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Abstract The effects of oscillatory motions that may
present at a wall during vibrating conditions are studied
on flow induced by natural convection and heat transfer
inside an open-end vertical channel. The governing
equations are non-dimensionalized and reduced to sim-
pler forms. Analytical solutions are obtained for several
limiting cases. The reduced governing equations are solved
for various values of the controlling parameters. It is found
that mean values of average Nusselt numbers are mainly
affected by the Grashof number and the amplitude of the
horizontal vibrations. Further, amplitudes of Nusselt
numbers at the vibrated wall are decreased as the Grashof
number increases for horizontal vibrations while they are
increased as amplitudes of vibrations increase. It is also
found that the squeezing/vibrational Reynolds number,
Grashof number and amplitudes of vibrations have a great
influence on the trends of stream lines and isotherms
especially at low Grashof numbers. Finally, correlations
that summarize the effects of the different controlling
parameters are determined on the Nusselt numbers and
their amplitudes at relatively low frequency of vibrations.

Keywords Open-end vertical channel, Natural
convection, Squeezing, Shearing, Vibration

B height of the vertical channel
cp specific heat of the fluid
Gr Grashof number
H, h, ho dimensionless, dimensional and reference

thickness of the channel
hc convective heat transfer coefficient
k thermal conductivity of the fluid
NuL, NuR local Nusselt number at the left and right walls
Pr Prandtl number
p fluid pressure
RS squeezing/vibrational Reynolds number

T, T1, T2 temperature in fluid, right and left wall
temperatures

t time
U, u dimensionless and dimensional vertical

velocities
V, v dimensionless and dimensional horizontal

velocities
vo reference wall speed
X, x dimensionless and dimensional vertical

coordinates
Y, y dimensionless and dimensional horizontal

coordinates
X, X* dimensional and dimensionless vorticity
W, W* dimensional and dimensionless stream func-

tion
b dimensionless squeezing motion amplitude
bo thermal expansion coefficient
e perturbation parameter
c dimensionless frequency
g variable transformation for Y-coordinate
l dynamic viscosity of the fluid
h dimensionless temperature in flow field
hAVG dimensionless average temperature at a given

X value
q density of the fluid
s, s* dimensionless time
t kinematic viscosity
x reference frequency of the vibration
n variable transformation for the X-coordinate

1
Introduction
A significant domain of natural convection flows have
relatively small velocity magnitudes and contain almost
unnoticeable turbulence levels. Spaces cooled by natural
convection flows vary from one application to another. Of
special interest is vertical channels that are partially
opened from the upper end. These can find importance in
electrical and electronic cooling applications (see Daloglu
and Ayhan [1]) as they may exist between the different
electronic cards.

Laminar heat transfer by natural convections has been
studied extensively in the literature for different geome-
tries. An example for works related to natural convection
in vertical channels is the work of Writz and Stutzman [2]
who performed an experimental study of free convection
between vertical plates with symmetric heating. Another
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work that is considered is the work of Ramanathan and
Kumar [3] who performed a theoretical study for Natural
Convection between Heated Vertical Plates. Many re-
searchers considered natural convections inside open
ended enclosures such as Vafai and Ettefaqh [4] and [5]
and Khanafer and Vafai [6].

Natural convection inside vertical channels has
received increased attention in the past decade. Conjugate
conductive and porous medium effects are considered as
in the works of Morrone [7] and Paul et al. [8], respec-
tively. Further, the presence of internal sources, mass
species and variable properties effects have been taken
into account in various works concerning natural con-
vections inside cavities and vertical channels as in the
work of Barozzi and Corticelli [9], Kuan-Tzon [10] and the
work of Zamora and Hernandez [11], respectively. In
addition, turbulent, thermal radiation and two phase flow
effects have been encountered recently in the study of
natural convection inside vertical channels as in the works
of Bessaih and Kadja [12], Hall et al. [13] and Dalal et al.
[14], respectively.

There are only few works that have dealt with laminar
heat transfer and flow induced by natural convection
inside vibrating geometries. As an example, Fu and Shieh
[15] studied the effects of the buoyancy and vertical
vibrations at the four walls of a square closed cavity.

Further, Kwak [16] discussed the effects of having vibra-
tions on the temperature of one plate of a closed cavity on
the natural convection inside the cavity. Although natural
convection inside different geometries have been in-
vestigated for many effects as shown before, the literature
lacks numerical studies that relate the behavior of vertical
channels in a vibrated media with both horizontal and
vertical vibrations.

In this work, one of the vertical walls is allowed to have
oscillatory motions in either the vertical or horizontal di-
rections. These motions model certain modes of vibrations
that can occur in vertical channels. This study is performed
on an open-end vertical channel. The governing equations
such as vorticity-stream function formulations and the en-
ergy equation are non-dimensionalized and corresponding
dimensionless parameters are introduced. The reduced
equations are solved numerically for a wide range of para-
meters that do not cause any flow instabilities inside the
open-end vertical channel. Accordingly, an investigation is
done to better understand the performance of natural
convection inside vibrated vertical channels.

2
Problem formulation
Consider a two dimensional vertical channel that has a
small thickness h compared to its height B. The x-axis is
taken in the direction of the height of the vertical channel
while y-axis is taken along its thickness as shown in Fig. 1.
The bottom of the vertical channel is considered to be
closed while the channel is open from the top. The sche-
matic diagram that is shown in Fig. 1 represents the lower
portion of a semi-infinite vertical channel chopped at a
height equal to B. It is assumed that the flow is laminar and
the fluid is Newtonian. Further, the fluid is assumed to have
constant properties except for the density which is function
of temperature. The right wall of the channel is taken to be
fixed while two cases will be considered for the left wall
motion as they can model certain modes of vibrations.

Case 1: The motions of the left wall are horizontal motions
such that the thickness of the channel is expressed
according to:Fig. 1. Schematic Diagram

Fig. 2. Validations of Numerical
Results: Left wall having oscil-
latory (a) horizontal and (b)
vertical motion
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h ¼ ho 1� b cosðcxtÞð Þ (1(a))

where ho, b and x are the reference channel thickness, left
wall motion amplitude and a reference frequency,
respectively and c is the dimensionless frequency.

Case 2: Another case that will be discussed is by con-
sidering the motion of the left wall to be in the vertical
direction that is a shearing motion. The left wall velocity
for this case can be expressed as:

uðx; ho; tÞ ¼ vo sinðcxtÞ (1(b))

where vo is a reference wall speed.

2.1
General model
The general laminar two-dimensional continuity,
momentum and energy equations are given as

@u
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¼ 0 (2)
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where T, q, p, t, cp and k are the fluid temperature, den-
sity, pressure, kinematic viscosity, specific heat and the
thermal conductivity of the fluid, respectively and bo, To

and g are the coecient of thermal expansion of the working
fluid, reference temperature and the gravitational accel-
eration. It is worth noting that the Boussinesq approx-
imation is used to approximate the governing momentum
equations.

The resulting vorticity-stream function formulations
from equations (3) and (4) are

@X
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@2X
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2X
@y2

� �
� gbo
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(6)

@2W
@x2
þ @

2W
@y2
¼ �X (7)

where X and W are the dimensional vorticity and stream
functions, respectively. The vorticity and stream functions
are related to the velocity components through the
following:

X ¼ @v

@x
� @u

@y
(8)

u ¼ @W
@y

v ¼ � @W
@x

(9(a,b))

2.2
Boundary conditions
The dimensional boundary and initial conditions for the
first case are

Wð0; y; tÞ ¼ 0;
@2WðB; y; tÞ

@x2
¼ 0

Wðx; 0; tÞ ¼ 0; Wðx; h; tÞ ¼ �hoxxbc sinðcxtÞ (10(a))

Wðx; y; 0Þ ¼ 0

uð0; y; tÞ ¼ 0; uðx; 0; tÞ ¼ 0; uðx; h; tÞ ¼ 0

vð0; y; tÞ ¼ 0; vðx; 0; tÞ ¼ 0; vðx; h; tÞ ¼ hoxcb sinðcxtÞ

Xð0; y; tÞ ¼ �e2 @
2Wð0; y; tÞ
@x2

;
@2XðB; y; tÞ

@x2
¼ 0

Xðx; 0; tÞ ¼ � @uðx; 0; tÞ
@y

; Xðx; h; tÞ ¼ � @uðx; h; tÞ
@y

(11(a))

Tðx; y; 0Þ ¼ T1; Tðx; 0; tÞ ¼ T1; Tðx; h; tÞ ¼ T2

Tð0; y; tÞ ¼ T1;
@TðB; y; tÞ

@x
¼ 0

(12)

Equation (12) is considered unchanged for the second
case while equations (10) and (11) change to the following:

Wð0; y; tÞ ¼ 0;
@WðB; y; tÞ

@x
¼ 0

Wðx; 0; tÞ ¼ 0; Wðx; ho; tÞ ¼ 0

Wðx; y; 0Þ ¼ 0

u 0; y; tð Þ ¼ 0; uðx; 0; tÞ ¼ 0; uðx; ho; tÞ ¼ vo sinðcxtÞ
vð0; y; tÞ ¼ 0; vðx; 0; tÞ ¼ 0; vðx; ho; tÞ ¼ 0

(10(b))

Xð0; y; tÞ ¼ �e2 @
2Wð0; y; tÞ
@x2

;
@XðB; y; tÞ

@x
¼ 0

Xðx; 0; tÞ ¼ � @uðx; 0; tÞ
@y

; Xðx; ho; tÞ ¼ �
@uðx; ho; tÞ

@y

(11(b))

2.3
Dimensionless governing equations
The following dimensionless variables are suggested

X ¼ x

B
; Y ¼ y

ho
(13(a, b))
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s ¼ xt (13(c))

X� ¼ X
xB=ho

; W� ¼ W
hoxB

(13(d,e))

h ¼ T� T1

T2 � T1
(13(f))

where X* and W* are the corresponding dimensionless
values of X and W, respectively.

Utilizing dimensionless variables listed in Equa-
tions 13(a) to 13(f) in Equation (6) results in
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(14)

where Gr and e are the Grashof number and the pertur-
bations number, respectively which are defined as
follows:

Gr ¼ gboðT2 � T1Þh3
o

t2
e ¼ ho

B
(15)

The dimensionless stream function formulation and the
dimensionless energy equation are:
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where RS and Pr are the modified Reynolds number and
the Prandtl number of the fluid and RS is defined as
follows:

RS ¼
h2

ox
t

(18)

RS is named the squeezing Reynolds number when the
first case is considered because as it increases,
squeezing velocities increase when the fluid and the
dimensions of the channel remain unchanged. However,
this number reflects the ratio of inertia forces caused
by the vibrations at the left wall to induced viscous
forces inside the channel for the second studied case.
Therefore, it can be named as the vibrational Reynolds
number.

The dimensionless boundary conditions for the first
case are:

W�ð0;Y; sÞ ¼ 0;
@2W�ð1;Y; sÞ

@X2 ¼ 0

W�ðX; 0; sÞ ¼ 0; W�ðX;H; sÞ ¼ �Xbc sinðcsÞ

Uð0;Y; sÞ ¼ 0; UðX; 0; sÞ ¼ 0; UðX;H; sÞ ¼ 0

V 0;Y; sð Þ ¼ 0; VðX; 0; sÞ ¼ 0; VðX;H; sÞ ¼ cb sinðcsÞ
(19(a))

X�ð0;Y; sÞ ¼ �e2 @
2W�ð0;Y; sÞ

@X2 ;
@2X�ð1;Y; sÞ

@X2 ¼ 0

X�ðX; 0; sÞ ¼ � @UðX; 0; sÞ
@Y

; X�ðX;H; sÞ ¼ � @UðX;H; sÞ
@Y

(20(a))

hðX; 0; sÞ ¼ 0; hðX;H; sÞ ¼ 1

hð0;Y; sÞ ¼ 0;
@hð1;Y; sÞ

@X
¼ 0

hðX;Y; 0Þ ¼ 0

(21(a))

where H ¼ h
ho

. Equations 19(a) and 20(a) are changed to
the following for the second case, vertical vibrations:

W�ð0;Y; sÞ ¼ 0;
@W�ð1;Y; sÞ

@X
¼ 0

W�ðX; 0; sÞ ¼ 0; W�ðX; 1; sÞ ¼ 0

Uð0;Y; sÞ ¼ 0; UðX; 0; sÞ ¼ 0; UðX; 1; sÞ ¼ vo

xB
sinðcsÞ

Vð0;Y; sÞ ¼ 0; VðX; 0; sÞ ¼ 0; VðX; 1; sÞ ¼ 0

(19(b))

X�ð0;Y; sÞ ¼ �e2 @
2W�ð0;Y; sÞ

@X2 ;
@X�ð1;Y; sÞ

@X
¼ 0

X�ðX; 0; sÞ ¼ � @UðX; 0; sÞ
@Y

; X�ðX; 1; sÞ ¼ � @UðX; 1; sÞ
@Y
(20(b))

2.4
Thermal parameters
The thermal parameters that will be discussed are the
average of the following parameters:

NuLðX; sÞ �
hcLho

k
¼ 1

1� hAVGðX; sÞ
@hðX;H; sÞ

@Y

NuRðX; sÞ �
hcRho

k
¼ 1

hAVGðX; sÞ
@hðX; 0; sÞ

@Y

(22)

where hcL and hcR are the local convective coecient at the
left and right walls, respectively. NuL and NuR are the local
Nusselt number at the left and right walls, respectively.
hAVG is defined as follows:

Fig. 3. Dimensionless Stream Lines (Case where the Left Wall has

Horizontal Motion): (a) Gr
RS
¼ 0:0, (b) Gr

RS
¼ 200, (c) Gr

RS
¼ 600

and (d) Gr
RS
¼ 1200 (Pr=1.0, RS=1.0, e=0.25, b=0.2, c=3.0)

b
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hAVGðX; sÞ ¼
1

H

ZH

0

hðX;Y; sÞ dY (23)

2.5
Analytical solution
Equations (14) and (17) can be reduced to the following
for small values of the following parameters: RS, Pr and e
numbers

@2X�

@Y2 ¼
Gr

RS
e
@h
@Y

(24)

@2h

@Y2 ¼ 0 (25)

Accordingly, the dimensionless analytical solutions for
the velocities, temperature and thermal parameters are
listed below for the first case:

UðX;Y; sÞ � u
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eH2 1

6
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(26(a))

VðX;Y; sÞ � v

hox
¼ bc sinðcsÞ 3

Y
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� �2

�2
Y

H

� �3
" #

(27(a))

hðX;Y; sÞ ¼ Y

H

� �
(28(a))

NuL ¼ NuR ¼
2:0

H
(29(a))

The corresponding solutions for the second case are

UðX;Y; sÞ � u

xB

¼ �Gr

RS
e

Y3

6
� Y2

4
þ Y

12

� �

þ vo

xB
sinðcsÞ 3Y2 � 2Y

� �
(26(b))

VðX;Y; sÞ ¼ 0 (27(b))

hðX;Y; sÞ ¼ Y (28(b))

NuL ¼ NuR ¼ 2:0 (29(b))

3
Numerical analysis
Equations (14), (16) and (17) were transformed from X, Y
and s domain into a new computational domain, n=X,
g ¼ Y

H and s* = s. The transformed equations are

H2 @X
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@n2 þ
@2h
@g2
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(32)

where H and dH
ds�

are equal to unity and zero for the second
case, respectively. Equations (30) and (32) were solved
using an alternating direction implicit ADI method. The
procedure is based on dividing each time step in two
halves where equations (30) and (32) are swept in the n
and g directions in the first and second halves of each time
step, respectively, as discussed by Hoffmann and Chiang
[17]. Center differencing in space was used for discretizing
the dimensionless vorticity and temperature differential
terms and forward differencing was used to approximate
time differential terms. These discretizations resulted in
tridiagonal systems for each half time step which can be
solved efficiently using Thomas Algorithm (Blottner [18]).
After each half time step, equation (31) was solved using
the method of successive over relaxation SOR.

The dimensionless velocities in equation (30), di-
mensionless vorticity at the walls and the dimensionless
temperature were calculated at previous half time steps.
Then, the vorticity equation was solved for the vorticity
field. Accordingly, the stream function formulation was
solved and an approximate velocity field was obtained for
the current time. Next, the dimensionless temperature was
obtained from equation (32). The obtained velocities along
with the calculated temperatures were used again in the
vorticity equation at the current time to correct for the
dimensionless velocities, boundary conditions and tem-
perature gradients for equation (30). The preceding steps
are repeated until the velocity field did not change with
iterations for the current time. Accordingly, the tempera-
ture, stream function and the vorticity fields were obtained
for the current time step. Finally, the previous procedure

Fig. 4. Dimensionless Stream Lines (Case where the Left Wall has

Vertical Motion): (a)Gr
RS
¼ 0:0, (b) Gr

RS
¼ 200, (c) Gr

RS
¼ 600

and (d) Gr
RS
¼ 1200(Pr=1.0, RS=1.0, e=0.25, vo

xB ¼ 1:0, c=3.0)

b
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were repeated for the next consecutive time steps. Similar
procedures that can be applied for the ADI solution are
found in the literature (Example: El-Refaee et. al. [19]).

The value of c in equation (1) was chosen to be 3 to
reduce number of time steps. Note that other values of c
will result in similar physical behavior. Based on ex-
tensive numerical experimentation, the values of 0.0125,
0.05, 0.001, 10–6 and 10–6 were chosen for Dn, Dg, Ds�,
maximum error for stream functions in equation (31)
and the maximum error in the velocity field, respectively.
These values resulted in grid and time independent so-
lutions.

The numerical results of equations (30) through (32)
for the dimensionless axial velocities were compared with
the corresponding analytical solutions derived in this
work. The results of the comparisons were found to be in
excellent agreement as shown in Figs. 2(a, b) for both
studied cases. Accordingly, the above equations were
solved for various values of squeezing/vibrational Rey-
nolds number and Grashof number in order to better
understand the behavior of natural convection inside a
vibrated vertical channel.

4
Discussion of the results
Figure 3 shows the effects of the Gr on the stream lines for
the cases where the left wall is vibrating horizontally. It is

noted that a cell originates at the lower right portion of the
vertical channel at relatively low values of Grashof number
during squeezing stages, 5p

3 � s� � 2p. As the Gr increases,
suction velocities near the right wall increase such that they
can exceed the induced squeezed velocities due to vibra-
tion. As a result, this cell collapses and the flow achieves
normal conditions for large Gr values. This could create a
problem in controlling the outdoor vibrations since they
can affect the ventilation rate in thermal comfort applica-
tions. Also, this phenomenon can create problem in open
chambers that are used for measuring the concentration of
specific species since this cell can isolate the measuring
device resulting in inaccurate measurements.

Figure 4 shows the effects of the Grashof number on the
stream lines for the case where the left wall is vibrating
vertically. The interesting feature of this type of motion
can be seen in the time period 5p

3 � s� � 2p, especially at
s� ¼ 11p

6 , where the left wall speed is negative. It is noticed
that two separate flow zones are created at low Grashof
numbers during this time period. Flow enters the channel
from both the left and the right wall regions. These flows
exit in turn from the central portion of the channel. As Gr
increases, buoyancy induced flow velocities increase over
the induced vibrational flow thus normal flow trends are
recovered as shown in Fig. 4(d).

Figure 5 illustrates the effects of RS on isotherms for
the first case. It is noticed that as RS increases, axial
convection increases resulting in a maximum convections
during squeezing stages for the first case. Note that RS can
be increased by increasing the vibrational frequency.
Fig. 6 represents the effects of both RS and vo/xB on

Fig. 5. Dimensionless Isotherms (Case where the Left Wall has

Horizontal Motion): (a) RS = 1.0, (b) RS = 10 (Pr = 1.0, Gr
RS
¼ 600,

e = 0.25, b = 0.2, c = 3.0)
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isotherms for the second case. As both RS and vo increase,
axial convections increase, reaching their maximum va-
lues when the wall speed reaches its maximum positive
values.

Figure 7 displays the effects of the Gr
RS

on the average
Nusselt number for both cases at a low RS value. It is no-
ticed that the fluctuations in Nusselt numbers are greater

when the left wall oscillates horizontally as compared to
when it oscillates vertically. Equations 26(a) and 26(b)
suggest that horizontal vibrations affect both buoyancy
forces and the flow induced by the motion of the wall yet
vertical vibrations affect mainly the flow induced by vi-
brations. The interaction in the first case between vibra-
tions and the oscillatory buoyancy forces resulted from

Fig. 6. Dimensionless Isotherms (Case where the Left Wall has
Vertical Motion): (a) RS = 1.0, (b) RS = 10 (Pr=1.0, Gr/RS = 600,
e = 0.25, vo/xB = 1.0, c = 3.0)

Fig. 7. Effects of Gr
RS

on Nusselt

numbers (RS = 1.0): Left wall

having oscillatory (a) horizon-
tal and (b) vertical motion
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variations in the channel thickness cause the trend of the
average Nusselt number to change as Gr

RS
increases.

Amplitude of oscillations for Nusselt numbers decrease
as Gr

RS
increases at the vibrated wall for horizontal vibra-

tions because a substantial increase in the Nusselt number
at maximum thickness is expected due to buoyancy effects.
However, these amplitudes are less affected by Gr

RS
for the

second case. Fluid temperatures inside the channel are
expected to decrease as the Grashof number increases due
to enhancements in thermal convections. Therefore,
average Nusselt numbers at the vibrated wall increase as
Gr
RS

increases while it is decreased at the fixed wall with

Fig. 8. Effects of Gr
RS

on Nusselt

numbers (RS = 10): Left wall
having oscillatory (a) horizon-
tal and (b) vertical motion

Fig. 9. Effects of Gr
RS

on U (Case where the Left Wall has
Horizontal Motion)
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increases in Gr
RS

. The suggested correlations that are pre-
sented in the next subsection show that mean Nusselt
numbers are less affected by RS at fixed values of Gr.

Dimensionless axial velocity profiles for horizontal and
vertical vibrational modes are seen in Figs. 9 and 10,
respectively. It can be seen that induced velocities increase

Fig. 10. Effects of Gr
RS

on U (Case where the Left Wall has Vertical
Motion)

Fig. 11. Effects of Gr
RS

on X*
(n, 0) (Case where the Left Wall
has Horizontal Motion)

335



as Gr
RS

increases. Also, it is noticed that as RS increases, the

flow becomes more attached to the left wall, the source of

disturbance. The effects of Gr
RS

on dimensionless vorticity
at the right wall X�(n, 0) are shown in Figs. 11 and 12 for
two different RS values. As Gr

RS
increases, X�(n, 0) increases

for both horizontal and vertical vibrational modes. Fur-
ther, it should be noted that as RS increases, instabilities in
X�(n, 0) start to appear at larger values of Gr

RS
as shown in

Fig. 12(b).

4.1
Correlations
Tables (1) and (2) contain correlations for the mean value
of the average Nusselt numbers, (NuL,Ravg)mean, at the right
and left walls and their corresponding fluctuation,

DNuL,Ravg. These are defined as follows:

ðNuL;RavgÞmean ffi
c

2p

Z2p

2p 1�1
cð Þ

NuL;Ravgðs�Þ ds� (33)

DNuL;Ravg ¼
ðNuL;RavgÞMax � ðNuL;RavgÞMin

2
(34)

where (NuL,Ravg)Max and (NuL,Ravg)Min are the maximum
and minimum average Nusselt numbers. In these corre-
lations, NuL,Ravg stands for either NuLavg or NuRavg which
are the average Nusselt numbers for the left or the right
walls, respectively. The listed correlations are derived for a

Fig. 12. Effects of Gr
RS

on X�

(n, 0) (Case where the Left Wall
has Horizontal Motion)

Table 1. Correlations for
Nusselt numbers and their
corresponding fluctuations for
left wall expressing a
horizontal vibration (Pr=1.0,
e = 0.25 and c = 3.0, 0 £ RS

£ 5, 0 £ Gr/RS £ 1000, 0 £
b £ 0.3

Correlations for horizontal vibration Maximum error

ðNuLavgÞmean ¼
2:298ð1þRSÞ0:0134

ð1�b2Þ0:4599 þ 4:725ð10�4Þð50þ GrÞ0:9214 1%

DNuLavg

ðNuLavgÞmean

¼ 2:147b1:067

ð110þGrÞ0:1733ð1þRSÞ0:01734
14%

ðNuRavgÞmean ¼ 2:682
ð110þGrÞ0:02355 � 0:4564ð1þ RSÞ0:1548ð1� b2Þ2:237 5%

DNuRavg

ðNuRavgÞmean

¼ 0:9326b1:042ð110þ GrÞ0:04196 1%, RS = 1

Table 2. Correlations for
Nusselt numbers and their
corresponding fluctuations for
left wall expressing a vertical
vibration (Pr = 1.0, e = 0.25
and c = 3.0, 0 £ RS £ 5, 0 £
Gr/RS £ 1000, 0.5 £ vo/xB
£ 2.0)

Correlations for vertical vibration Maximum
error

ðNuLavgÞmean ¼ 2:3093ð1þ RSÞ0:0118 1þ vo

xB RS

� �0:0106
þ2:5979ð10�4ÞGr0:96623 1%

DNuLavg

ðNuLavgÞmean

¼
0:02442 vo

xB
RS

� �0:9365

ð1þRSÞ0:3096 110þ Gr
RS

� �0:0417 9%

ðNuRavgÞmean ¼
1:9535 1þvo

xB
RS

� �0:005634

ð1þRSÞ0:0447 � 1:9933ð10�4Þ Gr
RS

� �0:9296 4%

DNuRavg

ðNuRavgÞmean

ffi 0

336



Prandtl number equal to unity and a perturbation para-
meter equal to one-fourth. The maximum value of RS was
selected to be 5. As such these correlations are valid for
actual vibrational frequency less than 2 s–1 for a vertical
channel having a thickness equal to 10–20 mm.

In addition to the above correlations, the steady peri-
odic behavior for the average Nusselt number at either left
or right wall, for the horizontal vibrational case, can be
approximated by the following correlation for relatively

low values of Gr
RS

ratio:

NuL;RavgðtÞ ¼
ðNuL;RavgÞmean

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
1� b cosðcxtÞ (35)

The developed correlations show that the amplitude of
Nusselt numbers at the vibrated wall decreases especially
for vertical vibrations as squeezing/vibrational Reynolds
number increases at constant Gr. Also, they show that
amplitudes of Nusselt numbers are increased by in-
creases in amplitudes of the vibration for both studied
modes.

5
Conclusions
Heat transfer and flow induced by both natural convection
and vibrations within an open-end vertical channel have
been analyzed in this work. The left wall of the vertical
channel was allowed to have either horizontal or vertical
vibrations. The reduced dimensionless vorticity-stream
function formulations and the energy equation have been
solved numerically. Their results for a special case were
compared with an analytical solution which was derived in
this work under similar conditions. Excellent agreement
was found between analytical and numerical results. Os-
cillatory horizontal vibrations at the left wall result in a
separated cell inside the vertical channel at low Grashof
numbers. Mean values for average Nusselt numbers at the
vibrated wall were found to be mainly affected by the
Grashof number and the amplitude of horizontal vibra-
tions. The amplitude of Nusselt numbers was found to
increase with increases in the amplitude of vibrations for
vertical and horizontal modes of vibrations. However, it
decreases at the vibrated wall with an increase in the
Grashof number for horizontal vibrations. Average Nus-
selt numbers at non-vibrated wall decrease with an in-
crease the Grashof number. It was also found that
disturbances in the Nusselt numbers are more prominent
the horizontal oscillations as compared to the vertical
oscillations.

References
1. Daloglu A; Ayhan T (1999) Natural Convection in a Periodically

Finned Vertical Channel. International Communication Heat
Mass Transfer 26: 1175–1182

2. Writz RA; Stutzman RJ (1982) Experiments on Free Convection
between Vertical Plates with Symmetric Heating. Journal of Heat
Transfer 104: 501–507

3. Ramanathan S; Kumar R (1991) Correlations for Natural Con-
vection between Heated Vertical Plates. Journal of Heat Transfer
113: 97–107

4. Vafai K; Ettefagh J (1990a) The Effects of Sharp Corners on
Buoyancy-Driven Flows with Particular Emphasis on Outer
Boundaries. International Journal of Heat and Mass Transfer 33:
2311–2328

5. Vafai K; Ettefagh J (1990b) Thermal and Fluid Flow Instabilities
in Buoyancy-Driven Flows in Open-Ended Cavities. International
Journal of Heat and Mass Transfer 33: 2329–2344

6. Khanafer K; Vafai K (2000) Buoyancy-driven flow and heat
transfer in open-ended enclosures: elimination of the extended
boundaries. International Journal of Heat and Mass Transfer 43:
4087–4100

7. Morrone B (2001) Natural Convection between Parallel Plates
with Conjugate Conductive Effects. Numerical Heat Transfer,
Part A-Applications 40: 873–886

8. Paul T; Singh AK; Thorpe GR (1999) Transient Natural Convec-
tion in a Vertical Channel Partially Filled with a Porous Medium.
Mathematical Engineering in Industry 7: 441–455

9. Barozzi GS; Corticelli MA (2000) Natural Convection in Cavities
Containing Internal Sources. Heat and Mass Transfer 36: 473–480

10. Kuan-Tzong L (1999) Laminar Natural Convection Heat and Mass
Transfer in Vertical Rectangular Duct. International Journal of
Heat and Mass Transfer 42: 4523–4534

11. Zamora B; Hernandez J (1997) Influence of Variable Property
Effects on Natural Convection Flows in Asymmetrically-heated
Vertical Channels. International Communications in Heat and
Mass Transfer 24: 1153–1162

12. Bessaih R; Kadja M (2000) Turbulent natural convection cooling
of electronic components mounted on a vertical channel. Applied
Thermal Engineering 20: 141–154

13. Hall DA; Vliet GC; Bergman TL (1999) Natural Convection
Cooling of Vertical Rectangular Channels in Air Considering
Radiation and Wall Conduction. Transactions of the ASME.
Journal of Electronic Packaging 121: 75–84

14. Dalal DC; Datta N; Mukherjea SK (1998) Unsteady Natural
Convection of a Dusty Fluid in an Infinite Rectangular Channel.
International Journal of Heat and Mass Transfer 41: 547–562

15. Fu WS; Shieh WJ (1993) Transient Thermal-Convection in an
Enclosure Induced Simultaneously by Gravity and Vibration.
International Journal of Heat and Mass Transfer 36: 437–452

16. Kwak HS; Kuwahara K; Hyun JM (1998) Resonant Enhance-
ment of Natural Convection Heat Transfer in a Square En-
closure. International Journal of Heat and Mass Transfer 41:
2837–2846

17. Hoffmann KA; Chiang ST (1998) Computational Fluid Dynamics:
Volume I. Third Edition. Wichita. Kansas: Engineering Education
System: 337–352

18. Blottner FG (1970) Finite-Difference Methods of Solution of the
Boundary-Layer Equations. AIAA Journal 8: 193–205

19. El-Refaee MM; Elsayed MM; Al-Najem NM; Noor AA (1998)
Natural Convection in Partially Cooled Tilted Cavities. Interna-
tional Journal for Numerical Methods in Fluid 28: 477–499

337


