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Abstract---In this work a pseudo-three-dimensional analytical model is developed for the steady incom- 
pressible vapor and liquid flow in an asymmetrical disk-shaped heat pipe. The hydrodynamic coupling of 
the vapor and liquid flow, the gravitational effects and the effects of non-Darcian transport through the 
porous wick are incorporated in the model, and the variations in upper and lower liquid velocity and 
pressure distributions are accounted for. The asymmetrical vapor and upper and lower liquid velocity 
profiles, the vapor and upper and lower liquid pressure distributions and the interface temperature dis- 
tribution accounting for the vapor liquid coupling and the non-Darcian effects are obtained. The effects 
of the vapor-liquid coupling, upper and lower liquid velocity and pressure fields and boundary and inertia 
in altering the limiting heat pipe heat transfer performance are discussed and assessed. Finally, the analytical 
results are compared with the available experimental data and are found to be in good agreement. Copyright 

© 1996 Elsevier Science Ltd. 

INTRODUCTION 

Asymmetrical heat pipes have received some attention 
recently in several application areas such as the cool- 
ing of electronic equipment, high-performance space 
applications and other commercial thermal devices, 
The investigations of asymmetrical heat pipes have 
focused mainly on the experimental testing of the heat 
pipe performance. Analysis of flow and heat transfer 
characteristics of an asymmetrical heat pipe is given 
by Vafai and Wang [1] and Vafai et al. [2]. They 
developed a pseudo-three-dimensional analytical 
model for the steady incompressible vapor and liquid 
flow in flat plate and disk-shaped heat pipes and 
obtained analytical results for the vapor velocity 
profile, the vapor and liquid pressure distributions 
and the liquid-vapor interface temperature distri- 
bution, as well as the maximum heat transfer capa- 
bility of both types of heat pipes. They also performed 
the parametric study for the optimum performance of 
both types of heat pipes. 

The analyses of cylindrical and annular heat pipes 
with a symmetrical heat source and sink have been 
performed extensively by many investigators. These 
investigations include both analytical and numerical 
methods, transient and steady conditions as well as 
one- or two-dimensional modeling. The majority of 
these investigators focused their work on the dynamics 
of the vapor flow. The liquid flow was mostly 
neglected by using one- or two-dimensional heat 
conduction models for the liquid-wick region. 

t Author to whom correspondence should be addressed. 

Ransom and Chow [3], Doster and Hall [4], and 
Tournier and E1-Genk [5] incorporated liquid flow in 
their numerical investigations of cylindrical heat 
pipes. The coupling of the vapor and liquid momen- 
tum equations was done by applying either the 
Laplace-Young equation [3, 4] or the complete form 
of the momentum jump condition in the normal direc- 
tion [5] at the liquid-vapor interface. In their studies, 
the matching conditions of velocity and shear stress 
were neglected by assuming a non-slip condition and 
neglecting the interfacial drag at the liquid-vapor 
interface. Furthermore, the boundary and inertial 
effects on the heat pipe operation have not been inves- 
tigated in the open literature, nor has there been any 
theoretical analysis of these effects. 

For asymmetrical heat pipes the liquid flow is sig- 
nificantly more complicated and the effects of liquid flow 
are more prominent. Vafai and co-workers [1, 2] have 
incorporated liquid flow in their analytical investigation 
of asymmetrical flat plate and disk-shaped heat pipes. 
However, they assumed the same liquid flow rates in 
both top and bottom wicks by applying Darcy's law to 
the liquid flow. They have also neglected the hydro- 
dynamic coupling of the vapor and liquid flow as well 
as the non-Darcian effects in their analysis. 

In the present work the generalized momentum 
equation in porous media is utilized in a pseudo-three- 
dimensional analytical model for predicting the per- 
formance of a disk-shaped heat pipe heated from the 
top surface. The coupling of the vapor and liquid 
flow is established through matching conditions at the 
vapor-liquid interfaces and the coupled vapor and 
liquid momentum equations are solved simul- 
taneously. The coupling of the liquid flow within the 
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NOMENCLATURE 

At evaporator area [m 2] 
.f location of the maximum vapor 

velocity [m] 
g gravitational acceleration 
h height of vapor space for the heat pipe 

[m] 
ht~ latent heat of working fluid [kJ kg ~] 
h~ thickness of the top and bottom wicks 

[m] 
h,,,r thickness of the vertical wicks [m] 
K permeability of the top and bottom 

wicks [m 2] 
K,. permeability of the vertical wicks [m ~] 
p vapor pressure [Pal 
Q liquid flow rate in a vertical wick at 

location r [m 2 s i] 
r, y radial and vertical coordinates [m] 
R radius of the disk-shaped heat pipe [m] 

ideal gas constant,/~ = 8.31433 
[kJ (kmol. K) ~] 

Reh injection Reynolds number, p, ,v~h/~  

T temperature [K] 
u, t,, w radial, vertical, angular velocity 

components [m s a] 
U the maximum radial velocity 

component [m s i] 
v volume-averaged velocity vector 

l ;  I vapor injection velocity [m s ~] 
vapor suction velocity [m s- ~]. 

Greek letters 
~: porosity of the top and bottom wick 

structure 
~p square root of the ratio of the 

evaporator area to the heat pipe area, 
~o 2 = Ae/rcR 2 

qb angle of each divergent flow channel 
of disk-shape heat pipe 

7 the top and bottom porous wick shape 
parameter, x/e/K 

/~ dynamic viscosity [N s m 2] 
0 angular coordinate 
p density [kg m -3]. 

Subscripts 
i vapor~liquid interface 
I liquid phase 
v vapor phase. 

Superscripts 
b the bottom wick 
t the top wick 
+ dimensionless quantity. 

top and bottom wicks is established by the balance of 
mass and momentum of the liquid flow within the 
vertical wicks. Analytical results for the asymmetrical 
vapor and liquid velocity profiles, the vapor and liquid 
pressure distributions and the interface temperature 
distribution accounting for the interfacial and non- 
Darcian effects are obtained. The effect of the hydro- 
dynamic coupling of the vapor and liquid phases and 
the effects of non-Darcian transport through the 
porous wick on the vapor and liquid velocity profiles, 
the vapor and liquid pressure distributions and the 
interface temperature distribution are investigated at 
length. The effects of the vapor-liquid coupling and 
boundary and inertia on the maximum heat transfer 
capability of the heat pipe are also discussed. In 
addition, the analytical model is used to simulate the 
disk-shaped heat pipe tested by North and Avedisian 
[6] and a good agreement is found between the pre- 
dicted maximum heat transfer and the measured data. 

FORMULATION AND ANALYSIS 

The schematic diagram of the disk-shaped heat pipe 
for the present investigation is shown in Fig. 1. Heat 

input is over an area As = n(q~R) 2 on the top surface 
of the heat pipe. This results in vaporization and sub- 
sequent pressurization of the liquid around the heated 
region. Condensation of the vapor occurs on the bot- 
tom wick and the outer edge of the top wick. The 
vapor space is divided into several channels by vertical 
wicks which transport liquid from the bottom wick to 
the top wick. Any one of the internal channels can be 
considered as a building block for the disk-shaped 
heat pipe. Therefore, we will concentrate on the fluid 
flow considerations within one of these channels (Fig. 
1 b). Once the fluid flow characteristics within one of 
the channels are determined, the fluid flow charac- 
teristics of the entire heat pipe can be easily estab- 
lished. The results of this analysis are applicable to 
any number of channels, any specified thickness of the 
wicks, any specified thickness and any specified overall 
radius of the disk-shaped heat pipe. 

In the present analysis, vapor and liquid flows are 
assumed to be steady, laminar and incompressible. In 
addition, the transport properties of the vapor and 
liquid are assumed to be constant. All wicks are 
assumed isotropic and saturated with wetting liquid. 
The liquid and the vapor regions are separated by a 
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Fig. 1. Schematic of the disk-shaped heat pipe: (a) geometry of the heat pipe, (b) the coordinate system 
used in the analysis. 

distinct boundary (vapor-liquid-wick interface), with 
no two-phase zone in between. The vapor injection 
and suction rate are assumed uniform on the top and 
bottom wicks and negligible on the vertical wicks. 
Therefore, the vapor velocity component in the 0 
direction is negligible. 

The mathematical model of the vapor and liquid 
flow within a channel is described by three subregions: 
the top liquid-wick region, the vapor region and the 
bottom liquid-wick region (Fig. lb), each of which 
has its own set of governing equations. In the vapor 
region, the continuity and r-momentum equations are 

(?ttv (?V,, u v 
(?~- + 8-v-y + - - O r  - (1) 

(?Uv (?Uv~ @v 
Pv Uv~- r +Vv~-y) = (?r 

{(?2Uv 1 (?u,, Uv (?2u., 1 (?ZUv" ] 
+ Pv ~ r 2  + r (?r r 2 + --(?y2 + ~ (?02 ]" (2) 

The conservation equations for the liquid flow within 
top and bottom wicks are based on the generalized 
momentum equation [7] which account for the boun- 
dary and inertial effects. The convective term in the 
generalized momentum equation is dropped in 
accordance with the work of Vafai and Tien [7]. The 
governing equations for the liquid flow in the bottom 
wick are 

~r av, ~ 1 (?w~ lr ( r u ~ ) + ~ y y + r ~ - = O  (3) 

_~( 2 ~  + 1 (?u~ u b +--+(?2u b 1 d2ub) 

r (?r r ~ (?y2 ~ 802 ] 

P' b piF~ Vb ub ~p~ 
~.UI--KI,21 II i - - ~ - r  = 0  

and for the liquid flow in the top wick are 

1 (?(ruO+(?v{ law{ 
-r (?r 7y  + r - g  = ° 

~{O2u[ 18u[ u{ (?2u{ 1 02u{~ - - +  
\ (?r 2 ~ r (?r r 2 + (?y2 r ~ ~ - ]  

P' t plF~ lv{lu{_ (?P~ 
~ u l -  K "'~ ~r  = O. 

(4) 

(5) 

and 

pvVv(r,y=O,O) =plv~(r ,y=O,O) = --PvVz (7) 

p.~vv(r,y = h, O) = ptvb(r,y = h, O) 

= t - p v v l  (O <~ r <~ cpR). 

l P~V2 (q~R <~ r <~ R) 
(8) 

The continuities of velocities and shear stresses at 
these interfaces yields 

Uv(r,y=O,O) = u~(r,y=O,O) = u~(r O) (9) 

The vapor and liquid phases are coupled at the liquid 
vapor interfaces, y = 0 and y = h. The continuity of 
mass fluxes in the y-direction at these interfaces yields 

(6) 
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u~(r,)' = h,O) = u{(r,.v = h,O) = ul(r,O) (10) 

and 

(11) 

C V [~ /; (;'1' v = # 
(12) 

where ub(r, O) and ul(r, O) are the radial velocity com- 
ponents at the liquid-vapor interfaces, y =  0 and 
y = h, respectively. In the above presentation p~ is the 
vapor density and Pt the liquid density,/~,, the dynamic 
viscosity of vapor, #, the dynamic viscosity of the 
liquid, K and e are the permeability and porosity of 
the top and bottom wicks, h the height of the vapor 
space, v~ the vapor injection velocity and ~72 the vapor 
suction velocity. In equations (4) and (6), the geo- 
metric function F is calculated using the expression 
obtained in Vafai [8] ( F =  1.75/v'~e,3'2). The 
momentum jump condition in the normal direction is 
not applied at the liquid vapor interface since it is 
accounted for in the calculation of the capillary limit. 
Here, we have followed the very prominent approach 
in the heat pipe research up to date in which the vapor 
and liquid pressures are obtained independently and 
then combined with the Laplace Young equation to 
yield an expression for the capillary limit. As indicated 
in equations (7) and (8), within the 0 ~< r ~< (pR region, 
the top wick acts as the evaporator and the bottom 
wick as the condenser. However, both top and bottom 
wicks act as condensers within the (pR ~ r ~< R region. 

The liquid flow within the top and bottom wicks 
are coupled through the liquid flow within the vertical 
wicks. Since the heat is removed from the top and 
bottom surface of the heat pipe and there is no heat 
sink to remove heat from the vertical wicks directly, 
the main role of the vertical wick is to transport liquid 
from the bottom wick to the top wick. Based on these 
conditions, vapor injection and suction on the vertical 
wicks as well as the radial liquid flow within the ver- 
tical wicks are neglected. Therefore, the mass con- 
servation for the liquid within the vertical wicks yields 

Qb(r) = Q~(r) = Q(r), (13) 

where 

I 
0 

Qb(r) = (wb(r, y, 0 = (1)) --wb(r,y, 0 = 0) dy 

(14) 

is the flow rate of liquid from the bottom wick to the 
vertical wicks at location r, and 

i 
h + h 

Qt(r) = - (wI(r,y, 0 = (I))-wI(r,y,O = O))dv 
q, 

(15) 

is the flow rate of liquid from the vertical wicks to the 
top wick at location r. The parameter (I) in equations 
(I 4) and (15) is the angle of the vapor space for any 
one of the vapor flow channels, and h~ is the thickness 
of the top and bottom wicks. For the horizontal heat 
pipe under study, the liquid flow within the vertical 
wicks is based on Darcy's law, i.e. 

Kvhw'~ pl(r)-pb(r)  +p .g ) ,  (16) 
Q(r)- 7, \ 

where pi(r), p~(r) denote the liquid pressure in the top 
and bottom wicks, respectively, K~ and hw, are per- 
meability and thickness of the vertical wick and g is 
the gravitational acceleration. 

The boundary conditions are as follows: 

0 = 0 :  u , = 0  u b = 0  u { = 0  (17) 

0=(1): u , = 0  u{~=0 u l = 0  (18) 

) = -h, , :  u{'=O v~=O (19) 

y=h+h , , . :  u [ = 0  t , l = 0  (20) 

r = 0 :  u , = 0  Ub=0  UI=0  (21) 

r =  R: u~ = 0  u b = 0  u{ =0 ,  p, =pb. (22) 

The above governing, boundary and coupling equa- 
tions provide all necessary relations to obtain a closed 
mathematical solution. An in-depth integral method 
is employed to obtain the analytical solution for the 
vapor and liquid velocity profiles and pressure dis- 
tributions. 

1. Vapor velocity profile 
A parabolic velocity profile is used for vapor flow 

within the heat pipe and is represented by a functional 
product in the r, y and 0 directions, that is 

u,.(r,y, 0) = U, (r)(ao + a o '+ a2y2)(Co + cl 0 + c202). 

(23) 

Based on the continuity of velocity fields, the inter- 
facial velocities are represented by functional products 
in the r and 0 directions as follows: 

u~?(r,O) = Ub(r)(Co +c~O+c202) (24) 

and 

u~(r,O) = Ul(r)(co+clO+c202), (25) 

where Uv(r), UPi(r) and ~( r )  denote the maximum 
velocity for uv(r,y,O), u~(r,O) and ul(r,O) on every 
transverse surface along the r direction, respectively. 
Using the boundary conditions given by equations 
(17) and (18), the constants co, Cl and c2 for the 0 
component Of Uv(r,y, 0), ub(r, O) and u~(r, O) can easily 
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be determined as follows: 

Co-J¢-ClO-~c202 = ~ - ( 1 -  O). (26) 

It should be noted that the present analysis could be 
further extended to include vapor flow reversal by 
using a higher order polynomial. Due to the vapor 
injection from the heating side of the top wick, the 
location of the maximum vapor velocity Uv(r) will be 
shifted towards the bottom wick within the 
0 ~< r ~< ~0R region. As the vapor flows downstream, 
the location of Uv(r) will gradually shift towards the 
center line (y = hi2) due to the presence of sym- 
metrical cooling conditions. To account for this 
feature, the vapor velocity profile in y direction is 
divided into two parts based on the location of the 
maximum vapor velocity: the lower part 
(0 <~ y ~ f(r)) and the upper part 0C(r) ~< y ~< h). The 
location of the maximum vapor velocity, y = fir), is 
also the location corresponding to zero shear stress 
for the velocity distribution on the r-y plane. Applying 
the interfacial boundary conditions given by equa- 
tions (9) and (10) as well as 

Uv(r,v=f(r), O=~)=Uv(r),  ~uv = 0  
" (3y  y ~ f ( r )  

(27) 

to equation (23) results in the following vapor velocity 
profile 

interface zone between the liquid-wick and the heat 
pipe wall. Based on the matched asymptotic solution 
of Vafai and Thiyagaraja [9], and applying the boun- 
dary conditions given by equations (9) and (19) and 
noticing that the thickness of the interface regions is 
much smaller than hw/2 for the heat pipe under study, 
the following velocity profile is obtained for the liquid 
flow within the bottom wick (-hw ~< y ~< 0): 

u~(r,y) = 

~ UUl (r) + [ Ub (r) - U~ (r)] exp ( ~ e e  ) 

h w ~ y ~ O  
2 

hw+Y)l U~ (r) [1-exp ( -  ~ j_j 

-hw <~ y<. - - -  hw 
2" 

(31) 

Similarly, for the liquid flow within the top wick, 
we have 

b b y y 2 40 0 

t t h - y  h - y  2 40 

(0 <~ y <~ f(r)) 

(f(r) <<. y <<. h). 

(28) 

2. Liquid velocity profiles 
Utilizing the boundary conditions given by equa- 

tions (17) and (18), the liquid velocity component in 
the r-direction can be taken as follows: 

u~(r,y,O) =ub(r,y)4~O~(l - 0 )  (29) 

u~(r,y,O) =u~(r,y)4~O0(1--O ). (30) 

Vafai and Thiyagaraja [9] have shown that the 
thickness of the interface region between a porous 
medium and a fluid or an impermeable medium is of 
the order of (K/g) 1/2. According to their investigation 
of the interface interactions in a saturated porous 
medium, the liquid velocity profile in the top and 
bottom wicks can be represented by three parts: an 
inner solution for the interface zone between the 
liquid-wick and the vapor phase, an outer solution 
for the main wick region and an inner solution for the 

u{(r. y) = 

U~(r) + [U~(r) - U[(r)] exp 

__ y - h  h<~y<<h+hw 

[ (Y-(h+hw)ll U[(r) 1-exp, . -  - ~ -  -]j 

h+ ~ <~ y ~ h+hw. (32) 

The maximum interfacial radial velocity components 
are determined by matching the interfacing shear 
stresses given in equations (11) and (12). This results in 

U,(r) + ~U~(r) 
Ub(r) = (33) 

7#+f(r) 
1 + - -  

2 
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and 

U,(r) + yl~+ (h - f ( r ) ) u l ( r  ) 
2 

gl(r) = (34) 
71t + (h - f ( r ) )  

1+ 
2 

where p+ =/4/P,,  and 7 = x/e,/K is the shape par- 
ameter of the top and bottom porous wicks. 

3. The maximum radial velociO' component of  vapor 
and liquid flows 

The maximum vapor and liquid radial velocity com- 
ponents Uv(r), U~ (r) and ~ ( r )  are determined by inte- 
grating the vapor and liquid continuity equations. 
Utilizing the velocity profiles and boundary con- 
ditions given by equations (28), (24), (25), (7) and (8), 
the integration of the continuity equation (1) with 
respect to y from 0 to h and with respect to 0 from 0 
to • yields 

Ub(rff (r) + Ul(r ) (h-  f (r) ) + 2hU,,(r) 

9@, --v,)  
- - - 4 - - = r  (0 ~< r ~< q~R) 

= (35) 
9v. R : - r  e (q)R <~ r <~ R). 

2 r 

For the liquid flow within the bottom wick, inte- 
grating the continuity equation (3) with respect to y 
from - h ~  to 0 and with respect to 0 from 0 to 
and substituting the velocity profiles and boundary 
conditions given by equations (29), (31), (33), (13). 
(14), (16), (7) and (19) results in the following 
expression for Ub(r): 

3V2 3K,.h~, ( '  
Ub(r) = 

4p + h,, r -  2~#,hhwr Jo (pb(r) 

2U~(r) 
-p{( r ) -p~gh)  d r -  --;--- ...... ~--- , (36) 

7-P hw.l(r) 

where p+ = P~/Pv. To obtain equation (36), the sim- 
plification l+~7/*+f( r )~  ~27#+f(r) is utilized based 
on the fact that p+f(r) is at least of the order of h~. 
For the liquid flow within the top wick, integrating 
the continuity equation (5) with respect to y from h 
to h + hw and with respect to 0 from 0 to ¢ and sub- 
stituting the corresponding velocity profiles and 
boundary conditions results in the following 
expression for U{(r) 

Substituting equations (36) and (37) into equations 
(33) and (34) results in the following expressions for 
U~, (r) and ~( r ) :  

Up(r) = 3v2 3Kvhwv r r b 
4p + hw r 2rbp~hhwr Jo(p~ (r) 

2Uv(r) 
-p{(r) - p~gh) d r +  - -  (38) 

7p+f(r) 

and 

Ul(r) = 

3vl r+ 3K~h,,,v i" 
- ~pTh7 2dOl.tlhh.jjo (p~(r) 

2gv 
-p{(r) -p~gh) d r +  

7P + ( h - f  (r)) 

(0 <~ r ~ q~R) 

3v, r 2 - 2 R  2 3Kvhw,. (" b 
- + 2 ~ r  J (P, (r) 4p+h,, r 

2uv 
--p{(r) --plgh) d r +  

;'l~ ~ ( h - f ( r ) )  

(~oR <~ r <<, R). (39) 

Substituting equations (38) and (39) into equation 
(35) results in the following expressions for Uv(r) 

Uv(r) = 

I 
9(v, --v:)  3r 

8 ~  r + 8p ~ hh,,, (v l ( h -./'(r) ) - vzf  (r) ) 

3Kvhwv(h-2f(r)) ('" b t 
-- ~ r  J , ( p , ( r ) - p , ( r ) - p , g h ) d r  

(0 ~ r <~ q)R) 

9v, R 2 - r  2 3v~ , 
r 8pT~hh~r (hr- - 2 ( h - f ( r ) ) R ~ )  

3Kvhwv(h-2f(r)) ~" b . . . . . . .  
--  ~ | tPt tr) --PL tr) -- plgh) ur 

4u,pln'nwr do 

(q~R ~< r ~< R). 

(40) 

I _  3v, r+ 3K~hw, fo 2U,~ 
4p+h,~ 2rb#~hhwr (pb(r)--pl(r) --p~gh) d r -  72p+hw(h-f(r))  

U{(r) = / 3v2 r Z -  2R: 3Kvh,,., (" 2Uv 
+ J~ (pb(r)--pl(r) -p ,gh )  d r -  72u+h,,,(h-f(r)) L4p+h,, r 2rb ,ulhhwr 

(0 ~ r ~< oR) 

(~pR ~< r ~< R). 

(37) 
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The continuity of Uv(r), L~l(r) and ~( r )  at r = ~pR 
all leads to the following consistent relationship 

/ 2v2  (41) 
( P =  ~ OI - I -V 2 " 

4. The location of the maximum vapor velocity 
The location of the maximum vapor velocity, f(r), 

is determined by integrating the vapor momentum 
equation (2) with respect to y from 0 tof(r)  and with 
respect to 0 from 0 to ~. Since the dimension in r- 
direction is much larger than the transverse length in 

the vapor channel, the shear stress in r-direction is 
neglected [10]. It should also be noted that in the 
0 ~ r ~< ¢pR region of the vapor passage, there is a 
mass flow crossing y = f(r) surface in the y-direction 
due to the vapor injection from the top wick and 
suction from the bottom wick. However, there is no 
mass flow crossing y = f(r) surface in the ~pR ~< r ~< R 
region due to symmetrical boundary conditions on 
both top and bottom wicks. Based on the above con- 
siderations, the integration of the momentum equa- 
tion (2) using the vapor velocity profile and the aver- 
age vapor pressure in each transverse plane results in 
the following expression for the rate of change off(r) 

df(r) 
dr 

-- ~(2G(r) + 3Uv(r)) + 3(Vl -v2)_~f2(r ) + [2(4G(r) + Uv(r)) dG(r) 
8p+h~ ] L dr 

+ 3 (v , -vD  3+ (2G(r)+3Uv(r))+ r (3G (r)-G(r)Uv(r)-2U~(r)) 
4h p+hw 

225 dpv-I 75 2p~ 
+ ~ ( G ( r ) + 2 U v ( r ) ) + ~ p v d r J f ( r ) - 4 ( p - ~ - v 2 ) ( G ( r ) - U v ( r ) ) } p v  • r 

(0 ~ r ~< (oR) 

1 ~ 4G(r)(dG(r) 3vz R2+r 2) [ 
D - - ~ [ - - - - ~ \  drr 4p+hw r 2 - f2(r)+ 4(2G(r)+Uv(r)) dG(r----~)dr 

3h2 ( h \ R 2 + r 2  3+ + / ~ G ( r ) +  1-(3G2(r)+4G(r)U~(r)+8U~(r)) 
p hw] r r 

75#v 225 ~PrV ] 75p~G(r)--Uv(r) 
+ ~ (G( r )+2Uv( r ) )+  ~p~ f(r) 2pv f(r) 

75vz ( 2Vv(r) "] 
+ ~ G(r)+ 7P+f(r)/ ((oR <~ r <~ R), 

(42) 

where 

3 v  2 G(r) = 
4p + h~ 

3Kvh~ ~" b 
r -- 2~lhh~r | (p' (r) -p](r) - plgh) dr 

3o 
(43) 

and 

D(r) = 

2U~( r )+ [ (1  ~6f(r) 12 + + ,. 

t 4p+hhw JI, r)Au~tr ) 

(0 ~ r <~ ~oR) 

- -  - -  a ( r )  
p+ hh~ r 

(~oR <~ r <~ R). 

( 4 4 )  
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5. Vapor and liquid pressure distributions 
The pressure distribution in the vapor phase can 

be obtained by integrating r-momentum equation (2) 
within a vapor channel bounded by porous wicks. 
Introducing continuity equation (1), vapor velocity 
profile given by equation (28) and boundary con- 
ditions given by equations (7)-(10), (17) and (18) as 
well as equations (24), (25), (27) and (35) into the 
integrated momentum equation results in the fol- 
lowing expression for the vapor pressure gradient: 

+ 8p,Fe [U{(r)(U{(r)+ U~(r)~ (UI(r))Z7 
15K',2L \ ~h~-~ ) + 2 - ~  J" (47) 

6. The liquid-vapor interlace temperature 
The temperature along the liquid-vapor interface is 

taken as the saturation temperature corresponding to 
the vapor pressure at the interface. Since the parabolic 
version of the equations of motion is used in the cur- 

dpv 
dr 
i 

s d b2[ ] 
75hr drr {r[(U~ (r)) f(r)  + (U~(r)) 2 (h - f ( r ) )  + 3@, - v2)rUv(r)]} 

4#v 9(vt-V2)r_(Ub(r)+U~(r)+Uv(r))h 
3hf(r)(h- f (r))  4 

2pv 6#v(Vl -- v2) 
+ ~ ( v ,  U~(r)--v2 Ub(r)) - 

@2hr 

75hrdr[r[ (U~(r))~f(r)+(U'(r))2(h-f(r))+6v2 r U"(r)l} 

2# .  R 2 - - t  .2 

3hf(r)~-- f (r))  9v: r 2(U~(r) + Ul(r) + Uv(r))h 

2p.V2 (U~(r) 12#vv2 R 2 - r 2 
~ij2 h r 3 

(0 ~< r ~< q~R) 

(~0R ~< r ~< R). 

(45) 

The liquid pressure distributions are determined by 
integrating the generalized momentum equations (4) 
and (6) within the top and bottom wicks, respectively. 
The shear stress in the r-direction is neglected, since 
the dimension in r-direction is much larger than the 
transvesrse length in the channel. For the bottom 
wick, integrating equation (4) with velocity profile 
given by equations (29) and (31), boundary conditions 
given by equations (7), (9), (17)-(19) as well as equa- 
tions (24) and (25) results in the following expression 
for the liquid pressure gradient within the bottom 
wick: 

dp b 2#1 b 8#1 b Ub(r)~ 
dr - ~--KU, ( r ) -  ~ ( U ,  (r)+ 7h~ / 

8p,F  V , I V:(r)]+ (V:(r)) 
+ l 5 [UF(r)  7hw / 27hw A" (46) 

Similarly, the integration of equation (6) with cor- 
responding velocity profile and boundary conditions 
results in the following expression for the liquid pres- 
sure gradient within the top wick: 

dpl 2#L . . . .  8pL f . . . .  U~(r)\ 

rent model, the vertical variation of the vapor pressure 
is not accounted for. Based on the Clausius-Cla- 
peyron equation, the interface temperature can be 
found from 

T~(0) 
Tv(r) = 1 - Tv(O)l~[lnpv(r)--lnpv(O)]/hfg' (48) 

where _R is the ideal gas constant and hfg is the latent 
heat of working fluid. 

7. The maximum heat transport capillary limit 
For a heat pipe under steady-state operation, stable 

circulation of the working fluid in the heat pipe is 
achieved through the capillary pressure established 
by the wick structure. If a heat pipe is to operate 
continuously without drying out the wick, the sum of 
the pressure losses along the vapor-liquid path for 
each wall should not exceed the maximum possible 
capillary pressure for that wall; that is 

20" I 
- -  /> Apv (rma× - -  rmin) -'b Apt (rmin - -  rmax ) + P c  (rmin), 
rc 

(49) 

where p¢(rmi.)=pv(rmi.)--pl(rmi.) is the minimum 
capillary pressure, a~ is the surface tension of the 
liquid, rc denotes the effective pore radius of the top 
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and bottom wicks, and rmax/rmi n denotes the location 
where the capillary pressure is maximum/minimum. 
The notation Ap(rmx-rmin) means that Ap is evalu- 
ated over the distance (rmax-- train)- For  the disk-shaped 
heat pipe under current study, which is heated from 
the top surface, the entire bottom wick acts only as 
the condenser and the overall liquid pressure drop 
within the bottom wick is always smaller than that 
within the top wick, due to the coupling of the liquid 
flows in the top and bottom wicks through the vertical 
wicks. Therefore, the sum of the pressure losses along 
the vapor-liquid path for the bottom wall is always 
smaller than that for the top wall. If  the same porous 
wick structures are taken for both top and bottom 
wicks, the maximum heat transfer attainable in the 
heat pipe is achieved when the sum of the pressure 
losses along the vapor-liquid path for the top wall is 
equal to the maximum possible capillary pressure, i.e. 

2al t 
_ _  ~ A p v ( r m a x _ _ r m i n ) + A p ~ ( r m i n _ _  t rmax) +p~(rmi.). 
rc 

(50) 

RESULTS AND DISCUSSION 

Nine unknowns in equations (36)-(40), (42) and 
(45)-(47), namely U b, U[, U~, UI,, Uv , f  (r), Pv, pb and 
p~, are variables depending on r. To solve the above 
nine equations for the unknowns, equations (46) and 
(47) are combined to obtain an oldinary differential 
equation for p~(r)-p[(r) ,  subject to the following 
boundary conditions: 

r = R, pb_p~ = p~gh (51) 

and 

f~ #lt~R2hv2 (52) 
[pb (r) --p~ (r) -- p,gh] dr - 2p + Kvhw~v" 

The boundary condition (51) is obtained from 
equation (16) with no mass exchange through the 
vertical wicks at r = R, while equation (52) is obtained 
through the balance of the rate of vapor mass con- 
densed on the bottom wick and the rate of liquid mass 
transferred from the bottom wick to the top wick at 
steady state. The ordinary differential equation for 
pb(r)--p~(r) and equations (36)-(40), (42) and (45) 
are solved simultaneously as a function of the input 
heat power. The fourth-order Runge-Kutta  method 
is used to solve the ordinary differential equations. 

The results in Figs. 2-8 are based on a disk-shaped 
heat pipe with heavy water as the working fluid. The 
respective dimensions of the copper heat pipe are 
chosen as: R = 0.25 m, • = 45 °, h = 0.0254 m and 
hw = hwv = 0.003 m. The radius of the circular heat 
input zone is 0.125 m. The top and bottom wick 
material is copper foam; its effective pore radius, 
porosity and permeability are taken as 0.019 cm, 0.9 
and 1.5 x 10 -9 m 2, respectively. The vertical wick 

material is sintered copper powder; its effective pore 
radius, porosity and permeability are taken as 36 pm, 
0.5 and 2.1 x 10 -It m 2, respectively. The results in 
Figs. 2-8 were obtained for the operating temperature 
of 80°C and for Reh (injection Reynold's number, 
Reh = pvVlh/gv) values of 512, 1024 and 1536, which 
correspond to the input heat powers of 25, 50 and 75 
kW, respectively. It should be noted that the primary 
purpose of this work is to study the effects of vapor-  
liquid hydrodynamic coupling and non-Darcian 
transport through the porous wick on predicting the 
heat pipe operation. The disk-shaped heat pipe was 
also simulated at low heat input power (1, 5 and 10 
kW). Boiling cannot occur in the porous wick at these 
low heat loads. The results show the same tendency 
of the effects of vapor-liquid hydrodynamic coupling 
and non-Darcian transport as those presented in Figs. 
2-8. 

The variation of the maximum vapor velocity and 
its location, as well as the variation of the maximum 
liquid velocities and the interfacial velocities along the 
heat pipe, are shown in Figs. 2 and 3. The positive 
velocity value denotes that the flow is along r direction 
and the negative velocity value denotes that the flow 
is along the negative r direction. As can be seen from 
Fig. 2, vapor accelerates in the 0 ~< r ~< tpR region 
corresponding to the evaporator section and deceler- 
ates in the tpR ~< r ~< R region corresponding to the 
condenser section, due to the vapor injection and suc- 
tion over the corresponding regions. The location of 
the maximum vapor velocity is shifted down to the 
cooling side in the 0 ~< r ~< q~R region due to the injec- 
tion from the heating side while it returns to the center 
line of the heat pipe in the q~R ~< r ~< R region due 
to the symmetrical cooling conditions (Fig. 2b). The 
condensate in the top wick accelerates in the 
q~R ~< r ~< R region and decelerates in the 0 ~< r ~< q~R 
region. At the condenser region close to the end of the 
heat pipe (r = R), there is no liquid exchange through 
the vertical wicks due to symmetrical cooling con- 
ditions and the liquid flow rates in the top and bottom 
wicks are the same. Starting at a certain location 
(around r/R = 0.75 in Fig. 3a), part of the condensate 
in the bottom wick is transferred to the top wick 
through the vertical wicks and leads to a larger liquid 
flow rate in the top wick. 

This demonstrates that the assumption of the same 
flow rates in the top and bottom wicks is not suitable 
for the disk-shaped heat pipe heated from the top. 
An interesting phenomena is that the liquid may not 
necessarily decelerate to a zero velocity at r = 0. When 
the input heat is high enough, there is a region near 
r = 0 in the top wick within which the liquid flows in 
the same direction as the vapor flow. The liquid in 
this region is supplied by the bottom wick through the 
vertical wicks. The higher the input heat flux, the 
larger the liquid flow rate in the r-direction. There are 
two possible reasons that can cause this phenomena. 
One is that at high heat flux the vertical wicks cannot 
transfer enough liquid from the bottom wick to the 
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Fig. 2. Variations of the maximum vapor velocity and its location along the heat pipe. 

top wick to keep the liquid flow within the top wick 
always in the negative r-direction. Our results have 
shown that the r-direction flow in the top wick is 
reduced, or eliminated, when a smaller permeability 
of the vertical wicks is taken, and the location where 
the mass exchange through the vertical wicks starts 
gets closer to r = R for a smaller permeability of the 
vertical wicks. This is expected, since a smaller per- 
meability results in a higher capillary pumping ability 
of the vertical wicks. The second possible reason is 
that the imposed heat flux exceeds the dry-out heat 
flux limit of  the top wick, but the bottom wick still 
does not reach its capillary pumping limit, since the 
liquid flow rate in the bottom wick is smaller than that 

in the top wick, and supplies enough condensation to 
the dry-out region of  the top wick through vertical 
wicks. Our results have also shown that both the flow 
rate and the region over which the liquid moves in the 
positive r-direction are reduced for smaller top wick 
permeabilities, while the thickness and permeability 
of the vertical wicks are kept fixed. This feature of 
directly feeding the evaporator with liquid from the 
bottom wick allows the disk-shaped heat pipe to 
obtain a higher heat flux capability than a con- 
ventional cylindrical heat pipe, which has only one 
path for the condensate return. 

Figure 4 shows the vapor and liquid pressure dis- 
tributions along the heat pipe. The vapor pressures in 
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Fig. 3. Variations of maximum liquid velocity and maximum interfacial velocity along the heat pipe. 
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Fig. 5. The effect of vapor-liquid interfacial hydrodynamic coupling on (a) the location of the maximum 
vapor velocity, and (b) the maximum liquid velocities. 

the 0 ~< r ~< tpR region decrease due to the friction and 
the acceleration of the vapor flow caused by mass 
injection from the top wick, while the vapor pressures 
in the q~R ~< r ~< R region increase owing to the decel- 
eration of the vapor flow by mass suction. The larger 
the injection Reynolds number, the larger the overall 
vapor pressure drop. Figure 4b shows that the liquid 
pressure in the top wick is always smaller than that in 
the bottom wick. In the region where no mass ex- 
change through the vertical wicks occurs, the differ- 
ence between the liquid pressures in the top and bot- 

tom wicks is only caused by the gravity, and is 
constant. In the region where the mass exchange 
through the vertical wicks occurs, this difference is 
caused not only by the gravity, but also by the fric- 
tional resistance for the liquid flow in the vertical 
wicks. 

The effect of the vapor-liquid interfacial hydro- 
dynamic coupling (the interfacial effect) on the vapor 
and liquid flows is illustrated in Figs. 5 and 6a. Our 
results show that the interfacial effect on the vapor 
flow rate is negligible. This is because the vapor flow 
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Fig. 8. The effects of vapor liquid interracial hydrodynamic coupling and boundary and inertia on the 
maximum heat transfer capability of the heat pipe. 

rate is mainly determined by the vapor injection and 
suction velocities and is much larger than liquid flow 
rates. However, the interracial effect on the location 
of the maximum vapor velocity is significant due to 
the shear stress at the vapor-liquid interface (Fig. 5a). 
Figure 5b shows the interfacial effect on the maximum 
liquid velocities. While the interfacial effect on the 
maximum liquid velocity in the top wick is negligible, 
it results in a larger maximum liquid velocity in the 
bottom wick. Figure 6a shows the interfacial effect on 
the vapor and liquid pressures. It can be seen that the 
interfacial effect on the vapor pressure and the liquid 
pressure in the top wick is negligible. However, neg- 
lecting the interfacial effect will lead to a smaller liquid 
pressure drop in the bottom wick. 

The boundary and inertial effects on the vapor and 
liquid pressures are shown in Fig. 6b. The boundary 
and inertial effects on the vapor pressure are negli- 
gible. However, the calculated liquid pressure drop in 
both top and bottom wicks will be smaller when the 
boundary and inertial effects are neglected. The larger 
the injection Reynolds number, the larger the error 
involved through neglecting the boundary and inertial 
effects. This is expected, since the liquid flow rate 
increases with increasing the input heat, hence the 
error resulted from omitting boundary and inertial 
effects increases [7]. Figure 7 shows the comparison 
of the vapor and liquid pressure distributions as well 
as the vapor temperature distribution calculated with 
the current model and with the model that employs 
Darcy's law and assumes the same liquid flow rates at 

the top and bottom wicks. It can be seen that sig- 
nificant errors occur in calculating vapor and liquid 
pressures by using the latter model. 

Figure 8 shows the interfacial effect and the boun- 
dary and inertial effects on the maximum heat transfer 
capability of the disk-shaped heat pipe. It can be seen 
that neglecting the vapor-liquid interfacial coupling 
can lead to an underestimation of the maximum heat 
transfer capability. This is because the neglection of 
vapo~liquid interfacial coupling causes the overall 
liquid pressure drop in the top wick to be larger (Fig. 
6a). In contrast, neglecting the boundary and inertial 
effects causes the overall liquid pressure drop in the 
top wick to be smaller (Fig. 6b), hence resulting in an 
overestimation of the maximum heat transfer capa- 
bility. While the interfacial effect on the maximum 
heat transfer is smaller, the error involved through 
neglecting the boundary and inertial effects is sig- 
nificant. Figure 8 also shows the significant error in 
calculating the maximum heat transfer capability by 
using the model that employs Darcy's law and 
assumes the same liquid flow rate at the top and bot- 
tom wicks. 

To further support the current analysis, the model 
predictions are compared with the experimental 
results of North and Avedisian [6] for an ethanol 
disk-shaped heat pipe. The physical dimensions, wick 
structure, working fluid and all other parameters of 
the heat pipe tested by North and Avedisian [6] were 
used as inputs to our analytical model. The copper 
disk-shaped heat pipe, 0.149 m diameter, 2.54 cm 
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Fig. 9. Comparison of the calculated maximum heat transfer and the experimental data given by North 
and Avedision [6]. 

thickness (vapor space + wick) and 0.0762 m diameter 
of heat input zone, employs sintered copper powder 
wicks. The thickness of both top and bottom wicks is 
0.003 m, and the wick effective pore radius, porosity 
and permeability are 36/~m, 0.5 and 2.1 x 10 -7 cm 2, 
respectively. The effective thermal conductivity of the 
liquid-wick region is calculated using the equation 
given by Dunn and Reay [11] for sintered copper 
powder with porosity of 0.5. The thermophysical 
properties of the vapor and liquid are evaluated at 
the operating temperature. The flow channel angle is 
taken as 60 ° in the model. It should be mentioned that 
the tested heat pipe is heated from below and does 
not have vertical wicks. The effect of this difference 
between our model and the tested heat pipe is 
accounted for through the determination of the per- 
meability of the vertical wicks in our model by match- 
ing the predicted maximum heat transfer and the mea- 
sured data at the beginning of dryout (surface 
temperature of 45°C [6]). For  this test, the per- 
meability of the vertical wicks of 5.0 × 1 0  - 9  c m  2 is 
used. The comparison of the predicted maximum heat 
transfer with the measured data obtained by North 
and Avedisian [6] is shown in Fig. 9. It can be seen 
that the agreement between the experimental results 
and the model prediction is quite good. 

The current analysis is also applied to conventional 
cylindrical heat pipes. Figure 10 shows the com- 
parison of the analytical results with the numerical 
results given by Tournier and EI-Genk [5] and the 
experimental results given by Huang et  al. [12]. It 

should be mentioned that the calculated vapor tem- 
perature in Fig. 10b is the interface temperature. As 
can be seen in Fig. 10, the analytical results compare 
very well with both the numerical results given by 
Tournier and E1-Genk [5] and the experimental results 
given by Huang et al. [12]. It should be noted that 
present results do not represent the optimized 
maximum heat transfer capability of the disk-shaped 
heat pipe. Optimization analysis of the heat transfer 
process within a disk-shaped heat pipe is given in Zhu 
and Vafai [13]. 

CONCLUSIONS 

A pseudo-three-dimensional analytical model is 
developed for the vapor and liquid flow in an asym- 
metrical disk-shaped heat pipe, which incorporates 
the hydrodynamic coupling of the vapor and liquid 
flows as well as the gravitational effects, and the effects 
of non-Darcian transport through the porous wicks. 
An in-depth analysis of the intra-wick interactions 
and the phenomenological description of the trans- 
port  processes within disk-shaped heat pipes are 
presented. The effect of the vapor-liquid interfacial 
hydrodynamic coupling and the boundary and inertial 
effects are analyzed. The results show that the liquid 
flow in the top and bottom wicks are quite different 
and significant errors can occur when the same liquid 
flow rates in the top and bottom wicks is assumed. In 
addition, neglecting of the hydrodynamic coupling of 
vapor and liquid flow results in errors in simulating 



2112 N. ZHU and K. VAFAI 

24500 

24250 

,~ 24000 

23750 

23500 
0.00 

350 - -  

O n u m e r l c a l  results by Toumler and EI-Genk (1994) 

I , k , I i I 

0.18 0,36 0.54 0.72 
Pipe Axial Position (m) 

(a) 

I p i I 

i 

0.90 

v 

E 

340 - • 

330 

320 

• • 4, • • 

m n ann El • 

- -  currant analysis 

• measu red  vapor temperature, Huang et al. (1993) 

Omeasured wall temperature, Huang at al. (1993) 

- numer ica l  results, Tourn ler  a n d  EI -Genk (1994) 

1 u 

3 1 0  , I , I , I ~ I L 

0.00 0.18 0.36 0.54 0.72 0.90 
Pipe Axial Posidon (m) 

(b) 

Fig. 10. Comparison of the current model predictions with the numerical results given by Tournier and E1- 
Genk [5] and the experimental results given by Huang et al. [12] for a cylindrical heat pipe at steady-state. 

both the vapor and the liquid flow fields. While the 
error caused by the use of  Darcy's  law which neglects 
the boundary and inertial effects is negligible in cal- 
culating the vapor pressure and temperature, it is sig- 
nificant in calculating the liquid flow rates and pres- 
sure drops as well as the maximum heat transfer 
capability of  the heat pipe. Finally, the analytical 
results are found to compare well with an available 
experimental study. 
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