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Abstract 

The present work. details the numerical simulation of forced convective, incompressible flow in a channel with an 
array of heated obstacles attached to one wall. Three levels of Nusselt numbers are emphasized in this systematic 
analysis: local distributions along the obstacle exposed faces, mean values for individual faces, and overall obstacle 
mean values. This study details the effects of variations in the obstacle height, width, spacing, and number, along with 
the obstacle thermal conductivity, fluid flow rate, and heating method, to illustrate important fundamental and practical 
results. The periodicity of the mean Nusselt number is established, relative to the ninth obstacle, at the 5% and 10% 
difference levels (eighth and seventh obstacles, respectively). The periodic behavior of the velocity components and 
temperature distributions are also explicitly demonstrated for the array. Extensive presentation and evaluation of the 
mean Nusselt numbers for all obstacles within the array is fully documented. The results pave the way for different 
applications involving multiple heated obstacles. 0 1998 Elsevier Science Ltd. All rights reserved. 

Nomenclature 
A, B, C, D obstacle corners 

u x-component of velocity [m s-‘1 
v y-component of velocity [m s-‘1 

5 
4 
h 

h, 
H 
k 
L 
n 

specific heat at constant pressure [J (kg - K)- ‘1 
hydraulic diameter [m] 

obstacle height [m] 
convective heat transfer coefficient [W (m’ * K)-‘1 Greek symbols 

channel height [m] p dynamic viscosity [(N * s) m-‘1 

thermal conduct lvity [w (m * K) - ‘1 0 dimensionless temperature [(T- T,)/(q”H/k,)] 

length [m] p density [kg rn-‘I. 

normal coordinate 
Nu Nusselt number [h,H/kJ 
p pressure [Pa] 

PeH PCclect number [pFpfu,H/kf] 
Pr Prandtl number [pFpJkf] 
q” heat flux [w m--*1 

9 “’ volumetric heat generation rate [w m-‘1 

Re, Reynolds number [pfu,,,H/pf] 
s obstacle spacing [m] 
T temperature [K] 

w obstacle width [m] 
x, y Cartesian coordinates. 

* Corresponding author. 
’ Current address : Aerospace Power Division, WL/POOD, 

1950 Fifth St, WPAFB, OH 45433-7251, U.S.A. 

OOI7-9310/98 $19.00 c) 1998 Elsevier Science Ltd. All rights reserved 
PII:SOO17-9310(98)00014-3 

Subscripts 
f fluid 
e entrance 
L left surface (AB) 
m mean 
0 outlet 
R right surface (CD) 
s solid 
T top surface (BC) 
w wall 
x local. 

Superscripts 
* dimensionless 

mean. 
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1. Introduction 

The fluid flow in a channel containing heated obstacles 
has been of interest for several decades as the canonical 
model for electronic component cooling. Both exper- 
imental and numerical methods have been employed, as 
detailed by Peterson and Ortega [l], to study a wide 
variety ofproblems. These include two- and three-dimen- 
sional systems in laminar or turbulent flow with natural, 
mixed, or forced convection. The powered components 
are generally idealized as quadrilateral obstacles mounted 
individually or in arrays to a channel wall with thermal 
energy transfer to the surroundings. Improved thermal 
design of electronic components is necessary to reduce 
hot spots, increase energy throughput, and reduce the 
failure rate, which is related to the device junction tem- 
perature. 

The two-dimensional, conjugate heat transfer problem 
for laminar flow over an array of three obstacles was 
solved, utilizing a control volume formulation, by Dav- 
alath and Bayazitoglu [2]. Their obstacles had uniform 
conductivity and were volumetrically heated. The spacing 
between the obstacles was varied from one to two times 
the obstacle width. Their analysis included the effects of 
obstacle spacing on the maximum temperature attained 
within the obstacles and the development of overall mean 
Nusselt number correlations of the form %, = aReb Pr’ 
for the obstacles. 

The mixed convective flow around three obstacles, in 
both horizontal and vertical channels, was numerically 
studied by Kim et al. [3]. The planar heat sources were 
situated near the obstacle mid-height while the geometries 
were fixed. Special consideration was given, using cross- 
stream periodic boundary conditions, to account for con- 
ductive channel walls. Detailed local Nusselt number dis- 
tributions for various Gr/Re2 were presented, showing 
greater heat transfer at the first obstacle and decreasing 
over the two downstream obstacles. 

The buoyancy enhanced laminar flow over three 
obstacles in a vertical channel was investigated by Kim 
and Boehm [4]. The obstacle surfaces and channel wall 
upon which they were attached was kept isothermal while 
the facing wall was insulated. Using a finite element 
method, total mean Nusselt numbers were found, along 
with velocity and temperature profiles across the channel. 
Experimental measurements of mean Nusselt numbers 
and thermal wake functions were made for 5 column by 
21 row array of low profile obstacles, with only the first 
10 rows heated, by Lehmann and Pembroke [5]. The 
square cross section obstacles had a large width to height 
ratio ( N 17) and were closely spaced. Variations in chan- 
nel spacing and flow rate were made. The obstacle mean 
Nusselt numbers were found to be largest at the first row 
and decrease to nearly row-independent values by the 
third row. Similar %&,, versus row effects were also found 
in the experimental investigation of a 5 column by 8 row 
obstacle array by Jubran et al. [6]. 

The work of Huang and Vafai [7] is of particular rel- 
evance to the multiple obstacle configuration. The 
enhancement of forced convective flow and thermal 
characteristics using various arrangements of multiple 
porous obstacles in a channel was demonstrated. The 
Brinkman-Forchheimer-extended Darcy model was used 
to fully account for boundary and inertial effects within 
the porous obstacles. The use of the porous obstacles 
enhanced the mixing within the fluid region resulting in 
much higher heat transfer than for the corresponding 
smooth channel. Substantial periodicity, control of vorti- 
ces, and large increases in Nusselt number were shown 
through alteration of governing physical parameters. 

This work presents a systematic and thorough inves- 
tigation of forced convective cooling of a two-dimen- 
sional array of multiple heated obstacles located upon 
one wall of an insulated channel. The baseline case has 
five obstacles heated at their bases by a surface flux. The 
influences of parametric changes in the obstacle 
geometry, spacing, number, thermal conductivity, and 
heating method, at various flow rates, upon the flow 
and heat transfer are examined to establish important 
fundamental effects and provide practical results. The 
dependence of the streamlines, isotherms, and Nusselt 
numbers on the governing parameters is documented. 
Local Nusselt number distributions and mean Nusselt 
numbers for the individual exposed obstacle faces are 
given particular emphasis. The validity of periodic 
boundary conditions for arrays of obstacles is explicitly 
evaluated, through both mean and local characteristics, 
at both the 5% and 10% difference levels. It is shown 
that specific choices in certain governing parameters, such 
as obstacle height or spacing, can make significant chan- 
ges in the cooling of the obstacles, whereas others, such 
as heating method, exert little influence. 

2. Analysis 

The flow through the two-dimensional channel is 
assumed to be represented by a steady, incompressible, 
Newtonian fluid. Buoyancy effects are assumed negli- 
gible, as are those of viscous heat dissipation. The ther- 
mophysical properties of the fluid and the solid obstacles 
are taken as constant. The governing fluid phase equa- 
tions expressing the conservation of mass, X- and y- 
momentum, and energy, in Cartesian coordinates, are, 
respectively, 

au* au* 
ax*++=0 ay (1) 
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peH u*g+v*E! ( 1 a20: a%: 
aY* 

=---f- 
ax*2 y*2 . 

(4) 

The thermal energy release in an electronic component 
can be approximated as a constant surface heat flux or 
as volumetric generation. Both of these approaches have 
been utilized in previous numerical and experimental 
investigations. The energy equation for the solid phase, 
accounting for a volumetric source term, is 

(5) 

where 9 = 0 when a surface heat flux is applied to the 
obstacle and 9 = 1 for volumetric heat generation. In 
order to equalize the total energy input into the obstacles, 
the energy source terms were balanced as q”w = q”‘wh, 
where q” is the applied surface heat flux when 9 = 0 and 
q”’ is the volumetric heat generation when 9 = 1. 

The governing equations were cast into dimensionless 
form using the following 

The mean velocity is calculated from a,,, = H-’ sf u dy. 
The dimensionless obstacle height, width, and spacing 
are given, respectively, by h* = h/H, w* = w/H, and 
s* = s/H as shown in Fig. l(a). The obstacle faces are 
designated, for example, as AB, corresponding to the 
surface between corners A and B. The obstacle thermal 
conductivity is k,/kf, i.e. it is nondimensionalized with 
respect to the fluid thermal conductivity. Further use of 
the superscripts is suppressed. 

To assess the effects of the changes in governing par- 
ameters on the obstacle heat transfer, the local Nusselt 
number is evaluated as 

where the temperature gradient at the wall is calculated 
using a three-point finite difference. The mean values of 
the Nusselt number for the three exposed faces AB, BC, 
and CD (NuL, NuT, NuR), and the overall obstacle mean - 
(Nu,), are calculated using 

-1 Nu, dx 

Nu, = A1 A, 
- JnNu,Ai 

and Nu, = ’ ’ 
I AL+A,+A, 

(8) 

where Ai is the overall exposed area of the obstacle. The 
overall obstacle mean value is thus an area weighted 
average of the exposed face mean values. 

2.1. Boundary conditions 

Boundary conditions along the entire solution domain 
must be specified for all field variables due to the elliptic 

nature of the governing conservation equations. At the 
inlet to the channel a fully developed, parabolic velocity 
profile is specified. At the outlet the streamwise gradients 
of the velocity components are assumed to be zero. The 
implication is that the flow is nearly fully developed at 
the exit plane. Furthermore, by choosing an extended 
computational domain it was ensured that the com- 
putational outflow boundary conditions had no effect 
upon the physical domain solution (Vafai and Kim [S]). 
This process is explained in more detail below. 

The fluid, at the entrance, is assumed to be at the 
ambient temperature. At the outlet the temperature 
gradient in the axial direction is set to zero. Again, the 
choice of an extended computational domain ensured 
that the thermal boundary condition at the exit had no 
significant effect upon the solution near the region of 
interest. The solid obstacles, for the baseline case, receive 
a constant heat flux at their base, face AD. At the fluid- 
solid interfaces, faces AB, BC, and CD, the no-slip con- 
dition and the continuities of temperature and heat flux 
are taken into account. The channel walls are insulated 
except at the obstacle locations. This condition was selec- 
ted to illustrate the significant aspects of parametric 
changes in the heated obstacles to the flow and thermal 
fields. Though isothermal or adiabatic wall conditions 
simplify the heat transfer from powered devices to the 
coolant and circuit boards [3], conjugate modeling cre- 
ates a more system specific problem that may obscure 
relevant underlying details. In summary, the boundary 
conditions are described in the following dimensionless 
form. 
1. At the entrance (x = 0,O < y < 1) 

u = 6y(l-y), v = 0, Or = 0. (9) 
2. At the outlet 
(x = L,+N,w+(N,-l)s+L,, 0 < y < 1) 
au au ao, -_=o -_=o __=o 
ax ' ax ’ ax ’ 

3. Along the obstacle bases, AD, (L,+(N-l)(w+s) 
< x < L,+ NW + (N- l)s, y = 0) the prescribed heat flux 
is q” = 1. 
4. Along the fluid/solid interfaces (AB, BC, CD) 

u = 0, v = 0, of = a,, kfz = k,z. (11) 

5. Along the bottom channel wall, where y = 0 and 

O<x<L, 

L,+Nw+(N-1)s < x < L,+N(w+s) 

L,+N,~+(N,-~)s<~~L,+N,~+(N,-~)s+L, 

and on the upper channel wall (0 < x < L,+N, 
w + (Nt- l)s+L,, y = 1) the following boundary con- 
ditions are applied. 

u = 0, v = 0, f!$ = 0. (12) 
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Fig. 1, (a) Schematic diagram of the multiple heat obstacle problem, (b) a typical computational domain mesh plot, and (c) a close-up 
of the near-obstacle region. The mesh within the obstacles is not shown for clarity. 

The parameter N (= 1,2, . , NJ is the obstacle number 
and Nt is the total number of heated obstacles. 

2.2. Numerical method 

The solution to the governing equations was found 
through the Galerkin finite element method. Nine node 
quadrilateral elements were utilized to discretize the 
problem domain and the dependent variables were 
approximated using biquadratic interpolation functions. 
A residual was found for each of the governing con- 
servation equations through substitution of the interp- 
olation functions. In the Galerkin method these residuals 
are reduced to zero in a weighted sense over each element 
by making them orthogonal to the interpolation 
functions, jyc($i. R,) dY = 0, where $I is the inter- 
polation function, Ri is the residual, and P is the element 
volume. This procedure yields a system of equations for 

each element. The global system of equations is generated 
by assembling the elemental equations and imposing the 
continuity of primary (velocity and temperature) and 
secondary (flux) variables. The resultant equation is 
expressed as K(U,, U2, T)Q = F(U,, U2, T), where 
R = (U,, Us, P, T)= is the column vector of unknown vari- 
ables, K, the stiffness matrix, represents the diffusion and 
convection of energy, F, the force vector, incorporates 
the boundary conditions, and U,, U2, P, and T are the 
nodal x- and y-components of velocity, pressure, and 
temperature vectors, respectively. 

The pressure is eliminated from the governing equa- 
tions using the consistent penalty method. The continuity 
equation, (I), is replaced by V * U = - cp, which allows 
a substitution for the pressure term in the momentum 
equations. The continuity equation is then interpreted as 
a constraint on the velocities. The value of the penalty 
parameter was fixed at 10m6. The application of this finite 
element technique is well documented [9]. 
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2.3. Solution scheme 

The nonlinear momentum equations are solved iter- 
atively whereas the energy equation is subsequently 
solved in a single Istep. A composite solution strategy, 
employing direct Gaussian elimination, was used to assist 
convergence of the velocity solution. The successive sub- 
stitution technique was first utilized for four solution 
steps. The nonlinearities were evaluated using data from 
the previous iteratison, U,, , = K-‘(U,)F, where n is the 
iteration number. The succeeding iterations employed the 
Newton-Raphson method with the solution linearized 
according to U,, , = U,- J-‘(U,)R(U,), where 
J(U) = aR/aU is the Jacobian matrix of the system of 
equations R = KU--F. The iterations towards the steady 
state solution are concluded when the following con- 
vergence criteria are satisfied. 

(13) 

Here I/ 11 is the RMS norm summed over all the equations, 
R, is the residual compute*om the initial solution vec- 
tor U,, and the tolerances fob the solution and residual 
vectors, 6, and &, respectivelyj were set to lo-*. 

Solutions, for a given geometry, proceeded in several 
phases. First, the Reynolds number was set to its lowest 
value and the velocity solution was found using the 
related Stokes problem as the initial guess. Solutions 
to the energy equation were then obtained, using the 
converged velocity field, for each value of obstacle ther- 
mal conductivity. The Reynolds number was then 
incrementally increased and the momentum equations 
were solved using the previous velocity solution as the 
initial guess, followed by solutions to the energy equa- 
tion. This solution strategy provides reasonable initial 
guesses and results in valid solutions at each step for the 
desired range of Reynolds numbers. 

Figures l(b) and (c) show a typical, highly variable 
mesh employed for the present calculations. This mesh 
was:designed to capture the critical features near the 
obstacle region and to provide sufficient mesh density, 
with minimal element distortion, at the obstacle surfaces. 
Extensive tests, involving mesh densities and gradings, 
were performed to confirm the grid independence of the 
model until further refinement showed less than a one 
percent difference in the results. To eliminate the influ- 
ences of the entrance and outlet upon the solution near 
the obstacle region, as described by Vafai and Kim [8], 
additional tests were performed by individually increas- 
ing the lengths of the channel before and after the obstacle 
array. Entrance effects were found to be effectively iso- 
lated with L, = 2. .4n outlet length of L, = 8 ensured 
that the large downstream recirculation zone was well 
ahead of the outlet and that the fluid exited in a parabolic 
profile. The meshes employed for the various geometries 
ranged from 374 x 60 to 914 x 76 (x,y). Both mass and 

energy conservation were evaluated and found to be sat- 
isfied within 0.1% and 1.2%, respectively. 

To validate the numerical scheme used in the present 
study, initial calculations were performed for laminar 
flow through a channel without an obstacle. Calculated 
entrance region and fully developed Nusselt numbers 
showed excellent agreement with the analytical solution 
of Cess and Shaffer [lo]. Next, comparisons were made 
with the three obstacle study of Davalath and Bay- 
azitoglu [2]. Those obstacles were heated volumetrically 
with k,/k, = 10, h = 0.25, and w = s = 0.5 in a flow of 
200 ,< ReDh < 3000. Temperature distributions along the 
obstacle walls compare well, but the local Nusselt number 
distributions displayed a difference. Along the left (AB) 
and right (CD) faces their local Nusselt number dis- 
tributions do not exhibit the large increases near corners 
B and C that have been reported elsewhere [3, 11, 121. 
Mesh coarseness neighboring the obstacle, especially near 
the vertical faces, appears to be the reason for the Nusselt 
number differences. 

3. Results and discussion 

The dimensionless parameters that specify this system 
include the hydraulic diameter (Q, = 2H) based Rey- 
nolds number, obstacle thermal conductivity ratio, and 
obstacle height, width, and spacing. In addition, the com- 
prehensive parametric analysis included variations in 
heating method (surface flux versus volumetric gen- 
eration), the number of obstacles in the array, and the 
geometrical features of obstacle size and shape. The 
results given in this work present only a small fraction of 
the cases that were investigated. The results that are 
shown were chosen to exemplify the pertinent features 
and characteristics. Further, in order to illustrate the 
results of the flow and temperature fields near the obstacle 
array only this region and its vicinity is focused upon. 
However, it should be noted that the computational 
domain included a much larger region than what is dis- 
played. 

The range of Reynolds numbers in this investigation, 
200 < ReDh < 2000, was chosen such that laminar con- 
ditions were maintained. This range of values is typical 
of laminar forced convective cooling of electronic 
systems, where the inlet velocity may range from 0.3 to 5 
m s-l [13]. The thermal conductivity was varied from 
k,/kf = 10 to 1000, values typical of materials utilized in 
electronic packaging, such as epoxy glass, ceramics, heat 
spreaders, and encapsulants. 

The obstacle geometries were parametrically varied to 
evaluate the effects of systematic changes. Figure 2 shows 
a comparative sketch, relative to the unity channel spac- 
ing, of the baseline case and the sets of cases investigated, 
grouped by geometry. To summarize, the geometric vari- 
ations are as follows : w = 0.1254.5, h = 0.125-0.25, and 
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baseline* 1 

i 

2 

incr. 
width 3 

4 

i 

5 

incr. 
width 6 

7 

incr. 

{ 

8 

height 
9 

incr. 
10 

height 
7 

i2!zxxif !2.eQmQ 

- ” 
-3 

i 

incr. 
spacing 

- l2 

-8 

> 

incr. 

I ’ size 

I l5 dieting 

I 5 > shape 

Casetw h s ICasetw h s ICasetw h s 

l* 0.25 0.25 0.25 1 6 0.25 0.25 0.5 1 11 0.25 0.125 0.125 
2 0.125 0.125 0.25 7 0.5 0.25 0.5 12 0.25 0.125 0.5 
3 0.25 0.125 0.25 6 0.125 0.125 0.125 13 0.5 0.25 0.125 
4 0.5 0.125 0.25 9 0.125 0.25 0.125 14 0.5 0.25 0.25 
5 0.125 0.25 0.5 10 0.5 0.125 0.5 15 0.5 0.125 0.125 

Fig. 2. Comparative sketch of the multiple obstacle cases investigated (only two of five obstacles shown per case). 

s = 0.12545. The fixed input parameters utilized in this 
workareH= 1,L,=2mL0=8,q”= l,andPr=0.72. 

The effects upon the flow and thermal fields are illus- 
trated through comparisons with the baseline, Case 1, of 
five surface flux heated obstacles with w = 0.25, h = 0.25, 
s = 0.25, ReDh = 800, and k,/kf = 10. Several general fea- 
tures were found in all the cases investigated. The pres- 
ence of the upstream obstacle in the array causes the flow 
to turn upwards and accelerate into the bypass region 
(uena contracta). This core flow causes a very weak clock- 
wise vortex to form forward to corner A of the first 
obstacle. Though the details are not shown for brevity, 
the vortex strength slightly increases and the triangular 
shaped recirculation region occupies slightly more area 
as ReDh increases. The velocity magnitudes within these 
recirculations remain two or three orders of magnitude 
less than that within the core flow. The core flow also 
produces two other vortex effects when it interacts with 
the obstacle array : recirculations within the interobstacle 

cavities and a large recirculation zone downstream of the 
array. 

3.1. Effects of the Reynolds number 

All of the vortices are affected by changes in Reynolds 
number. The weak strength of the upstream vortex pre- 
cludes its appearance in Fig. 3, where ReDb is varied from 
200 to 2000. The downstream recirculation zone (beyond 
the last obstacle) expands axially and gains strength as 
ReDh increases. The fluid core flow, through increasing 
viscous effects, pulls the vortex into a strong rotation and 
extends the vortex further downstream as the increased 
core flow axial momentum inhibits its expansion into the 
full channel. Again, it should be pointed out that the 
computational domain outlet was positioned far beyond 
the regions shown in the figures. 

The production of the interobstacle vortices is similar 
to the classic driven cavity problem with the exception 
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Fig. 3. Effects of the Reynolds number on streamlines for flow in a parallel plate channel for the baseline case: w = 0.25, h = 
s = 0.25 : (a) ReDh = 200, (b) 800, and (c) 2000. 

0.25, and 

that the solid, moving lid is replaced by the fluid core 
flow. At the lowest Reynolds number, Fig. 3(a), the fluid 
is able to expand downward slightly towards the cavity 
after flowing past an obstacle. This downward pressure 
prevents the vortices from rising upwards past the plane 
of the obstacle top faces. Detailed streamline plots, not 
shown for brevity, show that this effect is greater at down- 
stream cavities. At higher Reynolds numbers, the cavity 
vortices, especially the first, are able to rise above the 
obstacle top face planes due to increased circulation 
strength and the decreased pressure in the core flow. The 
increased core flow a.xial momentum also acts in a similar 
manner on the interobstacle vortices as it does on the 
downstream vortex: it pulls the vortex centers down- 
stream (albeit slightly) and increases the strength of the 
recirculations through increased viscous shear. Down- 
stream of the first ca.vity, the size, strength, and location 
of the vortices appear similar, suggesting possible period- 
icity. Further detailed discussion of periodicity is pre- 
sented later with regard to the number of obstacles. 

The local Nusselt number distributions around the 
exposed faces of the five heated obstacles, for the baseline 
case with k,/kf = 10, and ReD, = 200 to 2000, are shown 
in Fig. 4. Each plot shows the Nu, distributions for the 
periphery of all five obstacles in the array. For the left 

(AB) and top (BC) faces, Nu, always decreases for the 
downstream obstacles. The opposite is true for Nu, along 
the right faces. The first obstacle has much larger Nu, 
values along its left face than the other obstacles due to 
the impact of the core flow as it is redirected into the 
bypass region. The last obstacle in the array has the 
largest Nu, values along its right face. This effect becomes 
more pronounced as ReDh increases because the stronger 
core flow produces a larger and stronger downstream 
recirculation .which is able to convect more thermal 
energy away from the array. The remaining vertical sur- 
faces within the obstacle array (both AB and CD) have 
lower Nu, values because of their isolation from the core 
flow. The thermal transport from these surfaces is domi- 
nated by the cavity vortices. The vortices, moving clock- 
wise, pick up thermal energy from face AB and transport 
it to the right face, CD, of the preceding obstacle. It 
should be noted that heat transfer does not occur from 
CD to AB due to the convective interaction between the 
vortex and the core flow. This upstream thermal trans- 
port heats the fluid near the upstream obstacle face CD, 
to the point where local heat transfer into the upstream 
obstacle, signified by the negative values of Nu,, occurs 
in some cases. This is most apparent at the first cavity as 
the temperature difference is greatest between the second 
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Fig. 4. Effects of the Reynolds number on local Nusselt number 
distributions for the baseline case with k,/k, = 10 and (a) ReDh 
= 200, (b) 800, and (c) 2000. 

obstacle and the first obstacle, which is cooled con- 
siderably more at its left and top faces. 

3.2. Effects of the thermal conductivity ratio 

The solid thermal conductivity has a significant effect 
on the thermal transport within the obstacles. Figure 5 
compares the isotherms at ReDb = 800 for the baseline 
case using k,/kf = 10 and 1000. As expected, increasing 

the thermal conductivity reduces the temperatures and 
thermal gradients within the obstacles by reducing the 
internal resistance to heat flow. When the thermal con- 
ductivity is larger than k,/kf = 100, the obstacles become 
essentially isothermal and the Nu, distributions become 
nearly identical. The temperatures at the obstacle centers 
for surface flux heating are listed in the first two rows 
of Table l(a). The difference in temperatures between 
obstacles three and four is 89% while between obstacles 
four and five it is 2% or less. If such a single temperature 
is used to completely characterize the thermal state of an 
obstacle, as frequently done in experimental studies [l, 5, 
61, Nusselt numbers will appear row independent by row 
three to five as the variations will be within the estimated 
uncertainty. 

The local Nusselt number distribution for the baseline 
with k,/k, = 1000 and ReDh = 800 is shown in Fig. 6(a). 
In comparing this result with that for k,/kf = 10, Fig. 
4(b), several features are apparent. The values of NM, 
near both upper corners, B and C, is much greater for 
k,/k, = 1000. A two-dimensional control volume around 
these corners shows that the ratio of convective surface 
area to solid (conductive) mass is twice that of a surface 
point away from the corners. This apparent ‘local’ 
increase in convective surface area is able to draw more 
thermal energy away from the interior and regions with 
lower heat transfer rates because of the reduced internal 
thermal resistance. The local Nusselt numbers are slightly 
less along the top face BC when k,/kf is larger, especially 
for the first obstacle in the array where Nu, has its largest 
local value. Along the left faces (AB), Nu, is larger for 
obstacle 1, with smaller increases for the downstream 
obstacles, when the thermal conductivity is larger. Along 
the right faces (CD), when k,/k, = 1000, Nu, is slightly 
greater near upper corner C but decreases to nearly con- 
stant values less than that found for k,/k, = 10. There is 
also no local rise in Nu, at the bottom corner D when 
k,/kf is large. These effects are due to the excellent internal 
thermal energy transfer when k,/kf = 1000. 

The temperatures along the exposed obstacle surfaces 
for the baseline case, with ReDh = 800 and k,/k, = 10 and 
1000, are shown in Fig. 6(b). The obstacle surfaces are 
nearly isothermal when k,/kf = 1000, with the surface 
temperatures of the last two obstacles in the array nearly 
identical. The wall temperatures for k,/kf = 1000 are 
lower than for k,/k, = 10, except near corners B and C. 
When k,/k, = 10, increased conduction resistance results 
in temperature gradients between AD, the heat input site, 
and the top face BC, where Nu, is greatest. Upper corners 
B and C, where the convective transport is greatest, have 
lower temperatures when k,/k, = 10 because increased 
conduction resistance inhibits thermal energy how to 
maintain higher temperatures. As one moves towards the 
heated region (AD), the surface temperatures are seen to 
increase as the increased conduction resistance inhibits 
thermal energy transport away to other regions of the 
solid with greater convection rates. 
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(a) 1.0 
k,/k, = 10 

x=2.0 3.0 4.0 5.0 6.0 

Fig. 5. Effects of the solid thermal conductivity ratio on isotherms for the baseline case using Re D, = 800 and (a) k,/k, = 10 and (b) 
1000. 

Table 1 
Nondimensional temperatures (x 10’) at the obstacle centers with w = 0.25, h = 0.25, s = 0.25, Re D, = 800, and k,/kf = 10 and 1000 : 
(a) for the five obstacle array with various heat input methods and (b) for the ten obstacle array 
(a) 

Heating method k,/k, Obstacle 1 Obstacle 2 Obstacle 3 Obstacle 4 Obstacle 5 

Surface 1’3 4.248 6.193 7.132 7.715 7.571 
Surface 10013 3.367 5.258 6.183 6.781 6.795 
Volumetric 113 4.001 5.949 6.884 7.472 7.376 
Volumetic 100~3 3.365 5.255 6.180 6.77% 6.793 

@I 
Obstacle k,/k, = 10 k,/k( = 1000 

1 4.249 3.368 
2 6.198 5.263 
3 7.156 6.206 
4 7.850 6.899 
5 8.438 7.488 
6 8.961 8.012 
7 9.433 8.483 
8 9.847 8.899 
9 10.13 9.201 

10 9.752 8.980 

3.3. Effects of the heat input method 

The two different methods generally utilized to 
approximate the thermal energy release in electronic com- 
ponents are an input surface flux at the obstacle base 

(AD) and uniform volumetric energy generation. Uti- 
lizing the velocity fields found for the baseline case, solu- 
tions to the energy equations, (5), with 9 = 1 and no heat 
flux at AD, were found. Figures 7(a) and (b) show the 
isotherms near the obstacle region with Re$ = 800 and 
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Fig. 6. (a) Local Nusselt number distributions for the baseline case with k,/kF = 1000 and (b) comparison of wall temperatures for the 
baseline case with k,/k, = 10 and 1000, all at ReDh = 800. Key : [k,/k, obstacle number]. 

k,/kf = 10 and 1000, respectively. Several differences can 
be seen compared with the isotherms of Fig. 5 where the 
obstacles were surface flux heated. For k,/kf = 10 the 
maximum temperature, found in the fourth obstacle, is 
less for volumetric heating and its position is more cen- 
trally located within the obstacle. This is due to the energy 
generation, by definition, being well distributed through- 
out the obstacle volume versus a surface flux along one 
face. When k,/kf = 1000, however, differences between 
the isotherms for the two heating cases are very small 
and the maximum temperatures obtained are identical. 
Table 1 (a) documents the obstacle center temperatures, 
showing the 6% or less decrease for volumetric heating 

when k,/kf = 10 and almost identical temperatures when - 
k,/kf = 1000. Very little variation in Nu, is observed at an 
individual obstacle, for either heating method or thermal 
conductivity, consistent with an energy balance around 
an obstacle. Comparisons between the known heat input 
rate, qrn = j q” dA or j q”’ d V, compare extremely well with 
the thermal energy leaving the obstacle and entering the 
fluid, calculated from qOUt = s Nu,(x)O,(x) dA. 

3.4. Effects of the number of obstacles in the array 

To investigate whether the Nusselt numbers become 
periodic within the array, the baseline case was extended 



T.J. Young, K. Vafai/Int. J. Heat Transfer 41 (1998) 3279-3298 3289 
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Fig. 7. Temperature contours for the baseline case with volumetric heat generation within the obstacles for ReDh = 800, (a) k,/k, = 10, 
and (b) kJk, = 1000. 

to ten identical, hieated obstacles with dimensions 
w = 0.25, h = 0.25, and s = 0.25. The velocity fields were 
then calculated for 2.00 < Re,h < 2000 and thermal sol- 
utions were found for k,/k, = 10 and 1000. 

Figure 8 gives the results for overall and exposed sur- 
face mean Nusselt numbers for the ten individual 
obstacles with k,/k, =- 10. The overall, left, and top mean 
Nusselt numbers show the greatest changes between the 
first and second obstacle with a smaller change between 
the last obstacles in the array. The reverse effect occurs 
for the right side Nusselt number, NuR, as the large down- 
stream vortex has a stronger effect upon the heat transfer, 
compared with the cavity vortices, along the right faces 
(CD). Using obstacle nine as the reference to avoid the 
end of array effects found at the last obstacle, the value 
of NuM for obstacle eight differs only by about 5% for 
both ReDh = 200 and. ReDh = 2000. A 10% difference in 
Nu, was found between the seventh and ninth obstacles. 
Due to the interrupted boundary layer development, the 
top face mean Nusselt numbers show the most reluctance 
in achieving row inclependent values (a 5% difference 
between G* for the eight and ninth obstacles). This effect - 
manifests itself in the values of Nu, not achieving the 
expected fully developed values early on in the array. The 
five percent criterion was found to be too stringent for 
the left face mean Nusselt number, with NuL for obstacle 
eight differing from that at the ninth by 10%. For the 
right face mean Nusselt number,sing the eighth obstacle 
as the reference, the values of NuR at the fourth through 
seventh obstacle are within about 5%. 

A further assessment of the periodicity within the array 
was made by observing the values of the three degrees 
of freedom (u, u, 0) at boundary E’C’D’ of ‘unit cell’ 
DCEE’C’D’ (Fig. 9). Periodic boundary conditions are 
frequently employed to reduce computational domains. 
The explicit requirement is that, after an initial entry 
region, the flow patterns repeat periodically. The large 
numbers of obstacles in this array allowed the evaluation 
of periodic boundary conditions for forced convective 
flows in channels with heated, discrete obstacles. 

Figures 9(a) and (b) show plots of the two velocity 
components, with ReDh = 800, along the ‘periodic’ 
boundary E’C’D’ located behind each obstacle. The 
values of the x-component of velocity, even at the tenth 
obstacle, are short of the theoretical maximum value of 
2.0 for flow in a channel with no obstacles and the same 
height. This indicates that the bypass flow is not fully 
developed, due to the perturbation in the bypass channel 
caused by the cavities. The maximum difference between 
u(y) at the third and tenth obstacles is 5%, with smaller 
differences for downstream obstacles. Away from the 
array entrance and exit the y-velocity components have 
a general ‘s-like’ shape and fluctuate between 
-0.015 < v < 0. The values for u(y) are small, only 
about 0.5% of y,,,, and negative as the fluid turns to 
expand into the cavities. The differences in the u(y) pro- 
files behind the obstacles does not have a significant effect 
on the Nusselt number and the x-component of th flow 
field, u(y). 

The temperature distribution along the ten ‘periodic’ 
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Fig. 8. Mean Nusselt numbers for the individual obstacles in a 
ten obstacle array with w = 0.25, h = 0.25, s = 0.25, b/k, = 10, 
and 200 c ReDh < 2000. 

boundaries E’C’D’ is shown in Fig. 9(c) for k,/k, = 10. 
Within each ‘unit cell’ an equal amount of 
thermal energy, q” x w, is released into the system. 
An energy balance on a ‘unit cell’ yields 

@&cD.- @IllECD = q”W/&, which is constant, where 
0, is the mean temperature at a ‘periodic’ boundary. 
A plot [Fig. 9(c)-inset] of the mean fluid temperatures, 

@I m EC’D’ = sf Or(x, y) dy, at the ten ‘periodic’ boundaries 
E’C’D’ (away from the array entrance and exit regions) 
shows a linear increase. This agrees with the description 
of periodic temperature conditions for thermally active 
regions by Kelkar and Choudhury [ 141, who decompose 
the bulk temperature into a linear variation due to the 
thermal energy release in each repeating cell and a per- 
iodic part identical in all cells. This linear increase in 
temperatures is also seen in the obstacle center tem- 
peratures (except for the last obstacle as explained earl- 
ier), detailed in Table 1 (b), for the ten obstacle array with 
k,/kf = 10 and 1000. A slight increase, less than 2%, in 
center temperatures was found for the first four obstacles 
when the ten obstacle case is compared with the data for 
five obstacles [Table l(a)]. This effect is attributable to 
the thermal convection from the warmer upstream 
obstacles by the clockwise cavity vortices. The ten 
obstacle array, adding twice as much thermal energy into 
the channel compared with the five obstacle array, allows 
the warmer, downstream obstacles to have a greater 
influence on the upstream obstacles. 

To recapitulate, the periodicity within the ten obstacle 
array has been shown at the 5% difference level and at 
the less restrictive 10% level. The mean Nusselt number, 
which reflects both fluid and thermal conditions, for 
obstacles eight and seven were within 5% and lo%, 
respectively, of the value found at obstacle nine. The local 
values of the velocity components and temperature at 
the ‘periodic’ boundaries clarify and support the use of 
periodic boundary conditions for obstacles assumed 
located away from the entrance. Comparisons with 
experimental work shows similar results. Lehmann and - 
Pembroke [5] reported Nu, being constant, within exper- 
imental uncertainty, for rows six to ten. Garimella and 
Eibeck [15] reported h, asymptotic by the fourth row in 
their experiments, while Souza Mendes and Santos [16] 
had independent Sherwood numbers after row five in 
their experimental array. Jubran et al. [6], though, - 
describe NM, as being row independent downstream of 
row three. 

3.5. Effects of the obstacle geometry 

The geometries of the different obstacle arrays inves- 
tigated, as detailed in Fig. 2, can be organized into five 
groups based upon obstacle width, height, spacing, size, 
and shape. The effect that this geometric ordering has 
upon the heat transfer will be gauged through the mean 
Nusselt numbers defined by equation (8). The four areas 
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of interest will be left (AB), top (BC), and right (CD) 
exposed faces and the total exposed surface area of the 
obstacles. For these comparisons, the thermal con- 
ductivity ratio was fixed at k,/kf = 1000 and the Reynolds 
number was varied between 200 to 2000. 

3.6. Obstacle width 

The effects of varying the obstacle width from 0.125 to 
0.5 is shown in Fig. 10. Here, comparisons are made 
between (a) Cases 2, 3, and 4 (h = 0.125, s = 0.25) and 
(b) Cases 5, 6, and 7 (h = 0.25, s = 0.5). In Fig. 10(a) it 
is seen that the narrowest obstacles of Case 2 have the 
highest values of Nu,, with decreasing values as the width 
increases. This is a direct result of %, decreasing with 
increasing width, due to a larger percentage of the top 
face having lower Nu, values because of increased dis- 
tance from corner B. It was also found that, as expected, 
the first obstacles have much larger 5, values and the 
last obstacles have larger values of Nun. In Fig. 10(a), 
for obstacle numbers 2 to 5, increases in width produce 
small differences in NuL as indicated by the relative clus- - - 
tering of the Nu,(Re,,) plots. For these obstacles,& 
yields little influence upon geometrical changes in Nu,. - 
The values of NuR also decrease with increased width, 
but their small magnitudes produce small effects on the 
overall heat transfer. This decrease is due to the larger 
amount of thermal energy released by the wider obstacles 
further heating the fluid and reducing the heat transfer. 

The results for the mean Nusselt numbers of Cases 5, 
6, and 7 are found in Fig. 10(b). The plots of Nu, are 
more closely clustered by obstacle number than for the 
similar comparison between Cases 2,3, and 4. The values 
of Nu, behave similar to those in Fig. 10(a) while %, 
shows clusterings by the case number, except for the first 
and last obstacles (1 and 5) which have similar values for - 
all three cases. As in the previous case [Fig. 10(a)], NuT 
decreases with an increase in width even though this 
decrease is less pronounced than the previous case. The 
decrease in Nusselt numbers from Cases 2, 3, and 4 [Fig. 
10(a)] and Cases 5, 6, and 7 [Fig. 10(b)] are explained in 
the following section regarding obstacle height. 

3.7. Obstacle height 

Cases 8 and 9 (w = s = 0.125) are compared in Fig. 
11 (a) to present the changes in mean Nusselt numbers as 
the obstacle height increases from 0.125 to 0.25. The - 
shorter obstacles have considerably larger values of Nu,. 
Along the top faces, except for the first obstacles, the 
values of NuT for the two different geometries [Figs. 11 (a) 
and 11 (b)] are similar, with the taller obstacles having 
slightly larger values. Though the core flow velocity 
increases as the bypass region is made smaller, values of 
NUT for the taller first obstacle are smaller than that for 
the shorter obstacles and increases relatively slightly as 

the flow rate increases beyond Reoh 2 1200. With the 
greater obstacle height, the core flow is further accel- 
erated into the bypass. Due to the incipient formation of a 
separation bubble along the top face of the first obstacle, 
which can be clearly seen at higher Reynolds number 
simulations, this region has a lower local velocity and 
decreased Nusselt number. Along the right face of the 
first obstacle of Case 8, [8, 11, and the first two obstacles 
of Case 9, [9, l] and [9, 21, negative values of NuR are 
seen. Though in all cases the cavity vortices are weak, the 
greater cavity height to width ratio (h/w = 2) in Case 9 
reduces the interaction and mixing of the vortices with 
the core flow. This allows the vortices in the first two 
cavities to transfer heat upstream into the first two 
obstacles. Case 8, with a smaller cavity aspect ratio 
(h/w = I), only has negative Nu, values at the first 
obstacle. 

The effects of obstacle height are also shown in Fig. 
11(b) where Case 10 is compared with Case 7 (both 
w = s = 0.5). The shorter obstacles have larger values of 
G,,,. This results from greater Nusselt numbers along the - 
vertical faces and comparable Nu, values. In general, the 
shorter cavity height does allow better thermal transport 
out of the cavities and into the cooler core flow. The 
taller obstacles, as in Fig. 11 (a), have larger Nusselt num- 
bers along the top face except, again, for the first obstacle 
at larger Reoh. The Nusselt numbers along the right faces 
are considerably different for these two cases, except that - 
Nu, at the last obstacles increases in both cases with the - 
flow rate. For the shorter obstacles of Case 10, NuR 
decreases downstream whereas the reverse is true for Case 
7. The interior obstacles (2, 3, and 4) for Case 7, have 
very comparable %, values, indicating that the flow 
development and interaction at the second through 
fourth cavities is similar. The first obstacle has small and 
nearly constant values of %& (with respect to changes in 
Reynolds number) because the core flow is accelerating 
into the bypass, reducing its interaction with the first - 
cavity. At the last obstacle, NuR keeps increasing with 
flow rate as the thermal transport due to the downstream 
recirculation increases. 

3.8. Obstacle spacing 

The effects of increasing the obstacle spacing in the 
arrays from 0.125 to 0.5 is shown in Fig. 12(a) for Cases 
11, 3, and 12 (w = 0.25, h = 0.125). The wider spaced 
array has the largest mean Nusselt numbers for virtually 
all faces of all obstacles. The values along the left face, 
save for that of the first obstacle, which is affected only 
by the forward recirculation and the impingement of the 
core flow, show that the wider spacing allows the core 
flow to further mix with the fluid in the cavities. This 
increases the transfer of thermal energy out from the 
cavities and into the core flow, reducing the transport 
towards the upstream obstacles. Along the top faces the 
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wider spaced obstacles have only a slight advantage in - 
Nq. The graph of Nus clearly shows that as the spacing 
is reduced the thermal transport is impeded. Similar 
results are also seen in Fig. 12(b) for Cases 13, 14, and 7, 
where w = 0.5 and h = 0.25. 

3.9. Obstacle size 

Case 8 (W = h = s = 0.125) and Case 1 
(w = h = s = 0.25) were compared to investigate the 
effects of an increase in obstacle size. The obstacle volume 
for Case 1 is greater, even though the aspect ratio for 
both cases is w/h = 1. As shown in Fig. 13, all of the 
mean Nusselt numbers decreased with increased obstacle 
size. The smaller obstacles introduce less thermal energy 
into the fluid, due to their smaller width along the surface 
(AD) receiving the heat flux, reducing the obstacle wall 
temperatures and the thermal boundary layer penetration 
into the fluid. The fluid remains cooler and is thus able 
to transport more thermal energy away from the 
obstacles, as indicated by the greater Nusselt numbers. 
The larger obstacle height of Case 1 also increases the 
cavity height, further reducing the Nusselt numbers along 
the vertical faces and NuT along the top face of the first 
obstacle, as detailed in previous sections. 

3.10. Obstacle shape 

A large difference in array geometry is found between 
the wide-low-closely spaced obstacles of Case 15 
(w = 0.5, h = s = 0.125) and the slender-tall-widely 
spaced obstacles of Case 5 (w = 0.125, h = 0.25, s = 0.5). 
Along the left face, as shown in Fig. 14, the Nusselt 
numbers are greater for Case 5, other than for the first 
obstacle, as the wider spacing allows better thermal trans- 
port out of the cavity. The shorter first obstacle of Case 
15, however, has higher NuL values as the forward recir- 
culation region is smaller, decreasing the left face area - 
where the values of Nu, are near minimum. The taller - 
obstacles have larger values of NuT due to their narrower 
width and, to a lesser extent, the increased fluid velocity. 
Along the right face the shorter, closer spaced first - 
obstacle has negative Nua values, indicating upstream 
thermal transport, while the wider spaced obstacles, with 
better core flow-cavity mixing, have greater cor- 
responding Nusselt numbers. 

4. Conclusions 

A comprehensive numerical investigation of the fluid 
and thermal transport within a two-dimensional channel 
containing large arrays of heated obstacles is presented 
in this work. To the best of the authors’ knowledge, it is 
the first time that an extensive analysis has been per- 
formed for a large array of simulated electronic com- 

Fig. 13. Effects of obstacle size on the mean Nusselt numbers. 
with k,/kp = 1000 and 200 < ReDh < 2000, for Cases 8 and 1. 
Key : [case number, obstacle number]. 
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ponents to evaluate the fundamental results due to chan- 
ges in obstacle width, height, spacing, heating method, 
and number. The solid thermal conductivity was varied 
between values typical of electronic component materials. 
Smaller, widely spaced obstacles were found to more 
effectively transfer thermal energy into the fluid, reducing 
their temperatures. Narrow gaps between tall obstacles 
were found to allow upstream thermal transport by the 
cavity vortices through reduced cavity-core flow inter- 
action, in some cases actually heating the upstream 
obstacles. Differences between surface flux and volu- 
metric heating manifest themselves in the isotherms 
within the obstacles with only small changes in Nusselt 
numbers. Large values of the solid thermal conductivity 
effectively isothermalize the obstacles regardless of heat- 
ing method or geometry. Periodicity was explicitly dem- 
onstrated by doubling the number of obstacles and eva- 
luating the mean Nusselt numbers and the calculated 
variables at ‘periodic’ boundaries between the obstacles 
in the array. The mean Nusselt number was found to 
reach the 5% and 10% difference levels, referenced to 
the ninth obstacle, at the eighth and seventh obstacles, 
respectively. Extensive presentation and evaluation of the 
mean Nusselt numbers along the exposed faces of all 
obstacles in the array was fully documented. 
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