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Abstract-An analytical model is developed for the startup transient of asymmetrical flat-plate and disk- 
shaped heat pipes. The model solves the proper transient heat conduction equations for the heat pipe wall 
and liquid-wick regions. A quasi-steady state, pseudo three-dimensional approximation is used for the 
vapor transi’ent behavior. The heat transfer within the wall and liquid-wick regions is coupled with the 
vapor phase at the liquid-vapor interfaces. Analytical solutions of temperature, vapor velocity, and vapor 
pressure distributions are obtained based on an in-depth integral method. Results covering the entire 
startup transient are presented for disk-shaped and flat-plate heat pipes. 0 1998 Elsevier Science Ltd. All 

rights reserved. 

IINTRODUCTION 

Asymmetrical flat-plate and disk-shaped heat pipes 
have some favorable features compared with con- 
ventional symmetrical heat pipes, such as geometry 
adaptation, ability for very localized heat dissipation 
and for producing an entirely isothermal surface. 
These characteristics have attracted significant atten- 
tion in electronics cooling and space applications [l- 
61. Understanding of the transient behavior of asym- 
metrical flat-plate and disk-shaped heat pipes is 
important for the startup phase of applications. In 
general, the analysis developed for conventional sym- 
metrical heat pipes cannot be applied to asymmetrical 
heat pipes, nor can it account for the different design 
and geometrical features of the flat-plate and disk- 
shaped heat pipes. A literature survey revealed that 
the limited transient heat pipe models reported in the 
open literature are all for symmetrical heat pipes and 
an analysis for asymmetrical heat pipe startup process 
is not available. 

Various transient models for different heat pipe 
startup stages have been developed [7-IO]. All of these 
studies deal with the conventional cylindrical heat 
pipes. Almost all the transient heat pipe models 
reported in the literature are concentrated on a 
numerical simulat:lon. This is because the analysis of 
heat pipe dynamics is quite complicated and a relevant 
analytical solution is difficult to obtain. Only a few 
analytical studies have been reported on the heat pipe 
frozen startup process such as those by Sockol and 
Forman [l l] and Ochterbeck [ 121. These works are 
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based on the use of a lumped one-dimensional model. 
These analytical frozen startup models neglect tem- 
perature difference and heat transfer across heat pipe 
wall and wick and therefore cannot be applied to fully- 
thawed heat pipe startup process. For the startup of 
a fully-thawed heat pipe, the temperature difference 
across the heat pipe wall and liquid-wick is significant. 
While numerical models based on different simplifying 
assumptions have been developed, an analytical 
model for the startup process of a fully-thawed heat 
pipe is not available at present. An analytical model 
for the fully-thawed heat pipe can provide a quick 
prediction method for its transient operation and can 
aid in understanding the underlying physical phenom- 
ena. 

It has been found that under normal conditions the 
transient response of a heat pipe is mainly determined 
by the thermal capacity and conductance of the heat 
pipe wall, wick, and working fluid and is only slightly 
influenced by liquid and vapor dynamics [7]. Fol- 
lowing this finding, Chang and Colwell [7] analyzed 
heat pipe transient operation by solving the two- 
dimensional heat conduction equations for the heat 
pipe wall and the liquid saturated wick regions, which 
are thermally coupled to a lumped vapor model. The 
effect of liquid flow on the heat transfer is neglected by 
treating the liquid-saturated wick as a pure conducting 
medium with an effective thermal conductivity. 

Bowman and Hitchcock [13] studied the transient 
vapor flow experimentally and numerically. Their 
results show that the vapor transient periods are very 
short and the vapor in the heat pipe can be accurately 
modeled using the steady-state governing equations. 
Based on their observation, Seo and El-Genk [9] 
developed a two-dimensional transient model for a 
liquid metal heat pipe which incorporates a quasi- 
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NOMENCLATURE 

specific heat [J kg-’ K -‘I 
thickness [m] 
convective heat transfer coefficient 
[w rn-’ K-l] 
latent heat of working fluid [kJ kg-i] 
thermal conductivity [W m-’ K-‘1 
length of the flat-plate heat pipe [m] 
length of heat input zone of the flat- 
plate heat pipe [m] 
evaporation/condensation mass flux 

[kg m -2 s-9 
pressure [Pa] 
heat flux at the wall-wick interface 

[w m-‘I 
input heat flux at the evaporator wall 
outer surface [w m-‘1 
heat flux at the evaporator liquid- 
vapor interface [w m-‘1 
heat flux at the condenser liquid-vapor 
interface [W mm’] 
radial and vertical coordinates used for 
the disk-shaped heat pipe [m] 
radius of the disk-shaped heat pipe [m] 
radius of the heat input zone of the 
disk-shaped heat pipe [m] 
time [s] 
temperature [K] 
wall-wick interface temperature [K] 

T initial temperature [K] 

T, ambient temperature [K] 
u, v radial and vertical vapor velocity 

components [m s-l] 
vi vapor injection velocity [m s-‘1 
V2 vapor suction velocity [m s-‘1 
x, Y, z coordinates used in the analysis of 

the flat-plate heat pipe [ml. 

Greek symbols 
CI thermal diffusivity 
6 thermal layer length [m] 
E porosity 

? alternative coordinate, r~ = Y - h, or 

?= -Y 
8 angular coordinate 

p dynamic viscosity [m’ s-l] 
5 alternative coordinate, 

5 = h,+h,+h,,-y 
P density [kg m-‘I. 

Subscripts 
eff effective value for the liquid-wick 
1 liquid phase 
Iv liquid-vapor interface 
V vapor phase 
W wick structure 
wa heat pipe wall. 1 

steady state approximation for the vapor phase. Their 
model predictions agree well with the experimental 
results reported by Merrigan et al. [14]. 

In the present study, an analytical model is 
developed for the transient behavior of the fully 
thawed asymmetrical flat-plate and disk-shaped heat 
pipes during startup process. The heat transfer in the 
liquid-saturated wick is described using a heat con- 
duction model, which is thermally coupled with a 
quasi-steady state pseudo-three-dimensional vapor 
model. Analytical solutions are obtained by solving 
the governing differential equations for the wall, the 
liquid-saturated wick and the vapor regions. 

ANALYTICAL MODELING 

The schematics of the asymmetrical disk-shaped 
and flat-plate heat pipes and the coordinate systems 
used in the study are shown in Figs. 1 and 2, respec- 
tively. Heat is primarily transported through the 
liquid-saturated wick by conduction in normal oper- 
ation. Therefore, the effects of the liquid flow within 
the wick is neglected in our transient model. It should 
be noted that, while having a negligible influence on 
the temperature distribution in the heat pipe, the 

liquid flow is very important in the determination of 
the capillary limit of the heat pipe. The capillary limit 
is determined by using a comprehensive model for the 
liquid and vapor flow as established in [15] for the 
disk-shaped heat pipe and in [16] for the flat-plate 
heat pipe. 

It has been determined that the effects of heat con- 
duction along the heat pipe is negligible during tran- 
sient operation of non-liquid metal heat pipes [17]. 
Based on this observation, the heat conduction along 
the heat pipe is neglected in the present study and a 
one-dimensional heat conduction model is used for 
the heat transfer within the heat pipe wall and liquid- 
saturated wick regions. The energy equation in the 
heat pipe wall region is 

and in the top and bottom wick region is 

(PC&Z = k&$ (2) 

where (p~,),~ = ~~~~~~~ + (1 - 8,) (PC&, s, is the 
porosity of the top and bottom wicks, and (p& is 
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Fig. 1. Schematic of the disk-shaped heat pipe : (a) geometry 
of the heat pipe, (b) the coordinate system used in the 

analysis. 

the heat capacity of the top and bottom wick structure 
material. The local volume averaging method is used 
here to obtaining equation (2). The effective thermal 
conductivity for the sintered wick is calculated using 
the equation given by Dunn and Reay [ 181: 

k = k 2+Wk-2~d1-Wd 
eff 1 2+k,/k,+E,(l-k,/k,) (3) 

Since heat conduction along the heat pipe is 
neglected and a one-dimensional model is used for the 
heat transfer within the heat pipe and liquid-saturated 
wick regions, the analytical model for the heat transfer 
within the heat pipe wall and liquid-saturated wick 
regions are applicable to both asymmetrical flat-plate 
and disk-shaped heat pipes. However, for different 
type of heat pipes, different model for vapor phase is 
necessary. Due to the fact that the vapor transient 
periods are much smaller than the heat transfer time 
within the liquid saturated wick [9, 131, the vapor in 
the heat pipe can be accurately modeled using the 
steady state governing equations. Therefore, a quasi- 

steady state, pseudo-three-dimensional model is used 
for vapor in the present study. The governing equa- 
tions for the vapor flow within the disk-shaped heat 
pipe are derived by Zhu and Vafai and presented in 
[ 191, which in the dimensional form are : 

Mass Conservation Equation : 

95+!!!k+y 
ay 

Momentum Conservation Equations : 

( u,$+““% A+,, > ( a%, 1 ah, 
P” ay -+73 aY2 > 

aPv -_=O ay 
ap,=o. 
ae 

The governing equations for the vapor flow within 
the flat-plate heat pipe are derived by Zhu and Vafai 
and presented in [ 161, which in the dimensional form 
are : 

Mass Conservation Equation : 

Momentum Conservation Equations : 

(10) 

For a fully thawed low-temperature heat pipe, the 
vapor phase is assumed to be saturated, therefore 
there is no need to solve the energy equation for the 
vapor. 

The boundary conditions at the heat pipe wall outer 
surfaces are given as : 

Evaporator section : 

At y = h,+h,+h,,, 0 < r < R, (or 0 <x < L, for 
the flat-plate heat pipe) 

(12) 

Condenser section : 

At the upper condenser outer wall surface, i.e. 
y = h,+h,+h,,, R, < r < R (or L, < x < L for the 
flat-plate heat pipe) 
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The end wall is not 
shown to illustrate 
the internal structure 

(a) 

TOD Wall 

03 
Fig. 2. Schematic of the flat-plate heat pipe : (a) geometry of the heat pipe, (b) the coordinate system used 

in the analysis. 

_k ar,, aTwa 
, 

wa ay y=h,+h,+h,, kwa F y=h,+h, 

=k % 

w ay F=h,+hfw’ 

= konv(T,vwa(~ = h+hv+k,,+T,). (13) aTw, 

At the lower condenser outer wall surface, i.e. kwa F y= -_h, 
=k aT, 

w ay Y= _h,’ 
(16) 

y= -(Iz,+h,,),O<r<R(orO<x<Lfortheflat- 
plate heat pipe) 

At the liquid-vapor interfaces (y = 0 and y = II,), 
the continuity of temperature field requires 

kaT,, 

wa aY Y=-_(h,fh,,) 
T,(Y = O,t) = T,(Y = 0,0, 

= &,,,(T,,(Y = -h,-h,,>0--T,) 
T,(Y = h,, 4 = T(y = k, 0. 

(14) 
(17) 

where h,,,, is the convective heat transfer coefficient, 
The energy balance at the liquid-vapor interfaces 

T, is the coolant temperature. 
yields 

The boundary condition at the wall-wick interfaces 
(y = h,+h,and y = -h,) are: 

+ h&g, 

Twa(y =hv+k,O = T(y=~v+kv,t), 

T,,(Y = -kv, 6 = T,(Y = -L 4 (15) 
+rizh, (18) 



Startup characteristics of flat-plate and disk-shaped heat pipes 2623 

where ti is the evaporation/condensation mass fluxes. 
For evaporation, 

ri? = pvv, (19) 

For condensation, 

h I= 
-pvvz, Y = k 

P”V2, y=o’ 

For the vapor velocity component u, based on the 
results established in [ 151, the non-slip boundary con- 
dition is applied at the liquid-vapor interfaces as well 
as the evaporator and condenser ends. 

The initial condition is 

T,, = T, = TV = T, at t = 0. 

Since both the temperature and the heat flux at 
the liquid-vapor interfaces are unknown, a marching 
scheme is used for time. For the quasi-steady state 
vapor model employed in the analysis, at each time 
step, the energy entering the vapor phase within the 
evaporator section should equal to that rejected from 
the vapor phase within the condenser section. This 
energy balance for the vapor phase at each time step, 
along with the above governing equations and bound- 
ary conditions, provides the necessary relations for 
obtaining a closed mathematical solution. 

ANALYTICAL SOLUTION 

Evaporator wall and wick regions 
The heat conduction equations (1) and (2) for the 

temperature field within the heat pipe wall and the 
liquid-saturated wick regions are integrated with 
respect toy from the heat pipe wall outer surface to a 
distance s,(t), beyond which the initial temperature 
distribution remains unaffected by the applied heat 
load. When this thermal layer reaches the liquid- 
vapor interface, the heat conduction equations are 
integrated over the entire wall and liquid-wick regions 
and the boundary conditions (17) and (18) are 
applied. 

To facilitate the derivation of the temperature dis- 
tributions, an alternative coordinate, 5 = h,+h,+ 
h,,-y, is employed (Fig. 3(a)). The energy equations 
(1) and (2) in the r-coordinate system reduce to 

for0 < 5 < h,,, t 2 0 

(22) 

aT, d2 T, 
(EC&- = k,,-- at a52 

for h,, < 5 < h,, + h,, t > 0. (23) 

The temperature distribution is approximated by 
using a second order polynomial in 5, that is : 

T(5,t) = a,(t)+a,(t)5+a2(t)5’. (24) The temperature distribution is then given by equa- 

For conduction problems, a comparison of approxi- 
mate temperature distributions based on a second, 
third- and fourth-order polynomial approximation 
with exact solution shows that the simple second order 
polynomial approximation can yield reasonably good 
results which are sufficiently accurate for most engin- 
eering applications [20]. 

The analysis for the transient heat transfer within 
the evaporator wall and wick regions is divided into 
three stages. At t = 0, the heat load is applied to the 
evaporator wall outer surface and the thermal layer 
starts to develop. Before the thermal layer reaches the 
wall-wick interface, i.e. 6,(t) < h,,, all the input heat 
is stored within the wall region hence resulting in 
the temperature increase within the wall region. The 
temperature field within the wick region and the vapor 
region remains unaffected. After the thermal layer 
reaches the wall-wick interface, the temperature 
gradients start to build up within the wick region, 
while the temperatures within the wall region keeps 
on rising. When the thermal layer reaches the liquid- 
vapor interface, the liquid at the liquid-vapor inter- 
face starts to evaporate. Part of the input heat is trans- 
ported to the condenser section in the form of latent 
heat, while the other part of input heat is stored in the 
wall and wick regions to continue the temperature rise 
within these regions. The amount of the heat which is 
transported to the condenser section increases gradu- 
ally and eventually equals to the amount of the input 
heat load under steady-state conditions. 
(1) For the time period during which h,(t) < h,, 

During this period, the boundary conditions are 

_k aT,a 
w= 2r = gin 

“h I<=0 

Tw,(t = &(O, 4 = Ti 

Applying the boundary conditions given in equa- 
tion (25) to equation (24) yields the temperature dis- 
tribution : 

(26) 

Substituting the temperature distribution given by 
equation (26) and the boundary conditions given by 
equation (25) into the integrated form [integrated with 
respect to 5 from 0 to s,(t)] of equation (22) yields : 

h(t) = J6oLwaf 
where a,, = k,,/(pc& is the thermal diffusivity of 
the wall. The initial condition s,(t) = 0 is used in 
obtaining equation (27). 
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tions (26) and (27). The time for the thermal layer to 
reach the wall-wick interface is given by : 

h2 
t, ==gy 

Wd 

(2) For the time period during which 
h,, < q(t) i h,, + h, 

During this period, the boundary conditions for the 
wall region are : 

Twa(5 = h,,, 4 = T,,e(t) 

aTwa 
-kva~ r=,,~, = q,,e(t) 

and for the liquid saturated wick region are 

T(5 = h,,, 0 = TLC(~) 

Tl(5 = &Y&r) = 7-i 

(29) 

(30) 

where T,,=(t) and q, .(t) are the temperature and heat 
flux at the wall-wick interface in the evaporator 
section, respectively. It should be noted here that 6, 
and 8: are referring to the same thermal layer but in 
different regions and as such different expressions. 

Applying the boundary conditions given by equa- 
tion (29) to equation (24) yields the temperature dis- 
tribution for the wall region 

0 < 5 < h,,, tj ,< t d tz (31) 

and applying the boundary conditions given by equa- 
tion (30) to equation (24) yields the temperature dis- 
tribution for the liquid-saturated wick region 

’ 
’ 

h,, < 5 < &Yt), tj < t d t2 (32) 

where a,, = k,,/h,,, and t, is the time for the thermal 
layer to reach the liquid-vapor interface. The con- 
tinuity of heat flux at the wall-wick interface, equation 
(16) requires 

T,,e(t> = T,+ r ‘Iqc3,yt) -h,,). (33) 
eff 

The two unknowns dzt) and q,,<(t) are obtained by 
integrating the energy equations (22) and (23). Inte- 
grating equation (23) with respect to 5 from h, to 

@(t) and utilizing the boundary conditions given by 
equation (30) and the temperature distribution given 
by equation (32) yields : 

(T,,,(t)-TJY +(alfl-&,)y 

= %r(T,,e(t) - T) 
Z’(t) - h,, (34) 

where aeff = k,~/(pc,),, is the effective diffusivity of the 
liquid-saturated wick. Utilizing the energy equation 
(23) to represent dT,,<(t)/dt in terms of the second 
spatial derivative of the temperature distribution 
given by equations (26) and (27) yields : 

&Tt) = L +45ol,,ct-t,,. (35) 

The initial condition &?ft,) = h,, is used to obtain 
equation (35). The time for the thermal layer to reach 
the liquid-vapor interface is obtained as : 

hi 
t2 = t1 + 8a,ff. (36) 

Integrating equation (22) with respect to l from 0 
to h,, and utilizing the boundary conditions given by 
equation (29), the temperature distribution given by 
equation (31), and equations (33) and (34) yields : 

41,E(4 = g)WJ (37) 

where 

A(t) = (&W-&J2 + k,,h,, 
6~r 

I -h,,) + 3. 
e wa wa 

(38) 

The initial conditions &f(t) = h,, and q,,e(tl) = 0 are 
used to obtain equation (37). The temperature dis- 
tributions for the time period t, < t < t2 are then given 
by equations (31)-(35) and (37). 
(3) After thermal layer reaches the liquid-vapor inter- 
face 

At t = t2, the thermal layer reaches the liquid-vapor 
interface. The temperatures within the wall and the 
liquid-saturated wick regions still increase for t > t2, 
while evaporation takes place at the liquid-vapor 
interface. Since the temperature variations within the 
vapor phase is negligible for low-temperature heat 
pipes [6, 171, the second term on the right hand side 
of equation (18) is negligible. Therefore, the vapor 
temperature is assumed to be equal to the liquid- 
vapor interface temperature and all the heat trans- 
ferred to the liquid-vapor interface causes the change 
of phase and is subsequently transported by the vapor 
to the condenser section in the form of latent heat. 
Due to the fact that the vapor transient periods are 
very short compared to the response time within the 
liquid-saturated wick, a quasi-steady state model is 
employed in the present analysis for the vapor phase. 
This indicates that at any time, the heat transfer into 
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the vapor phase wil:hin the evaporator section equals 
to that rejected from the vapor phase within the con- 
denser section. 

When t > t,, the boundary conditions for the wall 
region are the same as those specified in equation (29) 
while for the wick region they are 

7;(5 = LX 0 = T,&.(t) 

T(5 =: k,+kv, t> = T,,(t) (39) 

where T,,(t) denotes the temperature at the liquid- 
vapor interface. Applying the boundary conditions 
given by equatiom (29) and (39) to equation (24) 
yields the temperature distribution for the wall region 

T (5 t) = T wa 3 1.e 

0 G 5 < h,,, t a t2 (40) 

which is the same as that given in equation (31), and 
for the wick region 

h,, < 5 < h,, + h,, t > f2 (41) 

where I,, = k,,/h, 
The two unknowns T,,c(t) and ql,e(t) are determined 

by integrating the energy equations (22) and (23) over 
the wall region and the wick region, respectively. 
Utilizing the temperature distributions given by 
equations (40) and (41) and solving the integrated 
equations for T,,c(t) and q,,e(t) yields : 

dqdt) _ 
dt 

(&+ik) (42) 
and 

dT, e(t) 1 
A=-_ 

dt 3a,, +4,&n 

11 . (43) 

The heat flux at the liquid-vapor interface is then 
obtained as : 

qdt) = p [T,,e(t) - Tdt)l -_q,,e(O. (4) 
w 

Condenser wall and wick regions 
As shown in the previous section, starting at t = t2, 

a heat flux q,“,Jt) is applied to the liquid-vapor inter- 
face in the condenser section as a result of vapor 
condensation. The thermal layer develops from the 
liquid-vapor interface towards the heat pipe wall 
outer surface. To facilitate the derivation of the for- 
mulation, an alternative coordinate n = y-h, is 
employed for the top wall and wick regions of the 
condenser section, and ? = --y is employed for the 
bottom wall and wick regions (Fig. 3(b)). The energy 
equations (1) and (2) are then reduced to : 

forh, <q G h,+h,,, t 3 t2 (45) 

(PC&$ = kc,3 for0 < n < h,, t> t*. 

(46) 

The analysis for the transient heat transfer within 
the condenser wall and wick regions is also divided 
into three stages : (1) before the thermal layer reaches 
the wall-wick interface, (2) the time after the thermal 
layer reaches the wall-wick interface until the time 
when the thermal layer reaches the wall outer surface, 
and (3) after the thermal layer reaches the wall outer 
surface. Based on prior discussion, the temperature 
distribution is approximated by using a second order 
polynomial : 

Tht) = a~(t)+a,(t)~+a2(t)?*. (47) 

(1) For the time period during which 6,(t) < h, 
During this period, the boundary conditions are : 

T,(v = 0, 0 = Cd0 

T,(q = s,(t), t) = Tj 

aT - 
all ?J=*,(rj 

= 0. (48) 

Applying the boundary conditions given by equa- 
tion (48) in equation (47) yields the following tem- 
perature distribution : 

(49) 
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T,.(t) 
01 / 

wall I 

41.4) L(t) 
liquid-wick 

I 

Ql”&) Wf) 
1 

vapor 

St 
(a) Evaporator section 

konv(Kc(t) - TM) 

Vapor region 

(b) Condeiser section 
Fig. 3. The alternative coordinate systems used in the analysis. 
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Integrating the energy equation (46) with respect to 
q from 0 to s,(t) and utilizing equation (49) yields : 

The initial condition sxt = t3) = h, is used to obtain 
6,(t) = JW. (50) equation (58). The time for the thermal layer to reach 

The initial condition s,(t = tz) = 0 is used to obtain 
the wall outer surface is therefore given by : 

equation (50). The time at which the thermal layer G 
reaches the wall-wick interface is : 

f4 = tS + &-. (59) 
wa 

h: 
t3 = t2+G. 

Integrating the energy equation (46) with respect to 
(51) q from 0 to h, and utilizing equations (55), (57) and 

(58) yields : 
The heat flux at the liquid-vapor interface is there- 

fore obtained as : dq, c(t) 16~~ 
A= -- 

dt h; [( 
2x,fr(T,” (t) - Ti) 

4,v,c(t) = --jm , t2 G t G t3. (52) 

(2) For the time period during which 
_J 

h, < s?(t) < h,+h,, The temperature distributions for the time period 
During this period, the boundary condition for the t3 < t < t4 are given by equations (55)-(58) and (60). 

wick region are : The heat flux at the liquid-vapor interface during this 

T,(? = (44 = T,(t) 
time period is : 

^_ 

T,(q = h,, t) = T,,c(O 

ar, 
- %?y q=h, 

= q,,e(O (53) 

and for the wall region are 

(54) 

Utilizing the boundary conditions given by equa- 
tion (53) in equation (47) yields the temperature dis- 
tribution for the liquid-saturated wick region : 

_k aT,, 
wa all s=h,+h,, 

= L,(T,,(rl = h,+L,t)-T,) 

2 T,.,,h = L t) = T,,&) 
T,(rl, 4 = T,,,(t)+ (T,,(t) - TdO) 

_k aT,, 
wa as +, = 41,e(O. (62) 

0 < ‘I < h,, t 2 t3. (55) 

Using the boundary conditions given by equation 
(54) to equation (47) yields the temperature dis- 
tribution for the wall region : 

Tw,(rl,O-T ’ 
= 1 T,,c(O- r, , 

h, < rl G SXt), t 2 t,. (56) 

The continuity of heat flux at the wall-wick inter- 
face yields : 

T,,c(t:, = Ti+ 2k q’~c(t)(6,Yt)--k,). (57) 
wa 

Integrating the energy equation (45) with respect to 
q from h, to SKI’) and utilizing equation (56) yields : 

(3) After the thermal layer reaches the wall outer 
surface 

When t > t4, part of the heat is conducted to the 
wall outer surface and dissipated by convection. Dur- 
ing this time period, the boundary conditions for the 
wick region are the same as those specified in equation 
(53), while for the wall region they are 

Applying boundary conditions given by equations 
(53) and (62) to equation (47) yields the temperature 
distribution for the wick region 

T,(v, 0 = T,,,(t) + U’df) - T,,c(O) 

and for the wall region : 

Tw,(q, 4 = T,,c(O- ~Wd 
B&, T,,c(t) - T, 

2+B&, h:, > 
(v-h,)* 

h,<v<h,+h,,, tat4 (64) 
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where Bi,, = hc,,nyhwJk,,,a. 
Integrating the energy equation (46) with respect to 

q from 0 to h, and utilizing equation (63) yields : 

+ 2(W) - T,,,(t)). (65) 

Integrating the energy equation (45) with respect to 
rl from h, to h, + h,, and utilizing equations (64) and 
(65) yields : 

dqdt) 

I( 

2Bi,, ( 1 + Bi,,) -= _ 
dt t1 

+ Bi, (3 + Bi,,) 

tz-t1 > 
q,,‘.(t)+ ~hcmv(T,,(t)- Tm) 

3 + Bi,, 
+p t _ t kdT,v(t) - Tdt)) 

2 I 

(Biw(Biw, + 3) + Bi,,(Bi,, +4)) (66) 

where Bi, = h,,,,h,/k,a. The temperature dis- 
tributions are therefore given by equations (63)-(66). 
The heat flux at the liquid-vapor interface is : 

sdt) = $%,(4 - T,,,(O) -_g,.c(O. (67) 
W 

Vapor phase 
The governing equations for the vapor phase are 

given in equations (4)-(7) for the disk-shaped heat 
pipe and equations (8)-(11) for the flat-plate heat 
pipe. The analytical solutions for the vapor phase are 
based on the works of Zhu and Vafai [ 191 for the disk- 
shaped heat pipe and Zhu and Vafai [ 161 for the flat- 
plate heat pipe. The vapor velocity profile and pres- 
sure distribution for the disk-shaped heat pipe are 
given as [19] : 

1 U-GY Ghv) 
(68) 

4% -4~ d _=-- 
dr 1575h, dr 

x {r(Uv(r))*[(2a:(r)+21a,(r)+l12)f(r) 

+(2b:(r)+21b,(r)+112)(hv-f(r))]) 

‘&) (69) 

and for the flat-plate heat pipe they are [ 161 

&4X,Y,Z) = d 
(0 G Y <<f(x)) 

i 

by ( hv -Y 
U”(X) M4~f+ l-Mx)h,-f ! 

I cf(x) G y < h,) 

(70) 

dpv -_= - +$f& {UvC-4>‘[(4(.W05 dx v 

a3W+2 + h(x)+2 
f(x) hv -f(x) 

+ @, (4 + Wv --f(x))1 Uv(4 (71) 

where U, denotes the maximum vapor velocity, f 
denotes the location of the maximum vapor velocity, 
a3 and b3 are coefficients used for the vapor velocity 
profile. The expressions in these quantities are given 
in [ 191 for the disk-shaped heat pipe and [16] for the 
flat-plate heat pipe. It should be noted that in both 
solutions, the vapor injection and suction velocities 
are time dependent in the present transient model and 
are obtained from equations (18)-(20). 

The first-order ordinary differential equations for 
T,,e(t), q,,<(t), T,,.(t) and q,,,(e) are integrated numeri- 
cally to obtain the temperature distributions within 
the heat pipe wall and wick regions. Since both the 
temperature and the heat flux at the liquid-vapor 
interface are unknown, a marching scheme in time is 
utilized. At each time step, a liquid-vapor interface 
temperature is assumed. The heat fluxes at the liquid- 
vapor interfaces are then calculated for both the evap- 
orator section and the condenser section. A new 
liquid-vapor interface temperature is then obtained 
based on the energy balance for the vapor phase. The 
new liquid-vapor temperature is updated to calculate 
the new heat fluxes at the liquid-vapor interfaces 
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within the evaporator section and the condenser 
section. This iterative procedure continues until the 
liquid-vapor interface temperature converges. The 
fourth-order Rung+Kutta method is used to solve 
for the vapor velocity profiles and pressure dis- 
tributions at each time step. 

RESULTS AND DISCUSSION 

The results based on the present analysis are 
obtained for a copper disk-shaped heat pipe and a 
copper square flat-plate heat pipe with heavy water as 
the working fluid. To make the comparison mean- 
ingful, the diameter of the disk-shaped heat pipe is 
taken equal to the length of the square flat-plate heat 
pipe, i.e., R = L. On the same basis, the heat input 
area, the heat pipe wall and wick thicknesses for both 
the disk-shaped and the square flat-plate heat pipes 
are taken to be equal. The respective dimensions of 
the heat pipes are chosen as: R = L = 0.25 m, 
h,, = 0.002 m and h, = 0.003 m. The radius of the 
circular heat input zone and the internal flow channel 
angle for the disk-shaped heat pipe are taken as 0.125 
m and 45”, respectively. The width of the internal flow 
channel for the square flat-plate heat pipe is taken as 
0.06 m. The vapor channel height is taken as 0.025 m. 
The top and bottom wick material is sintered copper 
powder, its effective pore radius, porosity and per- 
meability are taken as 35.8 pm, 0.61, 4.25 x lo-” m*, 
respectively. The heat pipes are initially at room tem- 
peratures (296 K) when an input heat power of 25 kW 
is applied uniformly to the outer wall surface of the 
evaporator section <at t = 0. The outer wall boundary 
condition at condenser sections is chosen as a con- 
vective boundary condition with the heat transfer 
coefficient of 1200 W m-* K-’ and the coolant tem- 
perature of 296 K. 

Figures 3 and 4 show the transient response of the 
power throughput and the temperatures for the disk- 
shaped heat pipe and the flat-plate heat pipe during 
the startup process, respectively. Our results show that 
the thermal layer takes a very short time (0.045 s) to 
reach the liquid-vapor interface because of the large 
thermal diffusivity of the copper wall and sintered 
copper wick. As shown in Figs. 3(a) and 4(a), the 
power throughput of the evaporator increases rapidly 
during the initial phase of the transient. Conversely, 
the power throughput of the condenser increases 
much slower and reaches the steady-state about 50 s 
later than that of the evaporator. This is because the 
thermal capacity of the evaporator is smaller than that 
of the condenser due to the fact that the condenser 
area is seven times larger than the evaporator area for 
the disk-shaped heat pipe and nine times for the flat- 
plate heat pipe. Before the heat pipe reaches steady 
state, there is a ditrerence between the input power 
and the output power. This difference between the 
input and output powers is stored as sensible heat 
in the heat pipe wall and liquid-wick regions. The 

difference between the input power and the power 
throughput at the vapor-liquid interface represents 
the increase in the sensible heat of the evaporator, and 
the difference between the power throughput at the 
vapor-liquid interface and the output power rep- 
resents the increase in the sensible heat of the 
condenser. As can be seen in Figs. 3(a) and 4(a), the 
increase in the sensible heat of the condenser is much 
larger than that of the evaporator. 

The transient responses of the vapor temperature 
and the wall outer surface temperatures are shown in 
Fig. 3(b) for the disk-shaped heat pipe and Fig. 4(b) 
for the flat-plate heat pipe. Although the transient 
time for the power throughput of the evaporator is 
shorter, as shown in Figs. 3(a) and 4(a), the transient 
time for the evaporator wall outer surface temperature 
is the same as that of the vapor temperature and the 
condenser wall outer surface temperature. Since heat 
is conducted to the vapor-liquid interface through 
the heat pipe wall and liquid-wick in the evaporator 
section, the evaporator wall outer surface temperature 
is higher than the vapor temperature, while the vapor 
temperature is higher than the condenser wall outer 
surface temperature due to the fact that heat is con- 
ducted from the vapor-liquid interface to the con- 
denser wall outer surface in the condenser section. 
This phenomena is also shown in Figs. 5-8. The tem- 
perature difference across evaporator wall and wick is 
larger than that across condenser wall and wick. This 
is because the heat flux in the evaporator is larger than 
that in the condenser due to the smaller evaporator 
area. During the initial phase of the startup transient, 
the temperature differences are small since a large part 
of the input power is stored as sensible heat in the 
heat pipe and the power throughput of the heat pipe 
is small. As time increases, the power throughput of 
the heat pipe increases, hence increasing the tem- 
perature differences across the heat pipe wall and 
wick. As the heat pipe approaches steady-state, the 
temperature differences reach their maxim. 

The vapor and wall outer surface temperatures 
along the heat pipe at different times during the 
startup transient are shown in Fig. 5 for the disk- 
shaped heat pipe and Fig. 6 for the flat-plate heat 
pipe. For both disk-shaped and flat-plate heat pipes, 
the bottom wick acts as a condenser. Therefore, the 
temperatures at the bottom wall outer surface are 
almost uniform. This indicates that neglecting heat 
conduction along the heat pipe is reasonable for the 
bottom wall and wick regions. However, since the 
center part of the top wall and wick acts as the evap- 
orator and the outside edge of the top wall and wick 
acts as the condenser, there is a temperature difference 
between the evaporator section and the condenser 
section within the top wall and wick regions. The 
assumption of neglecting heat conduction along the 
heat pipe may cause some error for the top wall and 
wick regions when input power is high. During both 
the transient and the steady-state, the temperature rise 
of the flat-plate heat pipe is always smaller than that 
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Fig. 4. Transient response of power throughput and temporal temperature response of 
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of the disk-shaped heat pipe. This is because the 
square flat-plate heat pipe has a larger condenser area 
than the disk-shaped heat pipe, thus, dissipating more 
heat. 

The heat pipe vertical temperature distribution at 
different times during the startup transient are shown 
in Fig. 7 for the disk-shaped heat pipe and Fig. 8 for 
the flat-plate heat pipe, where h, represents the height 
of vapor space. In the 0 < r ,< R, (0 < x < L,) region, 
the top wick acts as evaporator and the bottom wick 
acts as condenser. Therefore, the temperatures in the 
top wall and wick are higher than vapor temperature 
and the temperatures in the bottom wall and wick are 
lower than vapor temperature. In R, < r < R 
(15, < x < L) region, both top and bottom wicks act 
as condenser, therefore the temperature distribution 

is symmetrical due to the symmetrical cooling 
conditions. Since the effective thermal conductivity of 
the liquid-saturated wick is much smaller than that of 
the heat pipe wall, the temperature drops across the 
liquid-wick are much larger than that across the heat 
pipe wall. 

The transient response of the maximum vapor vel- 
ocity and the vapor pressure is shown in Figs. 9 and 
10. The vapor pressure at the evaporator end, r = 0 
(X = 0), is taken to be zero in the analytical model 
[ 16, 191. It can be seen that both the maximum vapor 
velocity and the vapor pressure drop increase with 
time. This is because the power transported by vapor 
phase from the evaporator section to the condenser 
section increases with time. It should be noted that the 
presented pressure distribution is the relative pressure 
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distribution. The absolute pressure distribution can 
be related to the vapor temperature at the evaporator 
end. 

CONCLUSIONS 

The startup operating characteristics of fully- 
thawed asymmetrical flat-plate and disk-shaped heat 
pipes has been analyzed in depth in this work. The 
transient heat transfer within the heat pipe wall and 
liquid-wick regions has been solved and is coupled to 

the vapor phase through energy balance of the vapor 
phase. A quasi-steady state, pseudo-three-dimen- 
sional analytical model is used for the flow and heat 
transfer in the vapor phase. Analytical results for a 
disk-shaped heavy water heat pipe and a square flat- 
plate heavy water heat pipe are presented. The results 
presented cover the entire startup transient of the heat 
pipes from the initiation of the startup to steady state. 
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