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Abstract

A detailed investigation of the forced convective cooling of a heated obstacle mounted upon a channel wall is
presented. The Navier-Stokes equations are used to characterize the flow field surrounding the conductive obstacle.
Special emphasis is given in the systematic analysis to detail the local Nusselt number distributions and mean Nusselt
numbers for the individual exposed obstacle faces. The study employs parametric variations in the obstacle height and
width, as well as the thermal conductivity ratio ky/knua. flow rate (Rep, ), and heating method, to detail important
fundamental and practical results. Comparison with an analytical solution for thermally developing flow in a channel
shows reasonable estimates to Nusselt numbers can be made by choosing an appropriate length scale. It is shown that
specific choices in obstacle size, shape and thermal conductivity can produce significant effects on the flow and heat

transfer characteristics. € 1998 Elsevier Science Ltd. All rights reserved.

Nomenclature
p
D, hydraulic diameter [m]
h obstacle height [m]

h, convective heat transfer coefficient [W (m™ - K™ )]

H channel height [m]

k thermal conductivity [W (m ™'+ K )]

n normal coordinate

Nu Nusselt number, A H/k,

p pressure [Pa]

Pey,  Péclet number, picpu Hik,
Pr Prandtl number, pcpi/k;

¢ heat flux [W m~7]

Re,;  Reynolds number, pu, H/ i,
T temperature [K]

u x-component of velocity [ms~']
v y-component of velocity [m s~']
w  obstacle width [m]

x, v Cartesian coordinates.
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specific heat at constant pressure [J (kg 'K}

g" volumetric heat generation rate [W m ]

Greek symbols
¢ dynamic viscosity [(N*s) m~~]

® dimensionless temperature [(T— 7.)/(¢" H/k/)]

p density [kg m~].

Subscripts

b bypass

f fluid

e entrance

L left surface
m mean

N iteration number
o outlet

R right surface
s solid

T top surface
w wall

x  local

0 initial.
Superscript

*  dimensionless.

1. Introduction

Fluid flow around bluff bodies mounted on a channel
wall forms a fundamental basis for studies of the con-
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vective cooling of electrical devices. This subject has
received much attention as electronic system and device
technology has improved and performance increases are
sought [1]. As the failure rate of an individual electronic
device has been statistically correlated to be proportional
to the exponential of the device junction temperature,
rising temperatures imply lower reliabilities [2]. Improved
thermal design would increase temperature uniformity to
reduce thermal stresses and local hot spots in addition
to increasing the transfer of waste heat away from the
package to allow increased energy throughput, faster
switching, or higher operating temperatures.

Models for the cooling of electronic components have
been widely studied both numerically and experimentally
[3]. In most investigations the problem is idealized to
the fluid flow and thermal analysis of heat generating,
quadrilateral obstacles, representing the electronic
devices, within a parallel plate channel. This description
of the problem allows general results to be obtained in
lieu of system specific results. Little analytical work exists
due to the complexity of the problems and the simplifying
assumptions required. Haji-Sheikh [4] found the steady-
state peak temperature for a three-dimensional heat flux
tube in a semiconductor with a thin heat source using the
Green’s function solution method. The Kirchoff trans-
formation was used to account for the temperature
dependent thermal conductivities of typical semi-
conductor materials. The convergence of the steady-state
solution was found to be slow, with as many as two
million terms required.

Numerically, investigations have been performed in
two- and three-dimensions, with laminar and turbulent
flows, various convective regimes, complex (system
specific) or simple (homogeneous and isotropic) modules,
and individual or arrays of obstacles. Davalath and Bay-
azitoglu [5] solved the two-dimensional, conjugate heat
transfer problem for laminar flow over an array of three
obstacles with uniform conductivity and volumetric heat
generation. Utilizing a control volume formulation,
obstacle mean Nusselt numbers were correlated via equa-
tions of the form Nu, = a Re" Pr‘. The spacing between
the obstacles was also varied between one and two times
the obstacle length. The resultant inter-obstacle flow pat-
terns, resembling the classic driven cavity, were driven by
the core fluid flowing over the obstacles. Zebib and Wo
[6] investigated forced air cooling of a single, two-dimen-
sional, internally complex, multiconductivity obstacle
within a channel. The channel walls were modeled as
copper-encased epoxy glass boards with convective
cooling (4, = const.) beneath the lower channel wall.
Their approach allows the investigation of internal
module design changes on the thermal transport within
and outside the module. but are strictly limited to the
given geometry. Nigen and Amon [7] employed the
spectral element method to study the conjugate heat
transport from a single obstacle with local or uniform

heat generation and single or multiple materials. Huang
and Vafai [8] investigated the enhancement of forced
convective flow and thermal characteristics using various
arrangements of multiple porous obstacles in a channel
with the Brinkman—Forchheimer-extended Darcy model.
Substantial periodicity, vortex control, and large
increases in Nusselt number were demonstrated through
alteration of governing physical parameters.

In order to circumvent the limitations of shape-based
Reynolds number scaling, as detailed by Moffat and Ort-
ega [9], parametric analyses are customarily performed.
These results provide bounds for system specific studies
as well as furnishing insight into the prevailing physical
processes. Yang and Yang [10], employing the control
volume method, studied turbulent, two-dimensional
channel flow with one and two obstacles. These obstacles
were both short (height from 1/5-1/15 of the channel
height) and widely spaced (fifteen times the channel
height). The bottom wall was held at a constant tem-
perature downstream of the modules and the effect upon
heat transfer of the reattachment point was investigated.
The turbulent flow over an internally complex, two-
dimensional obstacle was studied by Wietrzak and Pou-
likakos [11]. The effects of variations in obstacle height
and distance from the channel entrance, composition of
the obstacle internal sections, heated section size, and
flow rate were found. Increases in the obstacle height
strengthened fluid recirculations before, after, and upon
the top surface of the obstacle, thus increasing the
obstacle Nusselt number. Choi e/ «l. [12} numerically
investigated the effects of varying the thermal con-
ductivity of the circuit board upon which heated obstacles
were mounted. They found that the effectiveness of highly
conductive circuit boards was strongly dependent on the
obstacle spacing.

Jubran er al. [13] reported experimental investigations
into the effect of rectangular and noncubical obstacles of
various lengths, widths, and heights on pressure drop and
heat transfer enhancement. It was found that changes in
obstacle size or shape can lead to Nusselt number
increases as high as 40%. These studies expanded upon
the works of Sparrow and coworkers [14, 15] who utilized
the naphthalene sublimation technique to examine the
effects of missing obstacles, barriers, and height differ-
ences on arrays of square obstacles. Mass transfer
enhancements of up to two times were measured resulting
from the perturbations of the uniform arrays. Nakayama
and Park [16] experimentally investigated the three-
dimensional transport from the floor area near a heated
obstacle and found complex temperature and heat trans-
fer distributions. The flow structure and mean heat trans-
fer characteristics around single, two- and three-dimen-
sional heated obstacles in a channel was studied by
Roeller e¢s al. [17] using laser doppler velocimetry.
Increases in mean Nusselt number were found for
decreasing channel height due to a greater vena contracta
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effect. Decreases in obstacle width also increased the
mean heat transfer due to more intense three-dimensional
transport and turbulent intensity. Other experimental
examinations into the effects of obstacle array non-
uniformities include Lehmann and Wirtz [18], who varied
obstacle length and spacing, and Garimella and Eibeck
[19], varying channel height and spanwise obstacle
spacing.

In this work. a systematic and thorough investigation
of forced convective cooling of an individual heated
obstacle mounted upon an insulated channel wall is pre-
sented. A wide ranging series of parametric alterations is
employed to establish the important fundamental effects
and provide practical results. This study was motivated
by the need for a coherent interpretation of results detail-
ing the underlying physical phenomena. The influences
of parametric changes in the basic obstacle geometry,
Rep,, and k/k,, as well as the effects of heat input method,
upon the flow and heat transfer are examined. These
results document the dependence of the streamline,
isotherm, and Nusselt number on the governing
parameters. Special emphasis is given to detail the local
Nusselt number distributions and mean Nusselt numbers
for the individual exposed obstacle faces. It is shown
that specific choices of descriptive parameters can exert
significant influence upon the flow and thermal charac-
teristics. For example, choosing a particular obstacle
shape in combination with an appropriate thermal con-
ductivity can improve heat transfer in a local region.
Small sensitivity of the flow and thermal fields is dem-
onstrated, however, for other modifications, such as sur-
face flux (¢”) to volumetric (g¢”) heating or further
increases in large obstacle thermal conductivities. In
addition, it is shown that estimates for the Nusselt num-
ber along the obstacle top face can be made utilizing an
analytical solution to the thermally developing channel
flow problem.

2. Analysis

The analysis is made for steady, laminar, viscous,
incompressible, Newtonian fluid flow through a two-
dimensional channel with a solid obstacle on the bottom
wall, as depicted in Fig. 1(a). Buoyancy induced effects
are assumed negligible, weakly coupling the momentum
and energy equations through the convective terms. The
thermophysical properties of the fluid and solid phases
are constant. Viscous heat dissipation in the fluid is
assumed to be negligible compared with conduction and
convection.

The continuum fluid flow problem, considering the
above assumptions, is modeled utilizing the Navier—
Stokes equations in Cartesian coordinates

mass conservation
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The energy flow through the solid, homogeneous, and
isotropic obstacle is governed by the Laplacian equation
solid phase energy conservation

it + k. O (5)

The governing equations were cast into dimensionless
form using the following

= ¥ = .
= Uy, ’ l Uy, - H
= , pr= pH O = [,:Z;
’ H Hl‘um (({"kar)
e H PeCpittg H
Re, = 220 Pe, =
ey e H k. (6)

The dimensionless obstacle height and width are given,
respectively, by #* = ii/H and w* = w/H. The mean vel-
ocity is given by u,, = H~'[¥ u(y)dy. The thermal con-
ductivity of the obstacle is k,k, The superscripts are
dropped for convenience.

2.1. Boundary conditions

Due to the elliptic nature of the governing conservation
equations, boundary conditions along the entire solution
domain must be specified for all field variables. The fluid
enters the channel at the ambient temperature with a fully
developed, parabolic profile. Entrance conditions are
given by
u=6r(l—y), v=0, O, =0. @)

At the channel outlet, zero streamwise gradients are
prescribed. Furthermore, by choosing an extended com-
putational domain, as described in Vafai and Kim [20],
it was ensured that the computational outflow boundary
conditions had no effect upon the physical domain sol-
utions. The outlet boundary conditions are given as

u ov 00,
—=0, —=0, —=0. 8
ax ox ax ®)
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A
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Fig. 1. (a) Schematic diagram of the single obstacle problem, (b) mesh plot of a typical computational domain. and (c) a close-up of
the region near the obstacle. The mesh within the obstacle is not shown for clarity.

Both the upper and lower channel walls are insulated
except at the obstacle location. At the insulated regions,
00,/Cy = 0 and the no-slip condition, ¥ = 0 and v = 0,
prevails. The adiabatic wall condition was selected to
elucidate the principal aspects of parametric changes in
the heated obstacles to the flow and thermal fields within
the channel. As discussed by Kim e? /. [21], isothermal
and adiabatic channel wall boundary conditions over-
simplify the problem of heat transfer from powered
devices to conducting circuit boards. Conjugate modeling
of the channel walls, however, creates a much more sys-
tem specific problem that may obscure relevant under-
lying details. Choi et «/. [12] found that systems with
densely populated, heat generating components do not
see substantial decreases in temperature with highly con-
ducting circuit boards.

The base of the solid obstacle receives the prescribed
heat flux ¢” = 1. At the interfaces of the fluid and the

obstacle, the no-slip condition and the continuities of

temperature and heat flux are accounted for

u=0, v=0 ©;,=0, k-—=k

2.2, Numerical scheme

The Galerkin method of weighted residuals of the finite
element formulation is utilized to discretize the non-linear
system of governing equations and boundary conditions.
The application of this technique to fluid dynamics and
conjugate heat transfer problems is well documented [22].

The continuum domain is divided into a set of non-
overlapping regions termed elements. Within each
element the dependent variables are approximated uti-
lizing interpolation functions in terms of the local nor-
malized element coordinates. Nine node quadrilateral
elements, with biquadratic interpolation functions, were
utilized to discretize the problem domain. Substitution
of the approximations into the system of governing equa-
tions and boundary conditions yields a residual for each
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of the conservation equations. In the Galerkin method
these residuals are reduced to zero in a weighted sense
over each element volume by making them orthogonal
to the interpolation functions through equations of the
form f,k(n//i'Ri) dV* = 0, where ¥, are the interpolation
functions, R; the residuals, and V* the element volumes.
This procedure yields a system of equations for each
element which can be written as

KU,.U, DQ=FU,U,.T) (10)

where Q =(U,,U,.,P,T)" is the column vector of
unknown variables, K, the stiffness matrix, represents the
diffusion and convection of energy, F, the force vector,
incorporates the boundary conditions, and U,. U, P,
and T are the nodal x- and y-components of velocity,
pressure, and temperature vectors, respectively. Equation
(10) represents the discrete analog of the governing con-
tinuum equations for an individual element. The discrete
representation for the entire computational domain is
obtained through an assembly of all the elemental equa-
tions, as well as imposing the continuity of primary (vel-
ocity, temperature) and secondary ( flux) variables. gen-
erating a global system of algebraic equations similar to
equation (10).

The consistent penalty method is utilized to effectively
eliminate the pressure variable from the governing equa-
tions. The continuity. equation (1), is replaced by the
equation
cu (v

éx Oy

—&p (11)

which allows a substitution for the pressure variable in
the momentum equations. The continuity equation is
thus interpreted as a constraint on the velocity degrees
of freedom and is satisfied in the approximate sense of
equation (11). A value of 10~ ® was utilized for the penalty
parameter ¢. Postprocessing of the velocity data recovers
the pressure via p = —¢ 'V -V, where V is the velocity
vector.

2.3. Solution techniques

Since the governing equations are only weakly coupled,
the global system of momentum and energy equations
are solved independently. The non-linearity of the
momentum equations requires an iterative technique to
obtain a solution whereas the linear energy equation is
solved in one iteration. Solution of the two uncoupled
problems was found to be quicker than for the single,
coupled problem. To assist convergence of the flow field
solutions, a composite solution strategy was
implemented. The first solution steps (typically four) are
performed utilizing the successive substitution method.
The nonlinear portions of the governing equations are
evaluated using data from the previous iteration,

Vi, = K" (VyF. Direct Gaussian elimination is the
solution technique utilized in this work.

Upon completion of the successive substitution steps,
the Newton—Raphson method is utilized. The solution is
linearized using data from the previous iteration accord-
ingto Vy,, = Vy—J '(Vy)R(Vy), where J(V) = 0R/CV
is the Jacobian matrix of the system of equations
R = KV —F. The iterations towards the steady state sol-
ution are terminated when the two convergence criteria,

V’\l

“l Nt < Og, (12)

\ Ry!
<J, and |
3 =

are satisfied. Here || || is the RMS norm summed over all
of the equations, R, is the residual computed from the
initial solution vector V,. and the tolerances for the sol-
ution and residual vectors, 8, and dy. respectively, were
set to 107%,

A dynamic, relative error based relaxation method is
used to increase the convergence rate. The relative error
of each degree of freedom, |1 —(Ay_ /AN, A=U, or
U. is used to linearly adjust the relaxation factor from a
maximum to a minimum value. During a given iteration
the relaxation factors remain fixed throughout the com-
putational domain and are only adjusted between iter-
ations. The relaxation factors for the velocity com-
ponents typically were adjusted from 0.5-0.1.

For a given geometry. the solution proceeded in several
phases. The Reynolds number was first set to its lowest
value and the penalized continuity and momentum equa-
tions were iteratively solved for the velocity field using
the solution of the related Stokes problem as the initial
guess (V,). Then, using this converged velocity solution,
the energy equation was solved for each value of obstacle
thermal conductivity. The Reynolds number was then
incrementally increased and the momentum equations
were solved using the previous velocity solution as the
initial guess, followed by solutions of the energy equa-
tions. This incremental loading strategy provides reason-
able initial solution vectors and results in valid solutions
at each load step for the desired range of Reynolds
numbers.

The present calculations were performed on a highly
variable mesh, as shown in Fig. 1(b)-(c). This mesh was
designed to capture the sharp gradients and boundary
layers near the fluid-solid interfaces and to provide
sufficient mesh density at the obstacle surfaces with mini-
mal element distortion. Confirmation of the grid inde-
pendence of the model required extensive tests to be car-
ried out with increasing mesh densities and various mesh
gradings until further refinement showed less than a one
percent difference in the results. To eliminate the influ-
ences of the entrance and outlet upon the solutions near
the physical domain of interest (the obstacle region),
additional tests were performed by individually increas-
ing the lengths of the channel before (L.) and after (L,)
the obstacle. An inlet length of £L.=2 was found to
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adequately isolate the obstacle region from any entrance
effects. At the highest Reynolds numbers, an outlet length
of L, =8 was necessary to ensure that the large recir-
culation zone downstream of the obstacle reattached well
ahead of the outlet and that the fluid exited the com-
putational domain in a parabolic, fully developed profile.
The meshes employed for the various geometries ranged
from 214 x 60 to 274 x 76. The computations were per-
formed on a Silicon Graphics Indigo2 R10000 work-
station. A converged solution required from 6001200
CPU seconds for the flow field and approximately 10
CPU seconds for the thermal field.

3. Results and discussion

The focus of this work is to examine the influences
upon flow and heat transfer to changes in the flow rate
and other relevant parameters of a single heated obstacle
in a channel. Parametric variations in the obstacle height
(h =0.125, 0.25) and width (w = 0.125, 0.25, 0.5) vield
six different geometries within the channel. Figure 3
shows a scale drawing, relative to the unity channel
spacing, of the six cases considered. These geometries
were chosen to evaluate the effects of systematic changes
in obstacle height, width, size, and shape. The thermal
conductivity of the obstacle is varied from that of a

thermal insulator (k,k;= 1) to other values typical of

materials utilized in electronic packages, such as epoxy
glass, ceramics, heat spreaders. and encapsulants
(k.jke = 10-1000), to that of 6061-T6 aluminum
(k/k; = 6600). The flow rate, characterized by the chan-
nel hydraulic diameter based Reynolds number (Rep, .

where D, = 2H), is varied from 200-2000. This range of
values is typical of laminar forced convection studies of
electronic cooling, where the inlet velocity may range
from 0.3 to S m s™' [23]. The fixed input parameters
utilized in the simulations were H =1, L, =2, L, =8,
q"=1,and Pr=0.72.

To validate the numerical scheme used in the present
investigation, comparisons with previous studies were
performed. This was achieved through adjustments to
the model to match the geometric, hydrodynamic, and
thermal conditions of the related works. First, com-
parisons were made with the analytical solutions of Cess
and Shaffer [24, 25] to the problems of thermal entry
length in a channel with constant wall temperature or
heat flux. Calculated entrance region and fully developed
Nusselt numbers showed excellent agreement. Next, a
hydrodynamic comparison with the single obstacle case
of Zebib and Wo [6] was made. Thermal comparisons
were not made due to lack of information for their multi-
conductivity obstacle and the multilayer channel walls
with a constant convective coefficient beneath the bottom
surface. Their three inlet velocities correspond to Rey,
= 806, 1772, and 3222. A comparison of the recirculation
zone and reattachment length behind the obstacle was
within ~2% for the lowest two Reynolds numbers and
within ~8% for the highest (run as laminar flow even
though the Reynolds number was well within the tran-
sition regime).

A third comparison was made with the study of Dav-
alath and Bayazitoglu [5] for three volumetrically heated
obstacles with thermal conductivities k/k; = 10,
heights = 0.25, widths = 0.5, and spacings = 0.5 in a
flow with 200 < Rep, < 3000. Comparisons between the

Fig. 2. Comparative scale drawing of the obstacle and channel geometries investigated.
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Fig. 3. Flow in a parallel plate channel with a solid. conducting obstacle for Rep = 1000, w =025, & = 0.25, and kjk; = 10: (a)
streamlines, (b) isotherms, and (c) close-up of upstream recirculation zone only showing vectors of the smallest magnitudes.
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mean obstacle Nusselt numbers calculated in [5] and the
current analysis show discrepancies of up to ~ 30%. Wall
temperature distributions along the obstacle surfaces
compare well, but the local Nusselt numbers show notice-
able differences. The Nusselt number distributions on the
upstream and downstream facing surfaces in [5] show
very small, nearly constant values (0 < Nu, < 2) com-
pared with those on the upper surfaces (10 < Nu, <70).
The current calculations found similar thermal boundary
layer development along the upper surfaces. However,
Nu, distributions on the left and right surfaces were found
to be dramatically different, with much greater values
near the upper corners. This phenomenon has been
reported elsewhere, for example (21, 26]. The average
Nusselt numbers on the left surface were found to be
comparable to those of the top surface while those on
the right surface were ~30% of /\f’ﬂl_.‘__Utilizing these
approximate relationships for Nu; and Nug with the Nup
x~ Nu,, from {5] would allow recalculated mean obstacle
Nusselt numbers from [3] to approximately match those
found in the current analysis. The mesh in [5] was
reported to be 86 x42. The mesh utilized for this com-
parison, 386 x 66, is far more refined, especially con-
sidering that it is a highly variable structure designed to
capture near obstacle variations in the flow and thermal
fields. This difference in the local mesh system near the
obstacles appears to be the reason for the large differ-
entials in mean Nusselt numbers.

To illustrate the results of flow and temperature fields
near the obstacle, only this region and its vicinity is pre-
sented. However, it should be noted that the comput-
ational domain included a much larger region than what
is displayed in the subsequent figures. Furthermore. for
the sake of brevity, only the main features and charac-
teristics of some of the results are discussed and presented.

The effects of the solid obstacle on the flow and tem-
perature fields are illustrated for a typical case with
Rep, = 1000, w = 0.25, h = 0.25, and k./k; = 10. It can
be seen in Fig. 3(a) that the presence of the obstacle
causes a crowding of the streamlines at the upstream
corner (vena contracta) as the flow is redirected into the
bypass region. Higher Reynolds numbers further com-
pact the streamlines as the fluid forward momentum
opposes upward movement into the bypass region. For-
ward of the lower left corner a very weak clockwise vortex
develops, detailed in Fig. 3(c). No upstream recirculation
zones were found in [5], perhaps, again, attributable to
mesh coarseness. As Rep, increases the vortex increases
in strength as its area increases in the forward and vertical
directions. The magnitudes of the velocities within this
recirculation, however, are two to three orders of mag-
nitude less than those in the core flow. Downstream, a
clockwise recirculation develops extending from approxi-
mately four to fourteen obstacle heights down the chan-
nel, increasing with Rey, . Both up and downstream recir-
culations are similar to those reported by Greenspan

[27]. The interactions of the upstream and downstream
recirculations with the core flow influences the tem-
perature field, shown in Fig. 3(b). Near the lower corner
of the left face the isotherms spread upstream due to the
recirculation effect of the corner vortex while near the
top left corner the isotherms are crowded by the core
flow. These two effects account for increases in the mag-
nitude of the local temperature gradients, directly impact-
ing the local Nusselt number, defined as

h‘H — —_l L?‘ (13)

ke 0, ¢n

where the temperature gradient is calculated using a three
point finite difference. The Nusselt number distribution
on the three obstacle faces for this case is shown in Fig. 4,
where the ‘Peripheral Distance” axis measures the running
total distance moving clockwise from the lower left to
lower right corner of the obstacle, as shown in the sketch.
The Nusselt number along the left face clearly shows
the influences of the lower corner vortex and the fluid
impaction near the upper corner.

Beginning at the left corner of the top face a thermal
boundary layer develops. Figure 4 compares the top face
Nusselt number distribution with an analytical solution
[25] to the thermal entrance problem with ¢” = 1. The
analytical solution utilizes the bypass height, H, = H—#h,
as the appropriate flow height. The analytical Nusselt
number distribution, based upon equation (13), is plotted
coincident with that of the obstacle top face. At the upper
left obstacle corner, equivalent to the entrance of the
channel for the analytical solution, the difference between
the analytical and numerical Nusselt numbers is largest.
This difference decreases moving downstream of the
entrance. Near the obstacle upper right corner Nu,
increases slightly. This effect, not seen in the analytical
thermal entrance solution, with its infinite channel length
and constant ¢, 18 due to the surface temperature
decreasing near the corner where downstream the fluid is
not being further heated by the wall. On the downstream
obstacle face. Nu, is large at the upper corner and
decreases rapidly to a small, nearly constant value betore
rising at the bottom corner, where the temperature is
greater.

The utility of the analytical solution [25] as an estimate
for the Nusselt number along the top face is shown in
Fig. 5. Here the analytical and numerical solutions are
compared for the extremes in Reynolds number inves-
tigated, 200 and 2000. with ¢" = 1, w = 0.25, h = 0.25,
and k/k; = 10. Again, the bypass height H, = H—/ is
utilized in the analytical solution. Along the top face the
analytical solution substantially overestimates Nu, near
the leading edge. but the difference is small about halfway
to the downstream corner. Lehmann and Wirtz [18]
experimentally found good agreement between the
Graetz solution and the transitional flow results from a
channel with two-dimensional, heated ribs. For many

Nu, =
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Fig. 4. Local Nusselt number distribution around the three obstacle exposed faces (periphery) compared with an analytical solution
[25] for a thermally developing channel flow with ¢, = 1 and H, = 0.75: Re,, or Rey = 1000, w = 0.25, /1 = 0.25, and kjk, = 10.
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Fig. 5. Comparison of the local Nusselt number distribution on the obstacle top face with that found uvsing an analytical method [25]
for the thermally developing channel flow with ¢,, = 1 and H,, = 0.75: Rep, or Reyy = 200 and 2000, w = 0.25, 4 = 0.25, and k,/k = 10.

geometries the mean Nusselt number along the top face
contributes to a significant portion of the heat transfer
from the obstacle. The analytical method of Cess and
Shaffer [25] can provide an estimate or a comparison for
local Nusselt numbers along the top face of an obstacle in
forced convective flows when utilizing the proper length
scale.

3.1. Effects of the Revnolds number

Figures 6 and 7 show the effects of Reynolds number
on the flow field and local Nusselt number for case 5
(w = 0.25. h = 0.25) with k/k; = 10. Comparison of the
streamlines for Rep, = 200, 800, 1400, and 2000 in Figure
6 shows that, as Rep,_increases, the length and the relative
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Fig. 6. Effects of the Reynolds number on streamlines for flow in a parallel plate channel with a solid obstacle for w = 0.25. h = 0.25:

(a) Rep, = 200, (b) 800. (c) 1400. and (d) 2000.

strength of the downstream recirculation zone increases.
The increased axial momentum of the fluid, caused by
the constriction of the bypass region, inhibits its expan-
sion into the full channel downstream of the obstacle.
The weak recirculation zone ahead of the obstacle also

increases in size and strength with increasing Rey, .
Enlarged views of these recirculations (not shown for
brevity) show that the height to which they rise against
the obstacle remains nearly constant at about 0.3-0.4 A
whereas the forward influence increases from about 0.35—
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Fig. 7. Effects of Reynolds number variation on local Nusselt number distributions around the obstacle periphery for w =0.25,

h=0.25 k,fk; = 10, and 200 < Re;;, < 2000.

1.0 4. Again, the velocity magnitudes within this recir-
culation remain two to three orders of magnitude less
than that within the core flow.

The variation of local Nusselt number around the
obstacle periphery for 200 < Rep < 2000 is shown in
Fig. 7. As expected, Nu, increases with increased Rep, .
Along the left face (0 < peripheral distance < 0.25) the
Nusselt number has a local minimum before rising rap-
idly near the upper corner. At the lower corner the recir-
culation and the close proximity of the input heat flux
lead to locally large Nu, values. Near the upstream
corner, where increases in flow momentum push the iso-
therms further back towards the upper portion of the left
face (above the recirculation zone), the magnitude of the
temperature gradient |0®/¢n| increases. The magnitude
of the temperature gradient also increases at the top
face when greater flow rates reduce the thickness of the
thermal boundary layer. Along the right face
(0.5 < peripheral distance < 0.75) Nu, increases slightly
with increased Rey, , though the values themselves are
small in comparison with those on the top and left faces.
As expected, the obstacle surface and maximum tem-
perature decrease with increased Rep, , the latter being a
critical measure towards improving electronic device
reliability.

3.2. Effects of the solid thermal conductivity

The thermal conductivity of the obstacle has a large
effect upon the heat transfer within the obstacle, as illus-

trated by the isotherm plots in Fig. 8. Here the obstacle
geometry is fixed (case 5: w = 0.25, & = 0.25) as is Re,
= 1000, but the thermal conductivity is varied from
k./k: = 1-1000. As the thermal conductivity increases the
internal resistance to heat flow is reduced, decreasing the
maximum temperature and reducing internal tem-
perature gradients. When the conductivity is two to three
orders of magnitude greater than that of the fluid the
obstacle is effectively isothermalized. as predicted by the
Biot number « 1 criteria. The corresponding local Nus-
selt number distributions are shown in Fig. 9. for
kJk: =1 the obstacle is a thermal insulator for air flow
and the Nu, shape is considerably different than for
kk; = 10. Near the lower corners of the obstacle, when
k/k; = 1, both the surface heat flux and temperature are
greater with the overall effect being larger Nu, values.
The trend is reversed at the upper corners where both ¢,
and T, and the corresponding Nu,, are lower than when
k./k: = 10. As shown in the inset, when k,/k. is increased
to 10 or more the variations in surface temperature
decrease. For kjk; > 100 the Nu, distributions are nearly
identical. The benefits of increasing obstacle thermal con-
ductivity are reduced temperature gradients within the
obstacle and increased surface isothermality, though the
returns are diminishing for k. /k, greater than about 100.

3.3. Effects of the heating method

The energy production in an obstacle, such as an elec-
tronic component, can be approximated as a constant



3142 T.J. Young and K. Vataiflnt. J. Heat Transfer 41 (1998) 31313148

(a)

0.5+
006 007 o908 0.09 i
k,/k, =1 — "
0254  ©,,=01577
00
0.05
0.04
y=0-
(b)
0.5+
k,/k,=10
025+ O, =004433
y=0-
()
0.5
0.022 0.025 0.0015—
0.00.
k. /K, = 1000 , A—
0254 ©,., =002635 007
0.02
J 0.017
y=0 — T T ]
x=2.0 25 3.0 35

Fig. 8. Effects of the solid thermal conductivity on isotherms for flow in a parallel plate channel with a conducting obstacle for w = 0,25,

h=10.25,and Rey, = 1000: (a) k /e = 1. (b) 10, and (¢) 1000.

surface heat flux or volumetric generation. Both of these
approaches have been utilized in previous numerical and
experimental investigations. A comparison between these
two methods was made for the obstacle of case 35
(w=025 h=025) with 200 < Rep <2000 and
k.ky = 1-100. The total energy input into the system was
equalized using the balance ¢"(w) = ¢”(w xh). Com-
parisons between the known heat input rate, ¢, = _fq” dA4
or [¢”dV. compare extremely well with the thermal
energy leaving the obstacle and entering the fluid. cal-
culated from g, = [Nu(x)0,(x) d4. The energy equa-
tion for the solid. equation (5), was modified to include
the volumetric source.

kN(@O, 2P0\
(»—)(‘ =y 2 1'>+q" =0 (14)
kij\ext @y

where the magnitude of the dimensionless source term is
¢" = 1/h. The only change in boundary conditions is the
removal of the constant heat flux at the obstacle bottom
surface.

The isotherms in the obstacle region for volumetric
heating are shown in Fig. 10 for w = 0.25, h = 0.25,
Rey, = 1000, and &k /k¢ = 1. 10, and 100. Compared with
the isotherms for a constant surface heat flux (Fig. 8)
several differences are apparent. First, the maximum tem-
peratures are lower for volumetric heating, as the energy
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input is well distributed within the obstacle compared
with bottom surface heating. Second, the regions of
maximum temperature are more localized at the bottom
center of the obstacle, for kjk, =1 and 10, compared
with being spread across the entire base for the surface
flux case. Third, larger temperature gradients across the
interior of the obstacle exist for volumetric heating as
the isotherms are skewed by non uniform local Nusselt
numbers. The local Nusselt number distributions for the
volumetrically and surface heated cases, not shown for
brevity, found that the volumetrically heated obstacle has
slightly higher Nu. values along both the left and right
faces except for near the bottom corners where the surface
heated obstacles have larger local heat fluxes due to the
q" = constant constraint on the bottom face. Along the
top face the Nusselt numbers are nearly identical. Similar
behaviors were seen for the entire range of Reynolds
numbers and obstacle thermal conductivities inves-
tigated. Overall, as expected, little difference in local or
mean Nusselt numbers was found whether volumetric
generation or a surface heat flux introduced the thermal
energy into the obstacle.

3.4. Effects of the obstacle geometry

The set of six obstacle geometries investigated (Fig. 2)
can be grouped into four distinct arrangements based
upon obstacle width, height, size, and shape. The effect
of this geometric ordering will be gauged using mean
values of the Nusselt number for the three exposed faces

(Nuy, 7\/7@ Ni;R) and the overall obstacle mean (Nﬁm).
The exposed face Nusselt numbers are calculated using

Nu,dx
Ny = e (15)

where A, is the exposed area of interest. The thermal
conductivity was fixed at kk; = 1000 for the following
comparisons while the Reynolds number varied from
200-2000.

The effects of varying the obstacle width is dem-
onstrated by comparing cases with a fixed height. The
greatest effect is in the top face mean Nusselt number,
shown in Fig. 11 for cases 4. 5, and 6 where w = 0.125.
0.25 and 0.5 and / = 0.25. The value of Nuy_is seen to
change very little and Nuy decreases slightly with increas-
ing width. Increasing the width of the top face decreases
the value of Nuy by nearly 30% as a larger portion of the
face 1s further from the entrance plane and experiences
lower values of Nu,. Since the obstacle mean Nusselt
number is an area weighted average of those of the three
exposed faces, the values of Nu,, change only slightly
with increases in width. This suggests that for evenly
distributed heat sources encased in materials of good
thermal conductivity, the width of the object is not criti-
cal. However. highly localized heat sources would benefit
from placement near the top face for slender obstacles or
near the left face, which experiences consistently high
Nu, values irrespective of obstacle width. Similar results
were found for cases 1, 2 and 3 where w = 0.125 to 0.5
and i = 0.125.
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Fig. 10. Effects of the solid thermal conductivity on isotherms for flow in a parallel plate channel with a volumetrically heated obstacle
for w = 0.25,h = 0.25, and Re, = 1000: (a) kyky =1, (b) 10, and (c¢) 100.

Figure 12 presents the changes in mean Nusselt num-
bers as the obstacle height increases from 0.125-0.25 for
a fixed width of 0.25 (cases 2 and 5). Again, the values
of Nug only differ slightly and, as Rep,, increases, become
nearly equal. This is because directly behind the obstacle
the dominant heat transfer mechanism is the recir-
culation, which in the immediate downstream region is
only slightly affected by changes in height or flow rate.
For all the exposed obstacle faces increases in height
increase the internal thermal resistance, leading to
decreases in heat transfer, though the effect is most pro-
nounced for N, and Nur. This produces a similar trend

for Nu,, where, at the highest Rey, , the taller obstacle has
a Nu,, decrease of about 20%. In the other sets of fixed
width-variable height cases, similar trends are seen. Thus,
reductions in the overall obstacle mean Nusselt number
are found as the height is increased and as the width is
increased. If the thermal energy flux within an obstacle,
such as the waste heat generated within an electronic
component, can be held constant, division into smaller
units will yield higher mean Nusselt numbers. This is
analogous to transforming a large obstacle into a set of
‘fins’ composed of smaller obstacles.

The effects of an increase in obstacle size, that is keep-
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Fig. 12. Effects of obstacle height variations on mean and exposed face mean Nusselt numbers versus Reynolds number for case 2
(w=10.25h=0.125) and case 5 (w = 0.25, h = 0.25) with k,/k; = 1000.

ing the obstacle aspect ratio constant at w/h = 1 and
increasing the volume, was found by comparing the
results for case 1 (w=h=0.125 to case 5
(w=+h=0.25). For the range of Rep, investigated the
three exposed face mean Nusselt numbers and the
obstacle mean value decreased as the size was increased.

than that for case 1, whereby Nu, is about 15% less and
Nuy about 35% lower. In this study the smaller obstacle
introduces less thermal energy into the channel due to its
smaller constant heat flux surface and has a lower internal
thermal resistance. This reduces both the obstacle surface



T.J. Young and K. Vatai/lni. J. Heat Transfer 41 (1998) 3131-3148

3146
30 T T T T T
Case | Width| Height
3 0.5 0.125
125 [ 025 ]

Mean Nusseit Number

" I "

600

0
200 40

800 1000 1200 1400 1600

1800 2000

Reynolds Number

Fig. 13. Effects of obstacle shape variations on mean and exposed face mean Nusselt numbers versus Reynolds number for case 3
(w=0.5h=0.125) and case 4 (w = 0.125, h = 0.25) with kk; = 1000.

temperature and the thermal boundary layer penetration
into the fluid, consequently increasing the mean Nusselt
numbers.

The largest difference in obstacle shape is between case
3 (low-wide) and case 4 (tall-slender). Nu, for case 3 is
larger than for case 4 at all Rep, , as shown in Fig. 13.
This is due to the larger forward recirculation zone and

its correspondingly lower Nu, for the taller left face of

greater as a larger percentage of its face is in the initial
region of the thermal boundary layer compared with &
wider obstacle where a considerable portion of the sur-
face is downstream of the entry and experiencing lower
local Nusselt numbers. Along the right face the tall
obstacle mean Nusselt number is a balance of these effects
such that the low-wide (case 3) obstacle has a slight
advantage in Nu,,, about 10% larger, at the highest
Reynolds numbers. Due to this similarity in Nu,, the two
geometries would offer similar heat transfer charac-
teristics for well distributed heat sources, while the top
face of the tall-slender obstacle offers slightly better mean
Nusselt numbers at lower Re, and the left face of the
low-wide obstacle offers the highest mean Nusselt num-
bers for larger Rep, . Therefore, the thermal energy trans-
port from highly localized heat sources could be opti-
mized with proper placement in these geometries.
Correlations for the obstacle mean Nusselt numbers
were developed using the obtained numerical results. Two
equations are presented : one to be used for an individual
geometry and a second incorporating the entire para-

metric database. Equation (16) was developed for the
individual cases shown in Fig. 2.

Nu,, = (16)

S(Rep, .k jk;) and six sets of parameters are required for

the six cases. The values of g, b, and ¢ are given in Table
| for each case. Equation (16) was found to fit the data
for the individual six cases with mean percent differences
of <£2.5% while having correlation coefficients from
0.984 to 0.994. The second correlation attempts to reduce
to a single equation the results incorporating the
complete range of parametric variables: 200 < Rep,

Table 1.

Values of the parameters for the mean Nusselt number cor-
relations developed from the numerical results for flow in a
parallel plate channel with a solid, conducting obstacle

Case(s) Equation u b ¢ d

| 16 1.6514 0.3311 0.2828

2 16 1.3647  0.3501 0.0788

3 16 1.0956  0.3650 —0.0336

4 16 1.4842  0.3102 0.9326

S 16 1.4537 03112 0.4404

6 16 1.2802  0.3229 0.1691
1,23 17 1.5164 0.3471 0.1081 —0.4079
4,5,6 0.3144 0.4538

17 1.3951 0.0278
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<2000, 0.125<w<05, 0.125<h<0.25 and
1 < kyfk; < 6600. It was found that the correlation must
be bifurcated about the obstacle height to provide a good
fit with the numerical results. The resulting equation

Nty = aRegh<F%%)(1 ) an
utilizes different values of the constants a—d whether the
height is 0.125 (cases 1-3) or 0.25 (cases 4-6), as given in
Table 1. Equation (17) was found to fit cases 1--3 and 4-
6 with correlation coefficients of 0.952 and 49.927 and
mean percent differences of 3.9% and 5.5%, respectively.
The value of the Reynolds number exponent in the cor-
relations was found to not vary much for the range of
parameters investigated, as reported in other inves-
tigations.

4. Conclusions

An extensive investigation of the fluid flow and heat
transfer in a parallel plate channel with a solid, con-
ducting obstacle is presented in this work. Parametric
numerical simulations have been performed to capture
the fundamental and practical results. The rectangular
obstacle changes the parabolic velocity field significantly,
resulting in recirculation zones both up- and downstream
and a thermal boundary layer along the top face. The
dependence of flow and temperature fields on parametric
changes in the governing parameters, Reynolds number,
solid thermal conductivity, heating method, and two geo-
metric parameters, is documented. The resuits of this
investigation show that the shape and material of the
obstacle has a significant effect on the fluid low and heat
transfer. An analytical solution was found to provide a
reasonable estimate for the Nusselt number on the top
face of the obstacle if the bypass height was utilized to
characterize the flow. Little difference in Nusselt numbers
was found when the thermal energy is introduced through
volumetric generation or a surface heat flux. Corre-
lations, developed for the obstacle mean Nusselt numbers
as functions of the parametric variables, were found to
describe the numerical results with mean errors less than
six percent.
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