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Abstract--In this work, an analytical and numerical study was carried out for the steady incompressible 
vapor and liquid flow in an asymmetrical flat plate heat pipe. The pseudo-three-dimensional analytical 
model employs the boundary layer approximation to describe the vapor flow under conditions including 
strong flow reversal and the method of matched asymptotic expansions to incorporate the non-Darcian 
effects for the liquid flow through the porous wicks. The coupling of the liquid flow in the top, bottom and 
vertical wicks is also included in the model. In the numerical study, a finite element scheme based on the 
Galerkin method of weighted residuals was used to solve the full set of nonlinear differential elliptical 
equations of motion and the continuity equation for the three-dimensional vapor flow. The analytical and 
numerical results for various injection Reynolds numbers are presented. The three-dimensional effects are 
discussed and lhe results show that a three-dimensional analysis is necessary if the vapor channel width- 
to-height ratio is less than 2.5. Very good agreement was found between the analytical and the numerical 
results. While showing, qualitatively and quantitatively, the pertinence and the effects of various physical 
parameters, the analytical results are quite useful for practical engineering purposes by providing an 
effective and rapid prediction method for the flat plate heat pipe operation. ~5 1997 Elsevier Science Ltd. 

INTRODUCTION 

Heat pipes have been widely used in heat transfer 
related application in the last three decades. Research 
data on conventional cylindrical heat pipes, both 
theoretical and experimental, have been well-estab- 
lished for various applications. Asymmetrical heat 
pipes, either flat plate [1-4] or disk-shaped [5-7], have 
applications in electronic cooling, spacecraft thermal 
control and commercial thermal devices. These appli- 
cations require an understanding of the behavior and 
performance of the flat plate and disk-shaped heat 
pipes with asymmetrical heat inputs. In general, the 
analytical and numerical analysis developed for con- 
ventional cylindrical heat pipes cannot be applied to 
asymmetrical heat pipes. 

Only a few investigators have studied the vapor and 
liquid flow in asymmetrical flat plate heat pipes, which 
is a more complicated and less understood system 
compared to conventional cylindrical heat pipes. 
Ooijen and Hoogendoorn [3] carried out a two- 
dimensional numerical investigation for steady incom- 
pressible laminar vapor flow in a flat plate heat pipe 
with an adiabatic top plate. They solved the vapor 
mass and momentum equations using the control vol- 
ume finite difference approach for the injection (rad- 
ial) Reynolds number over the range of I ~< Re~ <~ 50. 
Their results show that, the velocity profiles are non- 
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similar and asymmetrical for injection (radial) Rey- 
nolds number Rer > 1. Flow reversal is encountered 
in the condenser section at Re~ > 10. 

Vafai and Wang [4] have proposed an asymmetrical 
flat plate heat pipe design. In their design the vapor 
space is divided into several channels by vertical wicks. 
For the heat pipes heated from the top surface, this is 
quite advantageous for the condensate return thus 
enhancing the heat pipe performance. They had 
developed a pseudo-three-dimensional analytical 
model for incompressible vapor and liquid flow within 
the fiat plate heat pipe. In their study, the vapor flow 
field was bifurcated on the x-y plane due to the asym- 
metrical feature of heat input. The parabolic velocity 
profiles, which vary with the distance along the heat 
pipe, were used for both upper and lower parts of 
vapor flow within the heat pipe. The liquid flow was 
modeled by using Darcy's law with the assumption of 
the same liquid flow rates in the top and bottom wicks. 

Vafai et al. [6] have analyzed the asymmetrical disk- 
shaped heat pipes and developed a comprehensive 
analytical model for it. The generalized momentum 
equation in porous medium was employed to describe 
the liquid flow in the disk-shaped heat pipe. The coup- 
ling of the liquid flow within the top and bottom wicks 
was established and the vapor-liquid coupling and the 
gravitational effects were also accounted for in the 
analytical model for the disk-shaped heat pipe [7]. 
This model was used to simulate the disk-shaped heat 
pipe tested by North and Avedisian [5] and good 
agreement was found between the predicted maximum 
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NOMENCLATURE 

A~, A2, A3 coefficient defined by equations 
(31)-(33) 

a3 coefficient used in the vapor velocity 
profile for the 0 < y+ < f +  region 

B~, B2 coefficient defined by equations (34) 
and (35) 

b3 coefficient used in the vapor velocity 
profile for t h e f  + < y+ < 1 region 

D2 constant defined by equation (36) 
Da Darcy number of porous wicks defined 

as K/gh 2 
f location of the maximum vapor 

velocity [m] 
g gravitational acceleration 
h vapor channel height [m] 
hw top and bottom wick thickness [m] 
hw. vertical wick thickness [m] 
K permeability of porous wicks [m 2] 
L length of the flat plate heat pipe [m] 
Le length of the evaporation zone [m] 
p pressure [Pa] 
Reh injection Reynolds number, pvv~h/pv 
u, v, w velocity components in the x +, y+ 

and z + direction, respectively, 
[ms '] 

U the maximum axial velocity 
component [m s 1] 

u~ characteristics value for radial velocity 
component, v~L/h 

v~ vapor injection velocity [m s ~] 
t,2 vapor suction velocity [ms ~] 
W width of vapor flow channel 

[m] 
x, y, z coordinates [m]. 

Greek symbols 
ratio of half of the vapor channel width 
to its height, W/2h 

/~ ratio of the vapor channel length to its 
height, L/h 

e porosity of the porous wicks 
q~ ratio of the evaporator length to the 

heat pipe length, Le/L 
p dynamic viscosity [N s m -2] 
p density [kg m 3]. 

Subscripts 
b bottom wick 
1 liquid phase 
t top wick 
v vapor phase 
vw vertical wick 
w top and bottom wicks. 

Superscript 
+ dimensionless quantity. 

heat transfer and the measured data. The model was 
further extended to vapor flow predictions in the pres- 
ence of flow reversal [8]. In this work, Zhu and Vafai 
[8] also studied the three-dimensional vapor flow in 
the disk-shaped heat pipe numerically. In their study, 
the nonlinear differential elliptical equations of 
motion were solved over the entire vapor flow channel 
in order to allow all of the features of the incom- 
pressible vapor flow to be taken into account. The 
comparison of their analytical and numerical results 
further demonstrated that the analytical model 
predicts the velocity variation and pressure drop accu- 
rately along the disk-shaped heat pipe. 

In the present study, the analytical model developed 
by Vafai and Wang [4] is extended to account for the 
vapor flow reversals, the liquid flow in the vertical 
wicks, the coupling of the liquid flow within the top 
and bottom wicks, the non-Darcian effects of the 
liquid flow though the porous wicks and the gravi- 
tational effects. In addition, the complete three-dimen- 
sional vapor flow in the flat plate heat pipe is analyzed 
numerically for the first time. The analytical results 
are compared with the numerical results and are found 
to be in good agreement. It is worth noting that the 

analytical model reduces the computational time dras- 
tically by several orders of magnitude. 

MATHEMATICAL MODELING 

The physical problem under consideration is a hori- 
zontal flat plate heat pipe, as shown in Fig. 1. Heat is 
input from the top center surface of the heat pipe, so 
that the flow and heat transfer become asymmetrical. 
The vapor space is divided into several channels by 
the vertical wicks which transport liquid from the 
bottom wick to the top wick. Any one of the internal 
channels can be considered as a building block for the 
flat plate heat pipe. Once the fluid flow characteristics 
within one of the channels is determined, the fluid 
flow characteristics of the entire heat pipe can be easily 
established. The results of this analysis are applicable 
to any number of channels. 

Steady, incompressible, three-dimensional laminar 
vapor and liquid flow in a channel is considered, as 
shown in Fig. 1 (b). All wicks are assumed to be iso- 
tropic and saturated with wetting liquid. The trans- 
port properties of the fluid are assumed to be constant. 
The vapor injection and suction rates are assumed to 
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Fig. l. Schematic of the flat plate heat pipe : (a) configuration of the heat pipe ; (b) the wick structure and 
the coordinate system within a channel. 

be uniform on the top and bottom wicks and negligible 
on the vertical wicks. The differential equations associ- 
ated with this three-dimensional problem are the con- 
tinuity and the momentum equations. The math- 
ematical model of the vapor and liquid flow within a 
channel is described by four subregions: the vapor 
region, the top liquid-wick region, the bottom liquid- 
wick region and the vertical liquid-wick region, each 
of which has its own set of governing equations. In 
the vapor region, the continuity and momentum equa- 
tions are : 

OUv ~Vv Cqvv;, 
. C Z  

{ #uv ~Uv + w , . S u , , ~  
P,, ~ u,. ~-x- + V'~ c~fy 

- + (2) Ox + ttv~ &v 2 + ~y2 #z 2/] 

- o y  + -  o) ~y2 4- 0_72/] 

f aw~ ~w~ #Wv\ +Wv ) 
@, [a=Wv a2w, #2w,,~ 

- - -  + ( 4 )  
az + ay= 

The equation of motions for the liquid flow within 
the top and bottom wicks are based on the generalized 
momentum equation [9, 10] which accounts for the 
boundary and inertial effects. The convective term in 
the generalized momentum equation is dropped in 
accordance with the work of Vafai and Tien [9, 10]. 
The governing equations for the liquid flow in the top 
wick are : 

0ul.t ~vkt Owl.t 
~ -  + ~ + & = o (5) 

]'/1 (~2 bll,t (~2 b/I,t (~ 2 b/l,t ~ [/I 
+ 

p~Few ~Pl,t 
lUltlUlt-- ~ = 0 (6) 

Kw " " vx 

and for the liquid flow in the bottom wick are 

Ob/I. b (~Vl, b (~WI. b 
ax + a y  + & = 0 (7) 
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/~1 ( a2b / l . b  (~2/~l,b ( ~ 2 U l . b ~ -  ]-Zl 

,ew\eX2 - [ - } U  "~ eZ2 J ~ ul'b 

piFe.w 8pkb 
[UlblUl.b-- C~X = 0 .  (8) 

Kd ' 

The liquid flow within the top and bottom wicks 
are coupled through the liquid flow within the vertical 
wicks. Since the heat is removed from the top and 
bottom surfaces of the heat pipe and there is no heat 
sink to remove heat from the vertical wicks directly, 
the main role of the vertical wicks is to transport liquid 
from the bottom wick to the top wick. Based on these 
considerations, vapor injection and suction on the 
vertical wicks as well as the axial liquid flow within 
the vertical wicks are negligible. Therefore, the mass 
conservation for the liquid within the vertical wicks 
yields : 

QB(X) = Qt(x) = Q ( x )  (9) 

where 

Qb(x )  = (W, .b (X .y . z  = W / 2 )  
h~ 

- - W l , b ( X , y , z  = -- W / 2 ) ) d y  (10) 

is the flow rate of liquid from the bottom wick to the 
vertical wicks at location x and 

I 
h+.%( 

O , ( x )  = - WI . t ( x , y , z  = W / 2 )  

- - W l , b ( X , y , z  = -- W / 2 ) ) d y  (11) 

is the flow rate of liquid from the vertical wicks to the 
top wick at location x. For the horizontal heat pipe 
under study, the liquid flow within the vertical wicks 
is described by using Darcy's law, that is : 

Q(x) Kvwh'~w ( p l ' t ( x ) h P " b ( X )  -c plg ) . I x , (12) 

The boundary conditions are : 

X ~ 0 ] /dv ~ /fly = Wv ~ /Xt,b = ULt ~ 0 

x = L : Uv = Vv = W,~ = U~,b = UI,t = 0 ,  P,~ = Pl,t, 

Z = - - I 4 7 / 2 :  Uv = Vv = Wv = Ul,b = Ut.~ = O 

Z =  W / 2  : U,. = V,, = Wv = U~,b = Ut,~ = O 

y = - - h  w : b/l. b = U[. b = WI, b = 0 

y = 0 :  M v = W v = /AI, b ~ Wl, b = O, 

pvVv = plVl,b = --pvv2 

y = h : Uv = Wv = u~,b = wt,b = 0 ,  

I --pvV~ (0 <~ x <~ ~oL) 
pvUv = p l U l . t  = 

(,p~v 2 (¢pL <~ x <, L )  

y = h + hw : ul,t = U l , t  = W I , t  = 0 

p , , (O ,y , z )  = 0 (13) 

where the last condition assigns the reference point 
for the vapor pressure. The vapor injection velocity v. 
is related to the input power Q~, by the following 
relation : 

Qm (14) 
V l - -  2pvhfgL e W 

where hfg is the latent heat of the working fluid. The 
vapor suction velocity v2 is obtained by the mass bal- 
ance which requires that the fluid that entering the 
vapor channel in the evaporator section to flow out 
through the condenser section. It should be noted 
that the interracial coupling is negligible, based on the 
analysis presented in Zhu and Vafai [7]. 

ANALYTICAL SOLUTION 

Vapor  f l o w  
Based on physical considerations, the vapor injec- 

tion/suction on the vertical wicks is negligible. There- 
fore, the z component of the vapor velocity is neg- 
ligible and the governing equations (1)-(4) in the 
dimensionless variables : 

x y+ y z+ = z 
x+ = ~ '  = ~'  w / ~ '  

u,, V,. p, 
u~ = ,  v ? = - -  p : =  (15) 

u, V,  ' p,~u~ 

reduces to the form 

&v + aVv + 
+ = 0 (16) 

~x + ~),+ 

(3Uv + + Ou + @ +  R e .  02Uv + 
u+~ ~.~+ +v,,  - ~_ 

0x @+ ax  + R e  2 ¢?(x+) 2 

1 (c32u~ + 1 (~2b!~+,~ 
+ Re~ \O(y+) ~ + ~,2 ~ ( ~ + / /  (17) 

Red ( u ~  C3v,+, + &,.+ ) Op: Red ~2v+ 

R e  2 c?x~ + G ~ - c~y + + Re-~l c~(x + )2 

Reh ( 02V + 1 cqZVv + 

+ Re~ \00,+) - 2  + ----o~2 a(z  + ) 2 /  (18) 

@ :  
- 0 ( 1 9 )  

(~z + 

where 

L pvvmh 
ul = ~ v l ,  R e h - -  P,, 

p , ,u th  W / 2  
R e  I - -  o: = 

Pv h 

To obtain an analytical solution for the asym- 
metrical fiat plate heat pipe, we note that the heat pipe 
is long enough such that the vapor injection Reynolds 
number Reh is small with respect to R e .  We also note 
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that the width of each vapor channel is of the same 
magnitude as its height. In this case, which covers 
most practical situations, equations (17)-(19) reduce 
to the form: 

u + 3u+ + 3u, + ~p+ 
- -  + Vv - -  
~?x + 33' ~ ~x + 

1 1  2u:) 
+ Re,, \30 ,+)  ~ + - - ~ / ~ 2  (20) 

apv + 
- -  = 0 ( 2 1 )  
33, + 

e p )  
_ 0 .  ( 2 2 )  

3z ~ 

This indicates that the vapor flow in a long flat plate 
heat pipe can be calculated on the basis of the simpler 
system of equations for a boundary layer• The validity 
of the boundary layer approximation was examined 
by Busse and Prenger [11], where good agreement was 
obtained between the pressure distributions along a 
cylindrical condenser predicted by using the boundary 
layer equations and those obtained using the Navier-  
Stokes equations for the ratio of the condenser length 
to its diameter as small as 2.5. The two-dimensional 
numerical study by Ooijen and Hoogendoorn [3] also 
revealed negligible transverse pressure difference in 
the )'-direction for the vapor flow in an asymmetrical 
flat plate heat pipe. 

The boundary conditions in the dimensionless form 
reduce to : 

u+(O,y+,z +) = v+(O,y+,z +) - u+ (1,y + ,z +) 

= Vv+ (1,y+,z +) = 0 

u, + (x+,O,z +) = u+(x *, 1,z +) = 0 

Vv+ (x+,O,z +) = - v +  

_~ { ~  1' 0~<x+'G<rp 
v . ~ ( x + , l , .  ) = 

, rp~<x+-G<l 

u +(x +,y*,  - 1) = v, + (x +,y+, - 1) = u, +(x +,y+,  1) 

= Vv+(X+,y +, 1) = 0 

p,+ (0,y+,z +) = O. (23) 

For the analytical solution, the velocity profile is 
approximated by a functional product in the x +-, y+-, 
z+-directions : 

Uv + (x +, y +, z +) = U¢ (x +) (a0 (x + ) 

+al (x ~ )y+ +az(x+)(y  + )2 

+a3(x+)O'+)3)(co +ClZ + +c2(z+) 2) (24) 

where U,~ (x +) denotes the maximum axial velocity 
component on each transverse surface along the x +- 
direction. A third-order polynomial is used in equa- 

tion (24) to account for the flow reversal in the x +-  
y+-plane. Due to the vapor injection from the heating 
side of the top wick, the location of maximum vapor 
velocity U~ + (x +) will be shifted towards the bottom 
wick within the 0 ~< x + ~< ~0 region. As the vapor flows 
downstream, the location of U~ + (x +) will gradually 
shift towards the center in the y+-direction due to 
the presence of symmetrical cooling conditions. To 
account for this feature, the vapor velocity profile in 
the y +-direction is divided into two parts based on the 
location of the maximum vapor velocity: the lower 
part (0 4 y +  <~f+(x+)) and the upper part 
( f+ (x  +) <~ y+ <~ 1). The location of maximum vapor 
velocity, y+ = f + ( x + ) ,  is also the location cor- 
responding to zero shear stress for the velocity dis- 
tribution in the x+-y + plane. Applying the boundary 
conditions given in equation (23) and 

~ = 0  u+(x + / + ( x ~ ) . O ) =  U+(x+), & +  , ,+=I+.~ 

(25) 

to equation (24) results in the following velocity pro- 
file : 

u.: ( x + , y +  ~ +) = 

, X + a3(x + --a  3 x + 

,__F2 2 

× L s  + 

(0 <<. y+ <<.f+(x+)) 

1 - y +  

x ~ 2 1 - v  + _  l - -y+  2 

k 
( f + ( x  +) <.y+ <~ 1). (26) 

The coefficients a 3 (x +) and b3 (x + ) are then obtained 
using the momentum equations (20) and (21). Accord- 
ing to equation (21), Op+/Ox + must be independent of 
y+. Using the polynomial velocity profile (26), equa- 
tion (21) is satisfied relatively accurately by requiring: 

0p:  I = 0p:  _ (27) 
3x+[., '=0 3x +,,+=1 #x + 

where the derivatives are determined with the help of 
equations (20), (22) and (26) and the bar denotes the 
average 

1/0; p,? = ~ P+ dy + dz + . 
1 

After a transformation we obtain the following 
equations for a3(x +) and b3(x +) : 
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d a 3  - 1 

dx + (2A, Oc+)a3 +A2(x+))U+(x +) 

)~_ 5 ~ a 3 + 2  b3+2 
x [4RehLf+(x+) + l - f + ( x + )  + 4-(aft+ (x +) 

+ x+ ) ] 5 
+ b ~ ( l - f  ( )+8)  +4( .f+(x+))  2 

x f (v; f + (x+ )-- R@h )a-~ + 2(v+ f + (x + )-- ; ~ ) ]  

+ / 2 dAi dA 2 dA3) +~:(x )~a~+ + ~ + ~ /  

dV+(x+) l +2(Al(x+)a2+A2(x+)a3+A3(x+)) ~x+ 3 

(28) 

and 

b3(x +) = B,(x+)a3(x+)+B2(x+) (29) 

where 

A,(x +) = [f + (x+ ) + B~(x+ ) (1 - f  + (x+ ))]/105 

A2(x +) = {4B, (x+)B2(x+)(l -f+(x+)) 

+ 21 If+ (x +) + B, (x+)(l - f +  (x ÷))1}/210 

A~(x + ) = [B2(x+ )(2B2(x+ ) + 21)(I - f +  (x+)) 

+ 112]/210 

(v)+f+(x+)--~)//(f'(x+))2 

B'(x+)= [D2(l--f+(x+))--~h]//(1--f+(x+))2 

B~ (x +) = 
1 \ /  + + 2  ( ,  ,, 

--1, 0~<x ÷ ~<~0 

D2 = v +, (0~<x + ~< 1" 

The maximum vapor velocity U+(x +) is deter- 
mined by integrating the continuity equation (16). 
Utilizing the velocity profile given by equation (26) 
and the boundary conditions (23), integration of the 
continuity equation (16) with respect to y+ from 0 to 
1 and z + from - 1 to 1 yields : 

U+(x + ) , .  = 

18(1 --v~) 

[a3(x+)f~(x~ ) + b 3 ( x + ) ( l - j + ( x * ) ) + 8 ]  

0 -.< x ~<~o 

36v4 
[a3(x+)f+(x ~ ) + b~(x+)(1 - f +  (x+)) + 8] (1 --x+) 

~p~<x ÷ ~<1. (36) 

The location of maximum vapor velocity, f+(x+),  is 
determined by integrating the x÷-momentum equa- 
tion (20) with respect to y+ from 0 to f+(x ÷) and 
with respect to z + from - 1  to 1. Integration of the 
momentum equation (20) using the velocity profile 
(26) and boundary conditions (23) results in the fol- 
lowing expression for the rate of change o f f  ÷ (x+): 

df+(x +) -1  
dx + 4a~(x+)+7a3(x*)-56 

([- da3(x +) ll(8a,(x )+7) 

(8a3 (x ~ ) +49a3 (x+) + 168) dU¢(x  +) + 
(30) U~ (x + ) dx + 

525~ 2 a~(x+)+8 1575 dp~+7 

+4U,?(x  ~) R e ~ 4  2(U+(x+)) 2 --/dx+j (31) 

525 @2j ¢ (X) a3(x+)+2]l _ _ ~ "+ + _ _  

U,? (x +)f+ (x + ) Re:, /3  (32) 
(37) 

The vapor pressure distribution is obtained by inte- 
grating the x+-momentum equation (20) over the 
entire transverse section. Utilizing the derived velocity 
profile given in equation (26) and the boundary con- 
ditions given in equation (23), integration of the 

(33) momentum equation (20) with respect to y+ from 0 
to 1 and with respect to z + from - 1 to 1 yields : 

dp~ + 8 d 
dx ~ -  15 d.-¢' {(U~-(x+))2[(a~(x+)/105 

+a3(x+ )/lO+8/15)f + (x +) 

+ (62 (x +)/105 + 63 (x*)/10 + 8/15)(1 --f+ (x + ))]} 

2U+ (-v')~(a~(x+) +2  

(34) 3Reh { \  f + ( x  +) 

b3(X ~ ) + 2 ~ +  c~: 
(35) + l~--.~x~)] ~-[(a3(x+)+g)f+(x +) 

+ (63 (x +) + 8)(1 - / ~  (x +))1}. (38) 

The set of differential equations (28), (37) and (38), is 
readily integrated simultaneously by using a fourth- 
order Runge-Kutta scheme. 
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L i q u i d  f l o w  
The governing equations (5)-(12) are non-dimen- 

sionalized using : 

x r + y z + z 
' : ~ = £ '  ~ = ~ '  = w / ~ '  

H+ Hid U+ [)l.I 
I,i bll t,i UI 

~, + wLi PLi 
~, = -  , pL + = - - .  

wl p.,u~ 

This results in" 

- -  + r c~z+ 
~ x  + ~,),+ + 

= 0  

@1"., _ 1 p ~ 

?,x + Reh K + 

u,+ P + Fewfl 
(K+)1/2 [u'. + [u,,+i 

1 " + / O 2 H +  (~2U+ \ 
- -  ~ [ u " ld  l Li 

UI~(X + , 1,Z +) = W,~ (X + , I,Z + ) 

L Q + ( x  +) ~w + .  + v +, = [ i,bl.X . 1) 
h; 

+ + + 
- - W  ,b (X , ), , - -  1)] d y  + 

= -- f~ +h~+ 

1) + i , t ( X  + , l , z  + )  : 

Q + ( x  +) - 

u?~ (x+, O, z + ) = . %  (x +, O. z +) 

= 0 ,  

p+ 

( p  + 

~--- 0, 

where 

0~<x  + ~<q0 

and 

~o <~.r ~ <<.1 

(39) Vj+b(X +, O, Z + ) = -- r2  
p+ 

u+tx.+ + ~+ _ h  + ,+~ l.b\" , - - h w  , .  ) = UI+b(X + , , , v , -  , 

(40) = Wl~b(X + , - -  h~+,, z + ) = 0 

u~ (x+ ,y  +, 1) = u , .+(x+,y  +, 1) -- u,+(x ~ ,y ~, - 1) 

=U(+b(X+,y ~ - 1 )  = 0  

+ = (1 '+ -+~ ( 4 5 )  P l . b ( l , y + , z  +) p + ,  , )  ,~ , .  
( 4 1 )  

[wl+ (x ~ , 3'+ , 1 ) -  Wl+ (x+ ,y  + , - l ) ]dy + 

(42) 

f l 2Reh  K + h + vw'~vw + + + 
(Pu  -P~,b + A p ~  ) 

o~ i.t + 

i = { t  b for the top liquid-wick region 

for the bot tom liquid-wick region 

(43) 

Pl ~ + #J K .  
p+ - = - - ,  K,~ - 

p v '  t~  h 2 '  

Kvw hvw 
Kv+, - , h,,+w = - ;  - , 

h 2 1 7  

L p lgh  
f l = ~ ,  Ap + = . (44) 

p~u~ 

It is noted that the axial shear stress is negligible 
compared to the transverse shear stress. The boundary 
conditions in dimensionless form reduce to : 

ul+(O y + , z  +) = Ul+b(O,y ' , z  +) = ul~, i (1 ,y+,z  +) 

+ ~+ . +  =ul.u(1,)  ,~ ) = 0  

< ( x * , l + h + w , Z  +) = v + + + u ( x + , l + h , ~ , z  ) 

w + (x +, 1 + -+ = + h w , -  ) = 0  Lt 

For  liquid flow within the top and bot tom wicks, 
the liquid velocity component  in the x+-direction can 
be assumed as : 

u ( ( x  +, v + -+ u~5(x+,y+)(c , ,+c~z  + +c_,(z+) 2) 

(46) 

+ + ÷ + + ,+ 
u~.~(x , y  , z  +) = u~,~(x ,~ )(Co + c ~ z  + +c:(z~-)2). 

(47) 

Applying the boundary conditions given by equation 
(45) to equations (46) and (47) yields : 

+ + + + ,+  
b/Lt(X , y + , 2  + )  = U l , t ( X  , .~ ) ( l - - ( 2 " + )  2 )  ( 4 8 )  

u-)b(x+ y ~ , : + )  = u + b ( x + , y + ) ( l _ ( ~ + ) 2 ) .  (49) 

Vafai and Thiyagaraja [12] have shown that the 
momentum boundary layer thickness at the interface 
between a porous medium and a fluid or an imper- 
meable medium is of  the order of  (K /e )  t:2. According 
to their investigation of  the interface interactions in a 
saturated porous medium, the liquid velocity profile 
in the top and bot tom wicks can be represented by 
three parts:  an inner solution for the interface zone 
between the liquid--wick and the vapor phase, an outer 
solution for the main wick region and an inner solu- 
tion for the interface zone between the l iquid-wick 
and the heat pipe wall. Based on the matched asymp- 
totic solution of  Vafai and Thiyagaraj a [12], by apply- 
ing the boundary conditions given by equation (45) 
and noting that the thickness of  the interface regions 
is much smaller than hw/2 for the heat pipe under 
study, the following velocity profile is obtained for the 
liquid flow within the bot tom wick ( - h ~  ~ y+ <~ O) : 
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u , ;  (x  + , y +  ) = 

- 2  <'Y+ <~0 

Da~, :2 }J 

h + 

- h,~ <~ y+ <<. 2 

and for the liquid flow within the 
h + (1 ~<v + ~<1+ ,,) 

(50)  

top wick 

~_,',!, (x ~ ) = 

3 ~ 1 r- fi2 Re,, K~+~hv+w 
2h~; Lp + + 2.~ p+ 

x I'.,~ (P'~-P'~'b+APq+)dx'] 

O~<.v ~ ~<q) 

3 [r+~ fl2Re h K,,+h~,,, 
.... i~- (x ~ - 2 )  

2h2: LP 2~ p+ 

x f: (P,+ -P,+~ + Ap~ )dx+ ] 

(p~<x + ~<1. (53) 

+ ~ , +  ul,,(x ,k ) =  

" [ 
U,, +, (x +) 1 - e x p  \ ~ - / j  

1 ~<_v + ~ 1+ h~2 
2 

+ +E ( " UL,(x ) 1 - e x p  i~ 
Da,/ - 

1+ 2-~<y+ .G< l + h ~  (51) 

where + "+ + + ULb(X ) and Um.,(x ) denote the maximum 
liquid velocity on every transverse surface within the 
bottom and top wicks, respectively, and Daw = K +/e,~ 
is the modified Darcy number of the top and bottom 
wicks. 

The maximum liquid velocities Uj,b(X+ +) and U~ 
(x +) are determined by integrating the liquid con- 
tinuity equations. For liquid flow within the bottom 
wick, integration of the liquid continuity equation 
(40) with respect toy  + from -hw + to 0 and with respect 
to z + from - 1 to 1 results in the following expression 
for + + U,,~(x ): 

3 [ v J  x + 
U t!b ( x ~ ) = 2h~  L p  + 

fi2Ren K + h + t', -+ ] 
+ 2c~ ..... p+ J0"W (P~:t--P/.+b+AP +) dx+ . (52) 

The liquid velocity profile given by equations (48) 
and (51), the boundary conditions given by (45), and 
equations (42) and (43) were utilized during the inte- 
gration. 

The liquid pressure distributions are obtained by 
integrating the generalized momentum equations (41) 
within the top and bottom wicks, respectively. For 
the liquid flow within the bottom wick, integrating 
equation (41) with velocity profile given by equations 
(49) and (50) and the boundary conditions given by 
equations (45) yields 

dp~Tb 2 (  2Da~/2 ~;2-~-) K ~ U ' ; ( x  ) 
dx + 3Reh 1+ t7,,7 + 3Da,,\ p+ + 

8/3 (1  3Da~ '2 p+k~ . . . . . . . .  
+ 1 5  .... /~ ) (K+) , :2 tu , , h t x - ) y .  (54) 

Similarly, integration of equation (41) with the vel- 
ocity profile given by equations (48) and (51) and the 
boundary conditions given by equation (45) results 
in the following expression for the liquid pressure 
gradient within the top wick : 

iv 3Da,,,\ #+ + + dpl.Jt 2 2Daw- ~ - ~ )  v,  UIt(-v ) 
d.v ~ -  3Reh 1+ h, + + cu j Kw " 

8[J / 3Da~'2) p+Fc,, + + 
. . . . . . .  i~7}~-(u , . , (x  ))-. (55) + 1 5 ~  I -  /,: / . 

The coupled equations (52) (55) are solved numeri- 
cally for the liquid velocity profiles and pressure dis- 
tributions within the top and bottom wicks. 

The liquid velocity profile given by equations (49) 
and (50), the boundary conditions given by (45) and 
equations (42) and (43) were utilized during this inte- 
gration. For the liquid flow within the top wick, inte- 
gration of the liquid continuity equation (40) with 
respect to y+ from 1 to 1 +h  + and with respect to z + 
from - 1 to 1 results in the following expression for 

+ + U,,, (x ) : 

NUMERICAL SIMULATION OF THE VAPOR FLOW 

The complete problem for the three-dimensional 
vapor flow within the flat plate heat pipe was also 
analyzed numerically in the present work. The full set 
of governing equations (1)-(4), along with boundary 
conditions given by equation (13), were solved over 
the entire vapor flow channel in order to allow all the 
features of the incompressible vapor flow to be taken 
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Fig. 2. Finite element mesh used for the numerical computations. 

into account. The discretization of the governing 
equations (1) (4) along with the boundary conditions 
was carried out by using a finite element formulation 
based on the Galerkin method of weighted residuals. 
The finite element mesh used in the present study is 
shown in Fig. 2. The 27-node quadratic elements were 
used for discretizing the computational domain, 
resulting in a triquadratic interpolation for the 
velocity. A trilinear interpolation was used for the 
pressure approximations. A variable mesh grading 
strategy was adopted to capture sharper gradients in 
the velocity and pressure at the liquid-vapor interfaces 
and the transition region from the evaporator section 
to the condenser section. To confirm the grid inde- 
pendence of the three-dimensional model, results were 
obtained by increasing the grid points from the 
81 x41 x41 mesh to a 121 x61 x61 mesh. A com- 
parison of magnitudes of the vapor velocity and pres- 
sure for various runs showed that these values change 
by less than 1%, thus indicating that the grid structure 
is sufficiently fine. 

The discretization of the governing equations along 
with the boundary conditions results in a highly non- 
linear, coupled system of algebraic equations. This 
system of equations was then solved by using an iter- 
ative solution scheme based on the segregated solution 
algorithm. Basically, this scheme involves decompo- 
sition of the entire system of equations into smaller 
subsystems. Each subsystem is then solved by using 
an iterative solver. Convergence was assumed to have 
been reached when the relative change in variables 
between consecutive iterations was less than 10 7. The 

application of the Galerkin-based FEM is well- 
described by Taylor and Hood [13], and its appli- 
cation in the finite element program used in the present 
work is also well-documented [14]. In order to inves- 
tigate the three-dimensional effects on the vapor flow, 
a two-dimensional analysis was also performed using 
the finite element method. 

RESULTS AND DISCUSSION 

The results presented here are based on a copper 
heat pipe with heavy water as the working fluid. It 
should be noted that the heat pipe material is chosen 
to be copper instead of aluminum (which is more 
compatible from the neutronic side), due to the com- 
patibility of copper and heavy water. The respective 
dimensions of the heat pipe are chosen as : L = 0.25 
m, Le=0.125 m, h=0 .025  m, W=0.125 m and 
h,. = hvw = 0.0025 m. The top, bottom and vertical 
wicks are sintered copper powder. The wick porosity 
and permeability for the top and bottom wicks were 
chosen as 0.9 and 1.5 x 10 -9  m 2, respectively. The 
permeability of the vertical wicks was chosen as 
2.1 x 10- ~0 m 2. The results in Figs 3-9 were obtained 
for the operating temperature of 80~C and for Reh 
values of 25, 50, 75, 100, 150 and 200. 

Figures 3 and 4 show the dimensionless vapor vel- 
ocity profiles along the center plane (z + = 0) in the 
evaporator zone and condenser zone, respectively. 
Both numerical and analytical results show that the 
vapor velocity profiles are symmetrical about the 
z + = 0 plane, due to the symmetrical boundary con- 
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ditions at the vertical wicks. However, the vapor vel- 
ocity profiles are asymmetrical in the x + - y  + plane, 
due to the asymmetrical heat and cooling conditions. 
As can be seen from Figs 3 and 4, the velocity maxima 
are shifted towards the bot tom wick in the evaporator  
section, due to injection from the top wick and suction 
from the bot tom wick. With increasing Reh values, 
shifting is more prominent,  giving an increase in the 
wall shear stress at the bot tom wall and a decrease at 
the top wall. Within the condenser section, the shifted 
velocity maxima moves back towards the center line 
(y+ = 1/2) due to the symmetrical cooling condition 
over the condenser zone. 

Vapor accelerates in the evaporator  section and 
decelerates in the condenser section, due to the vapor 
injection and suction over the corresponding regions. 
For  Reh larger than 75, vapor  flow separation takes 
place, which leads to a region of  reversed flow near 
the top entrance of  the condenser section. As can be 
seen in Fig. 4, flow separation always starts shortly 
after the vapor  flow enters the condenser zone and 

results in a recirculating flow cell downstream. As the 
Reh value increases, the separation point with zero 
wall shear stress moves upstream towards the con- 
denser entrance and the recirculation expands towards 
the end of  the condenser section. At Reh = 200, the 
separation point is found right at the starting point of  
the condenser zone and flow reversal is present at all 
locations of  the condenser zone. It is worth noting 
that no flow reversal is found in the evaporator  zone. 
This is consistent with conventional symmetrical heat 
pipes. 

Figure 5 compares the analytical u velocity profiles 
along the heat pipe at the center plane (z ÷ = 0) with 
the numerical prediction for Reh values of  25, 50, 75, 
100, 150 and 200. Agreement between the analytical 
and the numerical predictions is very good over the 
entire vapor  flow domain. This indicates that the ana- 
lytical model can accurately describe vapor  velocity 
profiles under conditions including strong flow rever- 
sal, while saving tremendous computat ional  time as 
compared to that of  a numerical simulation. Fur- 
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Fig. 4. Dimensionless longitudinal velocity profiles along the center plane (z + = 0) of the condenser section. 

thermore, the analytical solution also reveals quali- 
tative functional dependency on various physical par- 
ameters involved in the flat plate heat pipe. 

Figure 6 shows the vapor pressure distributions 
along the heat pipe. Our numerical results show that 
the transverse pressure differences in the y+-direction 
are negligibly small. Therefore, a single graph was 
used to represent the pressure distribution along the 
heat pipe for all y-values. This is consistent with the 
two-dimensional analysis by Ooijen and Hoog- 
endoorn [3]. As can be seen in Fig. 6, the vapor pres- 
sure decreases in the evaporator zone due to friction 
and acceleration of the vapor flow caused by mass 
injection from the top wick, while the vapor pressure 
increases in the condenser zone owing to the decel- 
eration of the vapor flow by mass suction. It was found 
that for Rex <~ I0, the frictional effect dominates and 
the vapor pressure decreases over the condenser zone. 
For higher Re, values, the inertial effect becomes 
dominant and the pressure build up occurs in the 
condenser zone. Figure 6 also shows the comparison 
of the analytical vapor pressure distributions along 

the heat pipe with the numerical prediction for Reh 
values of 25, 50, 75, 100, 150 and 200. The analytical 
results for all Rex values shown agree very well with 
the numerical predictions over the evaporator zone 
and quite well in the condenser zone. Despite a rela- 
tively small discrepancy between the analytical pre- 
dictions and the numerical calculations in the con- 
denser zone, the analytical and numerical predictions 
of the total pressure drops along the heat pipe agree 
with each other very well. 

It should be noted that this is the first time that a 
three-dimensional numerical simulation of the vapor 
flow in a flat plate heat pipe has been presented. For 
a flat plate heat pipe with several vapor flow channels 
divided by vertical wicks, three-dimensional effects 
may become a critical factor in modeling the vapor 
flow. Figure 7 shows the comparison of the two- 
dimensional model predictions of vapor pressure dis- 
tributions with the three-dimensional model predic- 
tions. As can be seen in Fig. 7, the two-dimensional 
model, which neglects the viscous shearing effects due 
to the side walls, results in smaller total vapor-pressure 
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Fig. 5. Comparison of the numerical and analytical velocity profiles along the center plane (z + = 0) for 
Reh = 25, 50, 75, 100, 150 and 200. 

drops  a long the heat  pipe. The smaller the rat io of  the 
vapor -channel  width to height,  W/h, the larger the 
error  caused by using the two-dimensional  model. 
This is expected as the viscous shear loss due to the 
side walls increases with a decrease of  this ratio. Our  
computa t ions  revealed tha t  a three-dimensional  
model  is necessary for W/h <~ 2.5. However,  the use 
of  a three-dimensional  model  substant ia l ly  increases 
the computa t iona l  time. Our  results also show tha t  
the error  caused by using the two-dimensional  model 
decreases with an increase in the injection Reynolds 
number ,  Reh. This is due to the inertial  effect being 

more  dominan t  than viscous effect at  larger Reh 
values. 

The analytical  results for the m a x i m u m  liquid vel- 
ocities are shown in Fig. 8. The negative velocity value 
denotes  tha t  the flow is along the negative x+-direc - 
tion. The liquid in the top wick accelerates in the 
condenser  zone and  decelerates in the evapora to r  zone 
due to the condensa t ion  and  evapora t ion  in the cor- 
responding regions. The liquid in the b o t t o m  wick 
accelerates in the condenser  zone until  par t  of  it is 
t ransferred to the top wick th rough  the vertical wicks. 
At  the condenser  region close to the end of  the heat  
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Fig. 6. Comparison of the numerical and analytical pressure distributions along the heat pipe for various 
injection Reynolds numbers. 
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pipe (x + = 1), there is no liquid exchange through the 
vertical wicks due to symmetrical cooling conditions 
and the liquid flow rates in the top and bottom wicks 
are the same. Starting at a certain location (around 
x ÷ = 0.7), part of the liquid in the bottom wick is 
transferred to the top wick through the vertical wicks 
and leads to a larger liquid flow rate in the top wick. 

Figure 9 shows the analytical results of liquid pres- 
sure distributions along the heat pipe. As expected, 
the liquid pressure in the top wick is always smaller 
than that in the bottom wick. In the region where no 
mass exchange through the vertical wicks occurs, the 
difference between the liquid pressures in the top and 

bottom wicks is only caused by gravity and is 
constant. In the region where the mass exchange 
through the vertical wicks occurs, this difference is 
caused by gravity and the frictional resistance for the 
liquid flow in the vertical wicks. 

CONCLUSIONS 

A comprehensive pseudo-three-dimensional ana- 
lytical model has been developed for the vapor and 
liquid flow in an asymmetrical flat plate heat pipe 
under conditions including strong flow reversal. The 



172 N. ZHU and K. VAFAI 

0.000 

-0 .005  

I 0.010 

:~ -0 .015  

-0 .020  

Re h = 25 

- - - -  W A t t = l O  \ " - -  . . . . . .  t 

-" . . . . . . . .  W / h = 5  - -  

- - - -  W / h = 2 . 5  I 

- W / h  = 1  

I 

0.0 0.2 0.4 0.6 0.8 1.0 

x/L 

Reh = 50 
0.00 

' xl\\k 

. . . . . . . . .  W / h = 5  \ /" 
- -  W / h = 2 . 5  " ~ :  

- - W / h = l  

-0 .06  , I , I , I , i , 
0.0 0.2 0.4 0.6 0.8 1.0 

x/L 

£ 
" -  -0 .02  

I 

-0 .04  

Re h = 75 
0.00 

W / h  = 1 0  

. . . . . . . . .  W / h = 5  

- - - -  W / h = 2 . 5  

- - -  W / h  = l 

X / 

-0 .12  , t , I , I , I , 
0.0 0.2 0.4 0.6 0.8 1.0 

x/L 

-0.04 
: 1  

t 
~ -0 .08  

0.00 

-0 .05  

-0 .10  

;~ -0 .15  

-0 .20  

Re,  = 100 
' I ' I ' I ' I ' 

- - 2 - D  m o d e l  

~'X - - w/h= w 

\ ~  . . . . . . . . .  W / h = 5  

\ '~  - - - -  W / h = 2 . 5  

\~,\ - - -  W / h = l  

0.0 0.2 0.4 0.6 0.8 1.0 
x/L 

0.0 

¢~ -0.1 

-0 .2  

k .  

::~ - 0 .3  

-0 .4  

Re h = 150 

• W / h  = 1 0  

. . . . . . . . .  W / h  = 5 

- - - -  W / h = 2 . 5  

- - - W / h = l  

k 
,\\ J/>". 

, . . : j . . .  

0.0 0.2 0.4 0.6 0.8 1.0 
x/L 

Re,  = 200 
0.0 

• - W . / h  = I 0  

. . . . . . . .  W / h = 5  

- - - -  W / h = 2 . 5  

- - - W / h = l  

~...~..:: : 

- 0 . 8  , I , I , [ , I , 

0.0 0.2 0.4 0.6 0.8 
x/L 

-0 .2  

-0 .4  

:~ -0 .6  

Fig. 7. Three-dimensional effects on the pressure distributions along the heat pipe for various injection 
Reynolds numbers. 



0.001 

Vapor and liquid flow in an asymmetrical fiat plate heat pipe 173 

0.000 

-0 .001 

-0 .002  

--0.003 
- -  Top wick 

. . . .  Bottom wick 

R e  h 

Re' h = 150 

'=  200 

-0 .004  I , I , I , l , I , , 
0.0 0.2 0.4 0.6 0.8 1.0 

Dimensionless length of the heat pipe x/L 
Fig. 8, Variations of the maximum liquid velocities along the heat pipe for various injection Reynolds 

numbers. 

100 

- 1 0 0  

.~  - 2 0 0  

- 3 0 0  

. . . .  R e = 2 5  

............ R e = 5 0  
Bottom wick 

- - - - -  R e =  100 

- -  - -  - R e  = 150 

- -  Re = 200 

Top wick 

\ 

• - - 4 0 0  , I , [ , I , I i 

0.0 0.2 0.4 0.6 0.8 1.0 

Dimensionless length of the heat pipe x/L 
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gravi ta t ional  effects and  the effects of  non-Darc ian  
t r anspor t  th rough  the porous  wicks were included in 
the model. A three-dimensional  numerical  analysis of  
the vapor  flow in the flat plate heat  pipe has also been 
carried out  for the first time. Both the analytical  and  
the numerical  results reveal tha t  the vapor  velocity 
profiles are nonsimilar  and  asymmetrical  for the injec- 
t ion Reynolds n u m b e r  in the range of  25 ~< Reh <~ 200. 
Vapor  flow reversal was observed a long the top con- 
denser region for Reh >~ 75. It was observed tha t  the 
transverse pressure var ia t ions  are relatively small and  
can be neglected. It was established that  a three- 
dimensional  model is necessary for the predict ion of  
the total vapor  pressure drop  within the heat  pipe for 
W/h  <~ 2.5. The analytical solutions were shown to 
agree very well with the numerical  results. While dras- 
tically cut t ing down on the computa t iona l  t ime and 
aiding in unders tanding  the physical phenomena  
occurring in the problem,  the analytical model is very 
useful for engineering design and opt imizat ion pur- 
poses by providing an accurate predict ion method  
for the flat plate heat  pipe opera t ion and showing 
qualitatively and quant i ta t ively the effects of  various 
physical parameters .  
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