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Abstract-The present work analyzes the effects of a solid boundary and the inertial forces on flow and heat 
transfer in porous media. Specific attention is given to flow through a porous medium in the vicinity of an 
impermeable boundary. The local volume-averaging technique has been utilized to establish the governing 
equations, along with an indication of physical limitations and assumptions made in the course of this 
development. A numerical scheme for the governing equations has been developed to investigate the velocity 
and temperature fields inside a porous medium near an impermeable boundary, and a new concept of the 
momentum boundary layer central to the numerical routine is presented. The boundary and inertial effects 
are characterized in terms of three dimensionless groups, and these effects are shown to be more pronounced 
in highly permeable media, high Prandtl-num~r fluids, large pressure gradients, and in the region close to 

the leading edge of the flow boundary layer. 

NOMENCLATURE 

blowing coefficient, v,/uc; 
fluid’s heat capacity [Ws/kg K] ; 
Darcy number, K/L2 ; 
pore diameter [m] ; 
a function used in expressing inertia terms, 
defined in equation (1); 
a function used in expressing inertia terms, 
defined in equation (23); 
permeability of the porous structure [m2] ; 
horizontal extent of the external boundarv 

b-4 ; 
Nusselt number, defined in equation (30); 
pressure [N/m’] ; 
effective Prandtl number, vr/ae; 
Reynolds number, ucL/vf; 
Reynolds number based on permeability, 

uDJK1v.r ; 
temperature [K] ; 
free-stream temperature [K] ; 
external boundary temperature [K] ; 
x-component velocity [m/s] ; 
convective velocity, - (K/p)(dP/dx) [m/s] ; 
x-component of the Darcian velocity, [m/s] ; 
x-component of the pore velocity [m/s] ; 
velocity vector [m] ; 
Darcian velocity vector [m/s] ; 
pore velocity vector [m/s] ; 
y-component velocity [m/s] ; 
blowing velocity [m/s] ; 
spatial coordinate, horizontal [m] ; 
spatial coordinate, vertical [m]. 

Greek symbols 

effective thermal diffusivity, 3,,/p,c,6 [m’/s] ; 
porous media shape parameter, ,f6/K 

Cm-l]; 

porosity of the porous medium; 
dimensionless vertical length scale, 

Y~~x~Pr Reach) ; 
dimensionless temperature, (T- T,,J/ 

(r, - T,); 
effective thermal conductivity p/mK] ; 
fluid’s dynamic viscosity [kg/ms] ; 
fluid’s kinematic viscosity [m’/s] ; 
dimensionless horizontal length scale, x/L; 
fluid’s density [kg/m31 ; 
boundary parameter, (Pr/yL)* ; 
inertia parameter, GRe/y*L ; 
blowing parameter, BPr. 

denotes the ‘local volume average’ of a 
quantity. 

1. INTRODUCTION 

SINCE the early work of Darcy in the nineteenth 
century, extensive investigations have been conducted 
on flow and heat transfer through porous media, 
covering a broad range of different fields and appli- 
cations such as ground-water hydrology, petroleum 
reservoir and geothermal operations, packed-bed 
chemical reactors, transpiration cooling, and building 
thermal insulation. Most analytical studies deal pri- 
marily with the mathemati~l formulation based on 
Darcy’s law, which neglects the effects of a solid 
boundary or the inertial forces on fluid flow and heat 
transfer through porous media [l-3]. These effects are 
expected to become more significant near the boun- 
dary and in high-porosity media, thus causing the 
appli~tion of Darcy’s law to be invalid [4-51. More- 
over, recent upsurge of utilizing high-porosity media 
in contemporary technology provides further impetus 
for a thorough understanding of the boundary and 
inertia effects. In spite of their common presence, 
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however, relatively little attention has been given to 
the study of these effects. Brinkman’s [6] and Muskat’s 

[7] work form the cornerstone of these boundary and 
inertial investigations. Brinkman accounted for the 
presence of a solid boundary through adding a viscous 

term to Darcy’s law, while Muskat included a velocity- 

squared term in Darcy’s law to account for the inertial 

forces. Unfortunately their work lacks a rigorous 
analytical basis and does not consider boundary and 

inertia effects simultaneously. 

The present work applies the volume-averaging 

technique [8,9] to the fundamental flow and energy 

equations in a porous medium. Due to application of 

this averaging technique, certain details of information 

is lost, thus requiring the use of well-established 
empirical relations in setting up the ‘macroscopic’ 

(over a small volumetric element in the porous med- 

ium) governing equations. The presence of an exter- 
nal solid boundary leads to a momentum boundary 

layer concept for flow in the porous medium. Numer- 

ical results for the boundary-layer solution exhibit 

clearly the boundary and inertial effects on heat 
transfer under various flow conditions. These effects 

are conveniently expressed in terms of three dimen- 

sionless parameters, which allow a simple characteri- 

zation scheme for interpreting the applicability of 

Darcy’s law to various problems of flow and heat 

transfer in porous media. The present analysis is under 

the assumption of a constant-porosity medium, thus 

neglecting the effect of possible porosity variations 
near the wall as often discussed in packed-sphere 

beds [5]. 

2. FORMULATlOh 

The analysis of flow and heat transfer is usually 

based on the transport equations resulting from the 

differential balance laws, and to predict global effects 

such as flow resistance or heat flux from a given object 

requires detailed information of the surrounding vel- 

ocity and temperature fields. This information is 
extracted from the solution of the associated transport 

equations, subject to the pertinent boundary con- 

ditions. When flow through a complex structure such 
as a porous medium is involved, these equations are 

still valid inside of the pores, but the geometric 
complexity prevents general solutions of the detailed 

velocity and temperature fields. Instead, some form of 
the ‘macroscopic’ balance equations based on the 

average over a small volumetric element must be 
employed. A common practice is to replace the 

‘microscopic’ momentum and energy equations by the 
corresponding ‘macroscopic’ equations with the help 
of some well-established empirical relations. 

Empirical relations 
It is well known that in Row through a porous 

medium the pressure drop caused by the frictional 
drag is directly proportional to velocity for low speed 
flow. This is the familiar Darcy’s law which relates the 

pressure drop and velocity in an unbounded porous 
medium. At higher velocities, inertial effects become 

appreciable, causing an increase in the form drag. 
Experimental observations do indicate that the ores\- 

ure drop in the bulk of a porous medium 12 pit’- 

portional to a linear combination af flow \elocit! 

and square of the flow velocity. The square term 1s 
caused by the inertial effects offered through the solid 
matrix. This can be formulated for steady. incom- 
pressible flow as 

where P is pressure, x the flow direction, p”r the fluid 

viscosity, K the permeability, u, the Darcian fluid 

velocity in the x-direction and p, the fluid density. The 

function F(K, Re,, Geometry) depends upon the Rey- 
nolds number, Re, = pfu,,/Kipf, as well as the 
microstructure of the porous medium. The given 

functional dependence of F can be deduced from a 
number ofempirical results [7, 10~~ 121. In equation (1 J. 
u, represents an averaged velocity over a gross cros+ 

section of the porous medium. However. a more 
descriptive quantity for the flow held in a porous 

medium is the pore velocity tip which represents the 
local average velocity of the fluid in the pores. The 
relation between up and ua can be readily established 

from the flow continuity considerations 

U,) = &A,,. I?) 

Casting equation (1) in terms of the local pore velocny 

up and then generalizing it as a vectorial representation 

yield : 

PL,b 
VP = - y v, - Fpf&.‘2;‘(V, V,) J (3) 

where d is the porosity, V, is the pore velocity vector. 

7 = J(S/K)and J = VP/l V, j is a unit vector oriented 

along the pore velocity vector. Equation (3) can be 
regarded as an empirically based local volume average 
of the ‘microscopic’ momentum equation in an un- 

bounded porous medium, with V, being the local 

volume average velocity vector. 
The empirically based energy equation in a porous 

medium, often mistaken as an exact equation, is given 

by 

where cr is the fluid heat capacity, V, the Darcian 
velocity vector, T the temperature, and 2, the effective 
conductivity of the porous medium saturated with a 
stagnant fluid. The concept of %, has been widely used 
and studied [13]. The velocity vector V, used in 
equation (4) represents a global average value of the 
velocity in a porous medium while the equation itselfis 
an energy balance on a local differential element. 
Therefore, it seems more appropriate using the pore 
velocity representing the local average value of the 
fluid velocity in equation (4). There follows for 
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constant-porosity media 

p/c/V, . VT = -V . [ - (&@)VT]. (5) 

Equation (5) can be considered as an empirically 
based local volume average of the ‘microscopic’ energy 

equation in a porous medium. 
After establishing the appropriate forms of the 

empirical momentum and energy equations in a 
porous medium, a more rigorous approach is con- 
sidered next. The most logical form appears to be the 
one established from the local volume average of the 
differential balance laws [8,9]. 

Local volume averaging analysis 
The averaging process is accomplished by associat- 

ing with every point in the porous medium a small 
volume V bounded by a closed surface A. The 
minimum size of V will be discussed later. Let V, be 
that portion of V containing the fluid, and let A,, be 
the area of pore walls contained within V,. The local 
volume average of a quantity Y associated with the 
fluid is thus defined as 

(\y> =; 
s 

YdV. (6) 
“f 

Using the ‘volume average of a divergence’ theorem 
[14,15], the local volume averages of the differential 
balance laws for an incompressible, steady flow 

through a porous medium can be established as [9,14] 

V.(V) =o (7) 

P/((V .V)V) = -V(P) + p/v*(v) + r 63) 

pfc/(V>.V(T) = -V.x (9) 

where 

1 
r= -- 

V s 
S.dA 

A,f 

x = P(T) + IIWVIO’) (11) 

S being the fluid’s stress tensor, and fl and c are 
complex functions of 6, cf, I., (the fluid thermal 
conductivity), 3,, (the solid matrix thermal conduc- 
tivity), )(V)I, IV(T)I and (V) .V(T) [14]. Equa- 
tions (7)-(9) are ‘macroscopic’ conservation equations 
for fluid mass, momentum, and energy, respectively. 
-The body-force term r is caused by the micropore 
structure and x can be considered as an effective 
heat flux vector of the porous medium and the fluid. It 
should be noted that the stated energy equation 
requires the additional assumption of small tempera- 
ture differences between the fluid and the solid matrix, 
which is generally valid except for a highly conducting 
solid matrix or when encountering high fluid 
velocities. 

Due to the volume-averaging process, some infor- 
mation is lost, thus requiring supplementary empirical 
relations for r and x. It should be noted that the 
empirical information to be employed here concerns 
specific physical terms in the fundamental transport 

equations and is quite different from the global 
empirical relations as given in equations (3) and (5). 

Consider first the body-force term r, which is in 
effect a measure of the flow resistance offered by the 
solid matrix. Since the pressure gradient as given in 
equation (3) can also be interpreted as a measure of the 
same resistance to flow in the bulk of the porous 
medium, r can be inferred from equation (3) to be 

r = - 2(V) - F~$~‘*y((v) .(V))J. (12) 

The heat flux term 1 can be established through 
comparing the analytical volume-averaged energy 
equation (9) with the corresponding empirical volume- 
averaged equation (5) as 

x = -iv(T). (13) 

The above reasoning, although not exact, provides 
good justification for neglecting the second term of the 
right-hand side of equation (11). 

Using equations (12) and (13) in equations (8) and 
(9) renders the following governing equations : 

A,((V .V)V) = -V(P)f + &v*(v) 

- MV> - P/F,/(QY LO’> WI J (14) 

(V) . V(T) = a,V*( T) (15) 

where 

A, = P/I& AB = /+I& 

4 = &K, a, = ).,lpfcfd (16) 

and 

(P)/ = L 
s 

P dv. 
V, “, 

The term (P)’ represents the pressure read off a 
pressure gauge, as the gauge actually measures the 
average pressure inside the fluid, rather than over the 
fluid and solid volume. Note that (P) = 6(P)f. 

Some physical insight can be gained in equation (14) 
by considering the limiting case of one-dimensional 
low speed flow. For this case, the equation in the non- 
dimensional form is 

d(P)’ Da 
- - + --sv*(“> - (Ii) = 0 

dt 
(17) 

where ii = u/u,, 5 = xfL, (P)’ = (P)f/(pJ~cL/K), Da 
= K/L*, and L is a characteristic length. Equation (17) 
should reduce to the regular viscous flow equation and 
Darcy’s law in the limits of high and low porosities, 
respectively. For the high-porosity regime, 
Emersleben’s fiber-theory [l] correlates K and 6, 
reducing equation (17) to the viscous equation, while 
at low porosities, Carman theory [l] relates K and 6, 
resulting in Darcy’s law. 

3. BOUNDARY-LAYER CONCEPT 

The effects of a solid boundary on flow and heat 
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transfer in a porous medium originate from vorticity 
diffusion caused by the boundary frictional resistance. 
This resistance is additional to the bulk frictional drag 

induced by the solid matrix as characterized by 

Darcy’s law. The boundary effects are best described in 
terms of a new concept of the momentum boundary 

layer, in which the above two resistances are of the 
same order. The basic boundary layer characteristic of 
large velocity gradients normal to the boundary is also 
retained in the above concept. This boundary layer, 
however, differs from the conventional one in that the 

latter characterizes a balance between viscous and 
inertial effects. 

Momentum houndar_y-layer churucteristics 
An order-of-magnitude analysis on equation (14) 

reveals that the momentum boundary-layer thickness 
is of the order of ;(K/6). Table 1 presents the 

calculated values of this thickness for flow of some 

common fluids with different thermophysical proper- 

ties in typical high-porosity media. The permeabilities 

were estimated on the basis of Emersleben’s fiber 

theory [l] from the typical pore diameters in com- 

mercial low-density Foametals. As shown in Table 1, 
the boundary viscous effects are confined in such a thin 

layer, that it makes experimental observations very 

difficult. For this reason, existing experimental infor- 
mation have been primarily limited to gross effects 

such as pressure drop and flow rate correlations. In 

most flow experiments, the boundary effects on the 

flow rate are indeed insignificant. But, as to be shown 

later, neglecting these effects may lead to appreciable 

errors in heat transfer computations. In particular 

these errors will become more pronounced when all or 
most of the thermal boundary layer falls within the 

momentum boundary layer. 
The same analysis also shows that the term 

((V V)V) responsible for the boundary-layer growth 
is significant only over a length of the order of (Ku&). 

Table 1 indicates that this quantity (Ku&) is small for 

most practical situations except for flow of low 

dynamic-viscosity fluids in a highly permeable me- 
dium. Therefore, beyond the short developing region 
the momentum equation reduces to 

A,vL(V) - A,,(V) - pFJ(b);- 

x [(v; (V)] J - V(P)f = 0 (18) 

where VL does not include the component in the flow 
direction. This fully developed momentum boundary 
layer is a unique feature of the flow, in contrast with the 

ever-developing boundary layer in conventional flow. 

Minimum aolumefor tlolume uveraging 

To study flow and heat transfer inside the momen- 

tum boundary layer, care should be exercised in 
dealing with the averaging process. The thinness of the 

boundary layer raises fundamental questions in the 
interpretation of the average quantities involved. This 

may be resolved by introducing a technique for 
choosing the proper size of the volume element 

associated with the averaging procedure. The mmi- 
mum size of the volume element is discussed here 

with specific reference to the two-dimensional flow to 

be considered later in detail. 
The minimum volume should be large enough to 

yield statistically meaningful averages of relevant 

physical quantities. Such a meaningful average is 

achieved by associating a thin cylindrical volume 

infinitely extended, with its axis passing through each 

point of interest and perpendicular to the flow direc- 

tion. Since special emphasis is placed on the points 

close to the boundary, this technique becomes parti- 
cularly attractive in providing meaningful interpre- 
tation for those points. It is evident that the above 

choice of the volume element applies only to two- 
dimensional problems in a strict sense. This dem- 

onstrates that a formulation like Brinkman’s ii 

applicable only for two-dimensional problems. 

4. .4NALYSIS OF TWO-DIMENSIOUAL BOUNDARY 
LAYER 

To illustrate the importance of the momentum 

boundary layer and its effects on heat transfer, analysis 
is made for an incompressible, two-dimensional flow 

through a porous medium confined by an external 
boundary as shown in Fig. 1. Dimensional analysis of 

the energy equation (15) indicates that the thermal 

boundary-layer thickness inside the momentum boun- 
dary layer is of the order of (x/PrRe,jDa), where Pr is 
the effective Prandtl number (vI;sr,) and Re the 

Reynolds number defined by (uCL.!vf). It should be 
emphasized that the thermal boundary layer. unlike 
the momentum boundary layer. grows continuously 

Table I. Characteristics of typical momentum boundary layers in high porosity porous 
media 

Fluid 

Air 
Air 
Water 
Water 
Light oil 

K 

J- 

K U( 

\’ UC 
(m’/s) 6 k, (5, (m/s) (3 ,I, 

1.5 x 1o-5 0.98 1o-4 10-h 0.1 10-j 6.6 x 10~’ 

1.5 x 1om5 0.98 1om3 lo-‘+ 0.1 10-l 0.6 
1.5 x 1o-6 0.98 1om4 10 h 0.1 low 6.0 x 10 ’ 
1.5 x 10-h 0.98 10-x 1o-.4 0.1 10-j 6.6 

9.5 x 1v5 0.98 lo-* 10 ‘J 0.1 low 10~ 4 
Light oil 9.5 x 1om5 0.98 lo-’ 1o-4 0.1 10-l 0. I 
Eneine oil 9.0 x 1o-4 0.98 1o-4 10-h 0.1 1om7 10 m4 

Engine oil 9.0 x 1o-4 0.98 10-J 1om4 0.1 1o-2 6.0 x lo-’ 
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FLOW- 

i, x 

Frc. 1. Flow 

Ie 

Tw 
4 L . 

through a porous medium confined by an 
external boundary. 

with x. This suggests the use of coordinate transfor- 
mation so that convenient grid selection can be 
employed later to achieve efficient and accurate 
numerical computation of flow and thermal boundary 
layers. The governing momentum and energy equa- 
tions, (18) and (1.5) are thus expressed as 

@r_1 ayii) 
~ - Y(U)2 - (ii) + 1 = 0 

52 8’12 
(19) 

52(U) F - ((a>?5 - Ql-g) 

a(e) 

X%--= 

KT2 aYe> 
7 (20) 

where 

e = xl& q = y/(x/PrRe,/Da) 
(21) 

ii = u/u,, 0 = (T - Tw)/(T, - T,) 

@ = (Pr/yL)‘, Y = GRe/y’L, R = BPr, 

K = PrlRe, r = Re,/Da (22) 

G = F(K Re, Geometry)63’2y. 9 9 (23) 

Here, y is the normal coordinate, L horizontal extent of 
the boundary, T, the boundary temperature and T, 
the free-stream temperature. The effect of boundary 
blowing or suction is also incorporated in the analysis 
and is characterized by the blowing coefficient B 
defined by B E v,/uc where v, is the surface blowing 
velocity. An integral balance on the momentum boun- 
dary layer shows that when B cc (l/ReJDa) blowing 
has negligible effects on the pressure drop as compared 
to that due to either boundary resistance or the bulk 
resistance, and thus the momentum equation (19) 
needs no modification. Blowing, however, does affect 
heat transfer through additional convection normal to 
the boundary as shown in equation (20). 

The corresponding boundary conditions are 

q = 0, (U) = 0, (Q = VW/UC, (0) = 0 (24) 

q+ C(I, (U) = [ - 1 + ,,/(l + 4’I’)]/2Y, (0) = 1 (25) 

The free-stream boundary condition on the velocity is 
obtained from the solution of equation (19) neglecting 
the first term. 

Before embarking on a numerical analysis of equa- 
tions (19) and (20), it is of interest to consider first the 
limiting case of no blowing and negligible boundary 
and inertia effects, which allows a closed-form so- 
lution. For this case, equations (19) and (20) reduce to 

(U) = 1 (26) 

52(U) !g - (U).$y = .p!g (27) 

In conjunction with the appropriate boundary con- 
ditions, equation (27) can be solved to yield an 
analytical solution for the temperature distribution 

s &/(X~, 
0 

emw2dw = erf[!/&{)](28) 

which is of the same general form as the solution of 
transient heat conduction or the temperature solution 
in a slug flow. The above solution shows that the 
thermal boundary layer thickness, 6, is given by 

BrN7 +. 
J PrRe 

This reaffirms the expected result that any increase in 
the convected energy compared to that by conduction 
leads to a thinner thermal boundary layer. The exact 
analytical solution for the case without blowing, 
boundary and inertia effects will be used as the basis of 
comparison with the corresponding numerical solu- 
tion to assess the accuracy of the numerical scheme. 

All numerical results are based on the assumption 
that an external boundary is insulated up to the point 
where the momentum boundary layer is fully de- 
veloped. Furthermore, the value 0.07 of the function F 
is taken as that of a Foametal with no free fiber ends 
within the body of the porous medium [lo]. The 
computed shapes of momentum and thermal boun- 
dary layers are displayed in Fig. 2 for light oil and 
water with a given set of relevant physical parameters. 
The y value corresponds to a permeability of 10e6 for 
both water and light oil. The value of Re,/Da for either 
fluid corresponds to the pressure gradient given in 
Table 2. 

Effects of the boundary on the velocity field as seen 
in Fig. 2 are indeed confined in a thin region and thus 
difficult to observe experimentally. However, the wall 
heat flux, a convenient quantity for experimental 
measurements, provides an indirect method to detect 
such effects. The Nusselt number, which characterizes 
the wall heat flux, is expressed as 

Nu = -?I 
y=o 

iwe’ 7 !5!&(30) 
L 

5. RESULTS 

A numerical scheme based on the linearized equa- 
tion (19) has been developed using upwind differencing 
in the g-direction and an implicit routine in the q- 
direction. The linearization scheme for equation (19) 
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FIG. 2. Computed shapes of the momentum and thermal I 
boundary layers. 

has been checked by increasing the number of iter- 

ations used for convergence. To trace and cover the 

entire momentum and thermal boundary layers. vari- 

able grid sizes have been employed to account for the 

thermal boundary-layer growth, followed by updating 
the velocity distribution in each of the new grid 
systems. The accuracy of the finite-difference has been 
tested through increasing the number of grid points. It 

should also be noted that the boundary-layer solutions 
here can be used for confined geometries such as 

channel flow because of the small thickness and the 

slow growth of the thermal boundary layer. 
! 

Presented in Figs. 3 and 4 are the temperature 0 I ! -iAt 
? 4 8 12 16 20 >c 

profiles for light oil and water for certain ranges of DIMENSIONLESS VERTICAL DISTANCE. ” 

the system parameters. Figures 5 and 6 show a com- 
parison between the Nusselt numbers obtained for the 

FIG. 4. The non-dimensional temperature profiles for cases 

two cases shown in Figs. 3 and 4, along with the 
without blowing. 

percentage difference between the corresponding Nus- anticipated since the thermal boundary layer grows 
selt numbers. The error resulted from omitting boun- with x. Figures 7 and 8 demonstrate the blowing effects 
dary and inertial effects, as indicated in Figs. 5 and 6, on temperature profiles and Nusselt numbers cor- 
decreases with increasing downstream distance. This is responding to the same parameters used in Figs. 3 and 

Temperature Proflies 

I! 
I; i 

i 

o- ,: 4 8 I2 I6 20 24 
DIMENSIONLESS VERTICAL. DISTANCE, ,j 

FIG. 3. The non-dimensional temperature profiles for cases 

Table 2. Boundary and inertia effects on the average Nusselt number for some common fluids of different thermophyaical 

Fluid 

Air 
Air 
Water 
Water 
Light oil 
Light oil 
Engine oil 
Engine oil 

Pr 

0.7 

0.7 
11.6 
1 I.6 

1170 
1170 

10400 
10400 

Pressure 
gradient 
(N/m ‘I 

L w lo2 

(ml (1) 

Percentage 
error on 

the average 
Nusselt 
number 

lOI 60 1.4 x 10 fi 3.0 0 52 
IO ! 60 1.4 x IV4 30.0 0 172 

I o2 60 3.6 x 10 ‘I 2.9 0 12 

10 ! 60 3.6 x IO L 2.9 0 I12 
I o4 60 37 8.6 x 10. ’ 0 i8 

10 60 3.7 x 10’ 8.6 x 10 z 0 ;5 

1 Oh 60 2.9 x lo2 4.8 x lo-* 0 90 
10 60 2.9 x lo4 4.8 x 10-I 0 175 

properties 
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2200 I I I I 
90 

Pr = ,170 
a.K_ II 

moot \ .._.I I - ,,L 

” .I_ , .__” 

n= 0 

1 60 

DIMENSIONLESS HORIZONTAL D1STANCE.E 

FIG. 5. Comparison between the Nusselt numbers for the two FIG. 8. Comparison between theNusselt numbers forthe two 
cases in Fig. 3. cases in Fig. 7. 

Pr = 11.6 

Reez = 40 - 100 

7 = 1000 

-80 
5 
w 

P 

- L 

0 ‘0.2 0.4 06 0.6 1.0 

DIMENSIONLESS HORIZONTAL DISTANCE, E 

FIG. 6. Comparison between the Nusselt numbers for the two 
cases in Fig. 4. 

TemperoWe ProfrIes 
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Effects Included 
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FIG. 7. The non-dimensional temperature profiles for cases 
with blowing. 

I 1 I - 1600- 125 

P, = 1170 
1600 - k/G: 1.2 

7 = IO00 - 120 

IWO- a= I 
i Y 
& 1200- I? 
: - II59 

z 
ICOO- 

k 
3 7 0 

DIMENSIONLESS HORIZONTAL DISTANCE. E 

5. It can be seen that even small amounts of blowing 
enhance greatly the boundary effects, thereby increas- 
ing further the error involved through neglecting these 
effects. Inversely, suction lessens the boundary effects. 

The results obtained from equations (19)-(25) can 
be presented in the following functional form 

Nu 5 Nu(@,‘I’,R,rc,I). (31) 

For any set of porous media having similar micro- 
structures, K and I can be shown to be strong functions 
of @ and Y in the ranges of concerned permeabilities 
and Reynolds numbers. Therefore, equation (31) 
becomes 

Nu = Nu(Q, Y, Cl). (32) 

The percentage error involved in calculating the 
average Nusselt number along an external boundary 
using Darcy’s law instead of accounting for boundary 
and inertial effects can then be calculated for each fixed 
R. These errors for four different fluids covering a wide 
range of Prandtl numbers are given in Table 2 under 
specified sets of operating conditions. For the case of 
no blowing (Q = 0), Fig. 9 presents an error map for 
the average Nusselt number as a function of the inertial 
parameter Y, and the boundary parameter a’, illustrat- 
ing the ranges of applicability of Darcy’s law. Results 
obtained from Darcy’s law are valid in the domain of 
@ < 1 and Y < 6 x 10W3, allowing an error of ten 
percent or less in neglecting the boundary and inertia 
effects. 

6. CONCLUSIONS 

The main purpose of the present study is to show the 
nature and importance of the boundary and inertial 
effects upon flow and heat transfer in porous media. 
This is accomplished by first formulating the general 
problem with these effects present, and then applying 
the formulation to the specific case of two-dimensional 
flow through a porous medium confined by an exter- 
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FI(;. 9. The percent error on the average Nusselt number for using Darcy’s law. 

nal boundary. In analyzing these effects, three flow 

resistances must be considered: the bulk damping 

resistance due to the porous structure, the viscous 
resistance due to the boundary, and the resistance due 
to the inertial forces. For the flow field, the boundary 
effect is confined in a very thin momentum boundary 

layer and often plays an insignificant role in overall 

Row consideration. The effect of boundary on heat 

transfer, however, can be quite important and is more 
pronounced for the thermal boundary layer with a 

thickness less than or of the same order as that of the 

momentum boundary layer. This is expected to hap- 
pen at high Prandtl numbers, and large pressure 

differences. The inertia effects increase with the higher 
permeability and the lower fluid viscosity. Further- 
more, the velocity gradients near the wall are bound to 

increase, thereby increasing the viscous resistance due 
to the boundary. Hence, the boundary effects are 
further amplified as inertia increases. An error map on 

the basis of numerical results has been presented to 
illustrate the domain of applicability of Darcy’s law 
which neglects the boundary and inertial effects. 
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EFFETS DE LIMITE ET D’INERTIE SUR L’ECOULEMENT ET SUR LE 
TRANSFERT THERMIQUE DANS DES MILIEUX POREUX 

Resume-On analyse les effets dune frontiere solide et des forces d’inertie sur l’ecoulement et le transfert 
thermique dans les milieux poreux. Une attention particuliere est portie a l’ecoulement a travers un milieu 
poreux au voisinage dune frontibre impermeable. La technique de la moyenne locale en volume a Bte utiliste 
pour6tablirlesequationsavecuneindicationsurleslimitationsphysiqueset surleshypothtses.Un schema 
numerique a eti developpi pour determiner les champs de vitesse et de temperature dans un milieu poreux 
pres dune frontitre impermeable et un nouveau concept de couche limite place au centre de la routine 
numerique est present& Les effets de limite et d’inertie sont caracterises par trois groupements sans dimension 
et ces effets sont montres plus prononcb dans les milieux fortement impermeables, pour des fluides a grand 
nombre de Prandtl, pour des forts gradients de pression et dans la region proche du bord d'attaque de la 

couche limite de I’ecoulement. 

RAND- UND TRAGHEITSEINFLUSSE AUF DIE STR6MUNG UND 
DEN WARMEUBERGANG IN PORtjSEN MEDIEN 

Zusammenfassung - Die vorliegende Arbeit untersucht die Einfliisse einer festen Begrenzung und der 
Trlgheitskrlfte auf die Stromung und den Warmeiibergang in porosen MedienBesondere Aufmerksamkeit 
wird der Striimung durch ein pordses Medium in der NPhe einer undurchlassigen Begrenzung gewidmet. 
Das Verfahren der ijrtlichen Volumen-Mittelbildung wurde bei der Aufstellung der beschreibenden 
Gleichungen und der Angabe der physikalischen Vereinfachungen und Naherungen verwendet, die im 
Verlauf der Herleitung getroffen wurden. Fiir die beschreibenden Gleichungen wurde ein numerisches 
Losungsverfahren entwickelt, urn die Geschwindigkeits- und Temperaturfelder innerhalb des porosen 
Mediums nahe einer undurchlassigen Begrenzung zu untersuchen. Fur die Impulsgrenzschicht wird ein 
neues Konzept innerhalb des numerischen Verfahrens vorgestellt. Die Rand- und Tragheitseinfliisse werden 
durch drei dimensionslose Gruppen ausgedriickt. Diese Einfliisse erweisen sich als starker ausgepragt in gut 
durchlassigen Medien, in Fluiden mit groBer Prandtl-Zahl, bei grol3en Druckgradienten und im Bereich 

nahe der Vorderkante der Stromungsgrenzschicht. 

BJIFDIHME TBEPjJOti FPAHMIJbI I? CHJl AHEPHMM HA TEqEHME M 
TEIIJIOIIEPEHOC B IIOPACTbIX CPEHAX 

AHHOTPLQI~-AH~IIII~H~~~TCII B,IUaHHe TBepIIOii rpaHuubI II CHJI uHepuuu Ha TeueHue li Tenno- 

IIepeHOC B nOpHCTbIX CpeaaX. Oco6oe BHBMaHHe yLteJIIIeTCa TeYeHWIO Vepe3 IIOpuCTyIo CfWIy B6JIu3Ii 

HenpOHHuaeMOfi rpaHIiubI. &Is BbIBO,.Ia OCHOBHbIX ypaBHeHHii HCnOIIb3yeTCs MeTOIl JIOKaJIbHOrO 

yCpenHeHHa noo65e~y. YKa3bIBaeTCR Ha @I3WYeCKUe OrpaHtWeHWI Ii IIpHHaTbIe ZIOnyILIeIIua. C IIeJIbIO 

uccnenonaHus noneti CKOPOCTB B rehmeparypbr BHyTpW nopecToii CpenbI y HenpoHuuaeMok rpaHHub1 

pa3pa60TaHa YWCJIeHHaa CXeMa IIJIII peIIIeHNa OCHOBHbIX ypaBHeH& II BBeneHO HOBOe nOHaTue nOrpa- 

HH~HOrOC~OIlKO~U~eCTBa~BU~KeHUII,IIBSIIIK)m~rOCIIOCHOBHbIM B WICJIeHHO~CXeMe l,WIIeHua. BnlinHwe 

rpaHuubI Ii CIiJI BHepIIHu BbIpamaeTCa C nOMOIIJbI0 TpeX 6e3pa3MepHbIX KOMIIneKCOB. ffOKa3aH0, 'IT0 

BJlWlHlie 6onee 3aMeTH0 B CpeJ.IaX C BbICOKOii npOHuuaeMOCTbIo, munKOCTaX C 60JIbIIIuM YBCJIOM 

ffpaHnTns,6OJIbuIeMw rpanHeHTaMa IlaBneHUn A B o6nacre norpaHasHor0 cnon y nepenHefi KPOMKH. 


