)2; 

Y In? mass transfer inertia parameter, Fa3” 

Re AL ; 

Rj, blowing parameter for species j, B Scj 

Other symbols 

< )> denotes the “local volume-average” of a 
quantity. 

I. INTRODUCTION 

TRANSPORT phenomena in porous media have re- 
cently received considerable attention due to the 
increasing interest in geothermal operations, building 
thermal insulation, heat exchangers, petroleum re- 
servoirs, chemical catalytic reactors and many other 
areas. This increase in the use of porous media has 
made it essential to find a better way of understanding 
the associated transport processes. However, the geo- 

* Present address: Dept. of Mechanical Engineering, Ohio metric complexity of the porous medium prevents 
State University, Columbus, OH 43210, U.S.A. exact solutions of the transport equations inside the 
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pores. For this reason analytical simplifications must 
be introduced in analyzing transport phenomena in 
porous media. Most of the existing studies [l-4] deal 
primarily with the mathematical simplification based 
on Darcy’s law, which neglects the effects of a solid 
boundary or the inertial forces on flow, heat and mass 
transfer through porous media. In many applications 
the porous medium is bounded and the fluid velocity is 
high. Therefore, it is important to investigate these 
boundary and inertia effects. In a previous paper [S] 
these effects on flow and heat transfer were analyzed 
and conveniently expressed in terms of three dimen- 
sionless parameters, which allowed a simple charac- 
terization scheme for interpreting the applicability of 
Darcy’s law to various problems of flow and heat 
transfer in porous media. The present work discusses 
these effects on mass transfer through porous media. 
This includes a mass transfer experimental investi- 
gation to demonstrate the boundary and inertia 
effects. The study of mass transfer in porous media is 
essential due to its wide applications such as chemical 
catalytic reactors. An important difference between the 
heat and mass transfer processes lies in the function of 
the solid matrix. The solid matrix does not always 
participate in the mass transfer process as in the heat 
transfer case. In this regard, mass transfer can be 
analogous to a heat transfer process with zero solid- 
matrix thermal conductivity. This fact is especially 
useful in a mass transfer experiment since the proper- 
ties of the solid-matrix are not needed. 

The present analysis is concerned with transient 
mass transfer in porous media, in accordance with the 
experimental study which is transient in general. 
Indeed, many interesting features have been uncovered 
in the transient mass transfer analysis. The experimen- 
tal measurements, which agree well with the numerical 
results, demonstrate in a convincing manner the 
boundary and inertia effects. 

2. FORMULATION 

The governing equations for mass transfer in porous 
media are developed here using the local volume- 

FIG. 1. The volume V associated with every point in porous 
medium. 

average technique [5-71. This is done by associating 
with every point in the porous medium a small volume 
I/ bounded by a closed surface A. Let Vr be that 
portion of V containing the fluid, and let A,, be the area 

of pore walls contained within V, as shown in Fig. 1. 
The local volume average of a quantity Y associated 
with the fluid is then defined as 

$dV. 

Using the “volume average of a divergence” theorem 
[6,7], the local volume average of the mass, momen- 
tum and species equations for an incompressible, 
transient mass transfer through a porous medium with 
no body forces due to gravity, can be established as [5] 

v (V> = 0 (2) 

a(v) 
Pe 7 + P,((V . WV) 

= -V(P) + /l’rV2(V) + r (3) 

P. 
a(m,> 

at + P,(V) ’ V<mj> 

where 

s (mjV - DjVmj)' dA (5) 
A*, 

1 
r=- 

V 
S.dA (6) 

A = P(mj> + i IV<mj> IV (7) 

where the symbols are as defined in the Nomenclature, 
also S is the fluid’s stress tensor, and /I and 4 complex 
functions of porosity 6, p. Dj, ((V)I, IV(mj)I and 
(V) . V(mj) [6]. Equations (2), (3) and (4) are ‘mac- 
roscopic’ conservation equations for fluid mass, mom- 
entum and species mass concentration, respectively. 
The body force term r is caused by the micropore 
structure, the rate of production term W may result 
from a catalytic chemical reaction on the micropore 
structure and A can be considered as an effective mass 
flux vector of the porous medium and the fluid. 

In the volume-averaging process some information 
is lost, thus requiring supplementary empirical re- 
lations for r and A, as discussed in detail for the heat 
transfer part [5]. It should be noted that the empirical 
information to be employed here concerns specific 
physical terms in the fundamental transport equations 
and is quite different from the global empirical 
relations. 

The effects of a solid boundary on flow and mass 
transfer in a porous medium originate from momen- 
tum diffusion caused by the boundary frictional re- 
sistance. This resistance is in addition to the bulk 
frictional drag induced by the solid matrix as charac- 
terized by Darcy’s law. The boundary effects are best 
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FIG. 2. Transient mass transfer in a porous medium confined nj = 0, (U) = 0, 
by an external boundary. 

described in terms of a new concept of the momentum 
boundary layer, in which the above two resistances are 
of the same order of magnitude. The procedure for 
arriving at the mass concentration boundary layer 
equations is similar to the heat transfer case [5] with 
two principal differences. First, variable natural blow- 
ing is present at the external boundary in the mass 
transfer case. This blowing is caused by the mass flux 
from the solid boundary to the fluid, which in turn 
causes a coupling between the velocity and mass 
concentration fields. Secondly, a rate of production by 
catalytic reaction may exist on the micropore structure 
represented by the term W in the species equation (4). 

(3 = _Dj,_Y I i t1 - mj.eq)"C, (15) 
y=o 

(tij) = 0 

‘l, + Co, (U) = [ - 1 + (1 + 4Y’,)“2]/2YY,, 

(Cij) = 1 (16) 

where v is the y-component velocity, and the boundary 
condition on z?in equation (15) makes the velocity and 
mass concentration fields coupled. 

Two-dimensional transient mass transfer 
To illustrate the importance of the momentum 

boundary layer and its effects on mass transfer, an 
analysis is made for an incompressible, 2-dim. flow 
through a porous medium confined by an external 
boundary as shown in Fig. 2. An order of magnitude 
analysis of the species equation (4) indicates that the 
mass concentration boundary-layer thickness inside 
the momentum boundary layer is of the order of 
(x/Scj Re,Da”‘), where the symbols are as defined 
in the Nomenclature. This suggests the use of coor- 
dinate transformation so that convenient grid selection 
can be employed later to achieve efficient and accurate 
numerical computation of flow and mass concen- 
tration boundary layers. The governing momentum 
and species equations, (3) and (4) are then expressed as 

The effects of the boundary on the velocity field are 
confined in a thin region and thus difficult to observe 
experimentally [5]. However, mass flux at the boun- 
dary, like the heat flux, a convenient quantity for 
experimental measurements, provides an indirect me- 
thod with which to detect such effects. The Sherwood 
number, which characterizes the boundary mass flux, 
is expressed as 

Shj = _ !!?!$I 
v=o 

/ tmj.eq - mj, .) 
L 

c “‘Ii Iff,.o 

In conducting the experiment, as explained in the 
next section, it is important to know the time interval 
within which steady-state conditions are effectively 
achieved. This is done by an order of magnitude 
analysis on the transient momentum and species 
equations (8) and (9). The former shows that the 

The function F depends upon the Reynolds number, as 
well as the microstructure of the porous medium, and 
is related to the form drag caused by the porous matrix 
[S]. The given functional dependence of F can be 
deduced from a number of empirical results [8, 93, 
which shows a weak dependence of F on the Reynolds 
number. 

(17) 

(9) 

where 

5 = X/L, ‘lj = Y/(x/SC~ Re, Da”2), 

U = u/u,, mj = (mj - mj,,,)/ 

(mj,, - mj,& tj = tI(K/Dj,eX 

m = W/@&j,, - mj.,,ULX 

n;ij = n;ljl(P&(mj,m - ~nj..,YL), 

Oj = (SC~/~L)~, Ijl, = Fa312 Re,,,/yL, 

R, = B Scj, 

Kj = Scj/Re,, r,,, = Re, Da’ 12. 

(10) 

(11) 

(12) 

(13) 

(14) 

steady-state condition for the velocity distribution is 
reached within a time period of the order of (K/h,), 
where vr is the kinematic viscosity. Physically this time 
corresponds only to a few seconds for most practical 
situations. Therefore, in the numerical analysis the 
steady-state form of the momentum equation (8) is 
considered. On the other hand, the order of magnitude 
analysis of the species equation reveals that the 
convective and diffusive mass transfer reach steady- 
state condition within time periods which are of the 
order of (L/u,) and (K/Dj~,), respectively. In physical 
situations these times correspond to several hundred 
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FIG. 3. Schematic diagram of experimental apparatus. 

seconds. This is the reason for using the unsteady 
species equation (9) to obtain the numerical solutions. 
Furthermore, since there is neither a micropore cata- 
lytic reaction nor a global production of the species in 
the chosen experiment, both terms Wand tij are set to 
be identically zero in equation (9). Setting W equal to 
zero implies a non-participating porous matrix in the 
mass transfer case different from the heat transfer case. 

3. EXPERIMENTAL APPARATUS AND TECHNIQUE 

The apparatus employed to study the boundary and 
inertia effects on mass transfer through porous media 
is depicted schematically in Fig. 3. The set-up is 
designed to provide accurate flow and mass flux 
measurements. The purpose of the experiment is to 
obtain the average mass flux rate of a sucrose-coated 
plate to the water flowing through a test section filled 

with a porous medium. This is then compared with the 
mass flux rate obtained from the numerical solution. 

The test section (30 x 10 x 1 cm; length, width and 
height, respectively) has two pressure taps connected 
to a U-tube manometer which uses a 1.75 specific 
gravity fluid. A porous block is located inside the test 
section pictured in Fig. 4. The upper portion of the test 
section is removable so as to accommodate the 
sucrose-coated plate on top of the porous medium. 
The high solubility of sucrose in water prevents the 
sucrose from being trapped in the porous matrix. The 
porous medium used is Foametal, a high-permeability 
medium used extensively in industrial applications 
such as heat exchangers, chemical reactors and fluid 
filters. Upstream of the test section is a reservoir 
capable of achieving a range of accurately designated 
levels. This is done through its connection via a divider 

FIG. 4. Photograph showing the test section. 
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FIG. 5. Experimental results used in determining the permeability and the function F of the Foametal 

to an auxiliary tank connected to the sump. Water 
enters’ the reservoir (25 x 25 x 40cm) through a 
variable flow rate filter. Two mesh screens installed in 
the reservoir reduce any disturbances in the water 
before entering the test section. This disturbance- 
reduction effect is further enhanced by the extended 
portion of the porous medium before the test section. A 
highly accurate flow control slider disconnects the 
reservoir from the test section. The slider allows 
steady-state operating conditions upstream of the test 
section to be achieved before any fluid flows through it. 
This design, coupled with the large reservoir capacity, 
allows steady flow conditions to be obtained within 
seconds of the slider being opened, as seen from the 
pressure indicator and water levels in the upstream and 
downstream reservoirs. 

The downstream reservoir (12 x 12 x 25 cm) is 
used to maintain a constant pressure difference at 
every height along the test section. It is connected to a 
trapezoidal section enabling finely controlled flow 
measurements through its small square outlet. The 
average mass flux rate is obtained by taking solution 
samples from the trapezoidal section. This is done after 
a small lapse to achieve steady flow. 

4 RESULTS AND DISCUSSION 

The permeability and the function F which depends 
on the microstructure of the Foametal used in the 

experiment have to be determined prior to the mass 
transfer experiment. This is done by doing flow 
measurements at different pressure differences across 
the test section. At each pressure difference the average 
of three or four flow rate readings were taken. The 
results of these measurements are shown in Fig. 5. The 
velocity ur, in Fig. 5 is given by the following equation : 

dP -P’f __=_a - F(K, Geometry) 

dx KD K”2 Pfu; (18) 

where Pf is the fluid density. From this figure and 
equation (18) the permeability of the porous medium is 
found to be 1.11 x lo-’ m2, and F to be 0.057. In 
calculating the permeability and the function F from 
equation (18), we have implicitly neglected the effect of 
the solid boundary on the overall flow rates. This is a 
good approximation since the momentum boundary 
layer is confined to a thin region compared to the total 
flow cross section. 

The experimental runs were made at different 
pressure differences across the test section. Table 1 
presents the pressure gradients in terms of (N mM3) 
across the test section. Included also are the times 
during which the samples were taken. The sucrose 
concentration of the samples was obtained by an acid 
hydrolysis giving an accurate count of the sucrose in 
the solution. 

Table 1. Physical data for different experimental runs 

Experimental 
run 

Pressure 
gradient 
(N m-‘) 

Starting 
time 
(s) 

Duration 
time 
(s) 

Time and 
length-averaged 

Sherwood number 

1 232 5 
2 349 25 
3 436 25 
4 639 25 
5 406 15 
6 1046 25 
7 221 25 
8 290 25 
9 523 20 

10 360 20 

20 
25 
25 
25 
25 
25 
30 
30 
20 
20 

4.61 0.38 990 
4.61 0.58 1012 
4.61 0.72 1103 
4.61 1.0 1290 
4.61 0.674 456 
4.61 1.73 1067 
4.61 0.366 730 
4.61 0.48 1 749 
4.61 0.867 930 
4.61 0.597 730 
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FIG. 6. The non-dimensional mass concentration profiles for 
the time i = 0.026, corresponding to the second run. 

FIG. 8. The non-dimensional mass concentration profiles for 
the time T = 0.26, corresponding to the second run. 

The mass concentration fields for the second ex- 
perimental run were computed numericahy and are 
presented in Figs. 6-8. The numerical scheme is based 
on the steady-state linearized version of equation (8), 
using upwind differencing in the {-direction, an im- 
plicit routine in the r]j-direction, and an explicit 
marching routine in time. The linearization scheme for 
equation (8) has been checked by increasing the 
number of iterations used for convergence. Since 
equation (9) is coupled to the vertical velocity at the 
wall by the boundary condition (15), an iterative 

approach is used in solving equation (9). For a given 
time and longitudinal position, equation (9) is iterated 
until the value for the vertical velocity at the boundary 
converges. This value is then used in the final iteration 
of equation (9) to obtain the mass concentration 
distribution. The accuracy of the finite-difference so- 
Iution has been tested through increasing the number 
of grid points. The Darcian profiles correspond to 
when boundary and inertia effects are neglected. 
Comparing Figs. 6-8, showing the mass concentration 
fields at three different times during the experiment, 
the approach towards steady-state becomes evident. 
The corresponding time averaged Sherwood numbers 
along the test section are presented in Fig. 9. Figure 9 
shows that when boundary and inertia effects are 
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FIG. 7. The non-dimensional mass concentration profiles for FIG. 9. 

the time i = 0.13, corresponding to the second run. 
Comparison of the time-averaged Sherwood numbers 

for the two cases presented in Figs. 6-8. 
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FIG. 10. Comparison of numerical and experimental Sherwood numbers. 

included, lower mass flux rates are obtained than when 
these effects are not included. This is because of the 
higher velocities, close to the boundary, used in 
computing the mass flux rates when these effects are 
not included. 

A time and length-averaged Sherwood number over 
a time period tf is defined as 

1. + 4 s s L+L 
Shj dx dt (19) 

f” I 

where t, and L, denote the time and length when the 
experiment started. The time and length-averaged 
Sherwood number for the mass transfer experiments 
are presented in Fig. 10. Included also are the numeri- 
cal results for the three cases corresponding to the 
different velocity profiles used in computing the Sher- 
wood numbers. These are the Darcian velocity profile, 
the velocity profile which includes only the inertia 
effects, and the velocity profile which includes both 
boundary and inertia effects. The parameter Y’, in Fig. 
10 is related to the pressure difference across the test 
section. The higher the pressure difference, the higher 

the inertia parameter Y’,. The Sherwood number Sh, 
relates to the time and length-averaged mass flux from 
the coated plate. The boundary parameter mj is a 
measure of the boundary effects for a given porous 
medium, fluid and species j. The value of aj for the 
experimental set-up used was 4.61. As shown in Fig. 10, 
higher pressure differences across the test section result 
in larger mass flux rates from the coated plate. It can be 
seen that at smaller values of Y’,, the case which 
accounts only for the inertia effects is quite close to the 
case which uses a Darcian velocity profile. However, as 
the value of Y’, increases it causes a significant 
difference between the two cases. This is due to the 
velocity-squared correction term in the inertia- 
included case which is small at lower values of Y’,. At 

larger values of Y’, this term becomes important due to 
the increase in the form drag resistance at higher 
velocities. In the limit of no flow across the test section 
(Y, = 0), the Sherwood numbers obtained for the 
three numerical cases, shown in Fig. 10, converge to 
one value corresponding to the diffusion mass flux 
from the coated plate in the absence of convection. 

It can be seen from Fig. 10 that the experimental 
data is in better agreement with the numerical results 
which include boundary and inertia effects. The signi- 
ficance of these results can also be extended to heat 
transfer in a porous medium, because of the analogies 
which exist between heat and mass transfer. 

5. CONCLUSIONS 

The purpose of this work was to investigate the 
significance and importance of the boundary and 
inertia effects on mass transfer in porous media. This 
has been done both numerically and experimentally. 
First, the general formulation of the problem is 
presented and then applied to the specific case of 2- 
dim. flow through porous medium confined by an 
external boundary. In doing so, the coupling between 
the velocity and mass concentration fields is dem- 
onstrated. An experimental set-up is then used to 
obtain mass transfer results for comparison with a 
numerical analysis which includes the effects of boun- 
dary and inertia in one case and excludes them in 
another. The results clearly show the importance of 
these effects on mass transfer through porous medih. 
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EFFETS DE FRONTIERE ET D’INERTIE SUR LA CONVECTION MASSIQUE DANS LES 
MILIEEIX POREUX 

R&urn& L”article conceme une etude numCrique et exerimentale des effets de la pr&+znce d’une frontiere 
solide et des forces d’inertie sur le transfert massique dans les milieux poreux. Une importance particulitre et 

port& SW le transfert massique ii travers le milieu poreux au voisinage d’une front&e impermlable. La 
technique de la moyenne locale en volume est utilisti pour ltablir les equations de base. Leur solution 
numlrique est utilis& pour ttudier le champ de concentration massique prCs d’une fronti& impermbble. 
En paralkle. une exptrimentation est conduite pour montrer les effets de front&e et d’inertie sur le transfert 

massique par la mesure du flux massique, moyen dans le temps et dans I’espace, i travers un milieu poreux. Ce 

r&ultat montre clairement la pr&ence de LYS effets. 

RAND- UND TRRGHEITSEINFLUSSE BEIM KONVEKTIVEN STOFFTRANSPORT I& 
POROSEN MEDIEN 

~m~nf~~-In dieser Arbeit wurden die Einfliisse einer festen Berandung und von ‘Tr~gheitskr~ten 
beim Sto~trans~rt in porlisen Medien nu~ri~h und experimentell untersucht. Besonderes Gewicht wird 
auf den St&transport durch poriise Medien an einer undurch&sigen Berandung gelegt. Zur Herleitung der 
Grundgleichungen wurde das Verfahren iirtlicher volumetrischer Mittelwertsbildung angewandt. Die 
numerische LGsung der Grundgleichungen wurde verwendet, urn das Massenkonzentrationsfeld in einem 
poresen Medium in der N&e einer undurchliissigen Wand zu untersuchen. In Verbindung mit der 
numerischen Lijsung wurde ein instationgres Experiment zur Demonstration der Rand- und Trlgheitsein- 
fliisse aufden Stofftr~s~rt durch~f~hrt. Dies wurde durch Messung des zeitlich und Gumlich gemittelten 
M~~nstr~ms in dem poriisen Medium erreicht. Die Ergebnisse zeigen deutlich die ~~orhandenen Einfliisse 

auf den Strofftransport in por&en Medien. 

BJIMRHME FPAHMqHbIX YCJIOBMGi M MHEPUMOHHblX CMll HA KOWBEKTMBHbIti 
MACCOfIEPEHOC B IlOPMCTbIX CPEAAX 

AnHOTau~ -- fl~ncT~B~ic~0 YMCIICHHU(: it ‘~Kcnep~MeHTa~bH~ ~CC,~e~O~H~e E;I~xU~~ rBepfiOii r-pa- 

tffiut.8 ti cu,? HH~~UMM tta Maccoriepetmc H rropecrbix cpe;idx. Oco6Oe BmfkiaHHe 06p~tUeUo tta Macco- 

Ile~HOC R nOpWCrOii CiWle B6JIH?N HerlpOHHUaeMO~ I PaHHuhi. Mero;l IIOKa.lbHOrO ycpenHeHH% no 

06be~y ncno;lh3oaanca ;1.1a BbIa03d ypasttennii. 9HcneHHoe peUlertwe Koropblx n07~0.1~~10 OnpcnenHTb 

1lO:le KOW?H-IpallHii BHyTpM IlOpHCTOfi Cpe,lb, Bii,TH-,H HCn~HHUaeMOfi rpaHHub,. f~pOae:leH TaKme 

3KCllepHMcHT C Uc.lbIO BhlRcHWIIK R;I3iRHWR rpaHMUb1 H CL7 HHcpUHlr Ha IieCTaUHOHapHblk MaCCOne~HOC. 

npH 7TOM HlMepRJlHCh RFMR M )!CiWlHeHHhIi8 JlO UpOCrpaHCTR~ UOTOK WaCChl Yew3 UOpHCryio Cpe,‘ly. 

Pcly>?IbTaTbl Ca~~eIeJlhCr~~~OT 0 B:IWIHMH yKa~HH~X +%TOpOB Ha MaCCOlle~HOC ” flOp&iCIhlX Cpe;iax. 


