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ABSTRACT: 
 

A regulatory model has to meet special criteria for acceptance because it is governed 

by a legal framework. One of the most important is that concentration estimates from the 

model have empirical support through evaluation with observations under a variety of 

situations relevant to regulatory applications.   This paper examines two situations in 

which current models have difficulty meeting this criterion.  They are related to 1) 

surface releases under low wind speed conditions, and 2) prediction of short averaging 

time concentrations required for odour assessment.  This paper analyzes the reasons for 

poor model performance under low wind speeds and provides suggestions on improving 

current models.  The second part of the paper proposes a framework to estimate short 

concentrations averaged over time scales relevant to odour by using information on 

statistics comparing observed concentrations to one hour averaged model estimates.  

Finally, the paper examines some regulatory issues for which we have not yet developed 

adequate modeling tools. 

   

 
INTRODUCTION: 
 
Air pollution models play an important role in the implementation of air pollution 

regulations.  For example, before an industrial plant can be constructed, its impact on air 



quality is determined through an air pollution model to show that emissions from the 

plant do not lead to ambient concentrations that are above a regulated level.  Air pollution 

models that include chemistry are used to make decisions to control emissions that are 

precursors of ozone and acidifying pollutants.   

This paper examines regulatory models applicable to scales of the order of tens of 

kilometers, when chemistry is not important.  Examples of such models are AUSPLUME 

(Lorimer 1986), AERMOD (Cimorelli et al. 2005), the UK ADMS (Carruthers et al. 

1994) and the Danish OML (Berkowicz et al. 1986) model. Because the results of 

applying a regulatory model have major financial and legal implications, the model has to 

meet some special criteria for acceptance: the model has to 1) be as simple as possible 

without sacrificing the essential physics of the problem, 2) provide realistic concentration 

estimates under a variety of conditions,  3) has extensive empirical support through 

evaluation with observations, 4) be robust in the sense that it is not very sensitive to 

certain model inputs, 5) should ensure consistency in application.  

This paper examines two situations in which current models have difficulty meeting 

criterion (2), which ranks high among the criteria.  These situations are related to 1) 

surface releases under low wind speed conditions, and 2) prediction of short averaging 

time concentrations required for odour assessment.  This paper provides an analysis of 

the reasons for poor model performance in these situations and offers suggestions to 

improve the relevant modeling tools.  The paper draws heavily from the authors’ 

experience gained in developing and applying AERMOD (Cimorelli et al. 2005), 

USEPA’s regulatory model for short range dispersion.   

We first examine the treatment of dispersion under low wind speed conditions.  

 

LOW WIND SPEEDS AND MEANDERING 
 
Estimating concentrations during low wind speeds, which occur frequently in urban areas, 

is one of the more important problems in regulatory modeling.  We can make realistic 

estimates of concentrations under low wind speed conditions if measurements of 

turbulence levels, which govern dispersion, are available (Venkatram et al. 2004).  But 



such measurements are not available routinely, and we have estimate turbulence levels 

from measured mean wind speeds.  In this situation, uncritical application of the 

Gaussian plume model can yield very high concentrations as seen by examining the 

expression for the ground-level concentration (Venkatram 1992 for example), 
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where Q is the emission rate, u* is the surface friction velocity, x is the downwind 

distance, and the horizontal plume spread, σy, is given by  
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where σv is the standard deviation of the horizontal velocity fluctuations.  Because u* and 

σv are generally taken to be proportional to the mean wind, U, we see from Equation (1) 

that the concentration becomes high when wind speed approaches zero.  In the past, the 

“solution” to this problem was to set the wind speed equal to 1 m/s when it was smaller 

than this value.   

AERMOD, and other currently used regulatory models, attempt to treat this situation 

more realistically by using the observation that when the wind speed is low, the plume 

meanders in the horizontal direction.  When the mean wind speed is close to zero, the 

horizontal plume spread covers 360o.  To model this situation, AERMOD and ADMS 

assume that the concentration is a weighted average of concentrations of two possible 

states: a random spread state, and plume state. In the random spread state, the release is 

allowed to spread radially in all horizontal directions. Then, the weighted horizontal 

distribution is written as: 
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where the first term represents the random state in which the plume spread covers 3600 or 

2π radians, and r the distance between the source and receptor.  The second term is the 

plume state corresponding to the Gaussian distribution.   

The plume is transported at an effective velocity given by 
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ve U2U += σ , (4) 

 

where U is the mean velocity. Note that the effective velocity is non-zero even when the 

mean velocity is zero, as long we can estimate the turbulent velocities.  The minimum 

value of the transport wind, Ue, is v2σ . 

The weight for the random component in Equation (3) is taken to be 
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This ensures that the weight for the random component goes to unity when the mean 

wind approaches zero. 

This approach works if measurements of σv are available; presumably, the 

measurements will reflect the large meandering when the wind speed is close to zero.  If 

measurements are not available, we have to estimate σv from other meteorological 

variables.  During the night, the wind speed is the primary routinely measured variable, 

and we end up with underestimating σv, which is assumed to be proportional to the wind 

speed.  One tentative solution is to assume a minimum value of σv, say 0.25 m/s as 

suggested by Hanna et al. (2003).  It might be preferable to use an empirical model for 

the behavior of σv near U=0.  Let us examine some data to see whether such a model can 

be developed.   

The data used in the analysis was measured on a tower operated by the UK 

meteorological office at Cardington, Bedfordshire.  The tower, located on a large grassy 

field, has sonic anemometers measuring wind and temperature measurements at 10 m, 25 

m, and 50 m above ground level.  That data is sampled at 50 Hz, and the vector mean 

winds, temperatures, turbulent fluxes and variances are averaged over 1, 10, and 30 min.  



We used the 30 minute averages from the 10 m in our analysis. The data set corresponds 

to all the stable periods (Monin-Obukhov length greater than zero) for 2005.  These are 

the conditions under which the predicted concentrations can be high because the surface 

friction velocities are low.  The estimated concentrations are high because both the 

horizontal as well as vertical turbulent velocities are taken to be proportional to the 

friction velocity.    

Figure 1 (upper of P18) compares the estimated surface friction velocity with the 

observed values.  The friction velocity is estimated using the one-level approach 

described in Venkatram and Princevac (2008).    

We see that although there is scatter at low values of friction velocity, there is little 

bias in the estimated values, most of which are within a factor of two of the observations. 

This lack of bias does not transfer to the estimates of the standard deviations of horizontal 

and vertical turbulent velocities, σw and σv, as seen in Figure 2 (bottom of P18).  The red 

lines in the figures correspond to the predictions: 

 
 v w2.5u  and 1.3uσ σ∗ ∗= = . (6) 
 

The left top panel of Figure 2 indicates that even using a measured value of surface 

friction velocity does not allow us to obtain an adequate estimate of the horizontal 

velocity, σv. The observations are generally higher than the model estimates especially 

for low friction velocities.  The situation is much better for σw: the right panel shows that 

the model estimates are mostly within a factor of two of the observations.  The bottom 

panels show that, as expected, using the estimated value of the friction velocity increases 

the scatter in the estimates of σw and σv, and the negative bias in estimating σv is even 

larger.  

To examine the effects of the uncertainty in estimating turbulent velocities on 

concentrations, let us define the dilution velocity, Udil, using the expression for the 

ground-level concentration for surface releases in AERMOD (Cimorelli et al. 2005): 
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where the horizontal distribution is given by Equation (3).  We see that Udil determines 

the effects of micrometeorology on ground-level concentrations. Substituting Equation 

(3) in (7) yields: 
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where fr, the factor that determines the role of the random component in the horizontal 

concentration distribution, is computed from Equation (5).   

We see in Figure 3 (upper of P19) that values of fr based on estimates of σv from 

Equation (6) are much smaller than fr based on observed values of σv  and u* when the 

mean wind speeds are less than 2 m/s.  The right panel shows that computed dilution 

velocities are smaller than those based on observed variables.  Furthermore, the estimated 

dilution velocity continues to decrease as the mean wind goes to zero while the observed 

vales actually increase below a wind speed of 1.5 m/s; near U=0, the dilution velocity is 

of the order of 0.1 m/s.   

It is clear that to avoid predicting unrealistically high concentrations at low wind 

speeds, we need to account for the increase in dilution velocity with the decrease in wind 

speed near zero wind speeds.  At this stage, we are not aware of any regulatory models 

that incorporate any sort of formulation to account for this behavior.  Once this behavior 

is modeled, we still need to evaluate the results from the dispersion model with 

observations from a field study that focuses on low wind speed conditions.   

Another aspect of regulatory modeling that is uncertain is estimating concentrations 

for averaging times that are much shorter than the nominal 1 hour averaging time used in 

modeling.  These short averaging time concentrations are used in applications related to 

odour and hazard assessment.  We examine the modeling of these concentrations next.    

 



ODOUR MODELING 
 
The sensation of odour at a location is related to the frequency with which a threshold 

concentration of the offending contaminant is exceeded.  The threshold concentration is 

associated with an averaging time of a few seconds or minutes, which means that it is 

necessary to estimate the frequency distribution of concentrations at short time scales to 

quantify odour impact.  Gifford (1959) showed that this frequency distribution can be 

estimated by modeling the time averaged plume in terms of an instantaneous plume 

fluctuating about the mean position of the time averaged plume.  In a classic paper, 

Hogstrom (1972) showed how Gifford’s (1959) fluctuating plume model could be 

adapted to estimate odour impact frequencies.  However, as acknowledged in the paper 

(Hogstrom, 1972), there is great deal of uncertainty in modeling the spread of the 

instantaneous plume, which determines the relevant concentrations.  There are other 

models such as SCIPUFF (Sykes et al. 2004) that purport to estimate concentration 

fluctuations using second-order closure methods.  They have undergone limited 

evaluation, and could be useful if their computational requirements were manageable.   

In view of the difficulty with applying models that estimate short averaging time 

concentrations, most regulatory methods estimate odour impact (Engel et al. 1997; Scire 

et al. 2000) by multiplying the time averaged model estimate, Cm, by a factor, f: 
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where Ts is the time scale for odour impact, taken to be the order of seconds or minutes. T 

corresponds to averaging time of the model estimate, usually taken to be 1 hour.  The 

values of the exponent, p, used in the literature, range from 0.2 to 0.5.  Multiplication of 

the modeled concentration, Cm, by the factor f results in a “peak” concentration, Cs, 

corresponding to Ts, which is then compared to the threshold concentration.  

Equation (9) is based on results obtained by Hino (1968) using an expression by 

Ogura (1959) for the plume spread of particles released in a turbulent flow over a time 

corresponding to the averaging time.  Thus, it is based on a model that is conceptually 



different from Gifford’s fluctuating plume model, and cannot be justified for application 

to odour problems.  However, the idea of multiplying the 1 hour modeled concentration 

with a factor to obtain a short averaging time concentration is attractive for regulatory 

applications.  We next examine the possibility of retaining this simple idea within a more 

realistic model for concentration statistics.       

 

BASIC CONCEPTS 
 
Imagine an experiment in which model inputs are kept constant, and instantaneous 

concentrations are observed at a receptor over an indefinitely long period.  Figure 4 

(bottom of P19) depicts a plausible time series.  This time series can be used to construct 

sets of concentrations corresponding to different averaging times.  Each one of these sets 

can be used to construct a frequency distribution.  The distribution for an averaging time 

of a few seconds or minutes is relevant to odour impact, and that for an averaging time of 

1 hour is relevant for the regulatory model estimate.  Because all the concentration sets 

are derived from the same time series, the arithmetic means are exactly the same.   

The basic motivation behind using Equation (9) is to incorporate the fact that the 

likelihood of observing a “high” concentration increases as the averaging time decreases.  

But the concept of a peak concentration, Cs, is not consistent with the observations made 

in this thought experiment, because the definition of a peak is not clear.  Furthermore, 

comparing this ill defined peak to a threshold concentration is not equivalent to 

estimating the frequency with which the threshold concentration is exceeded.   

We will explore the possibility of relating the ratio of the modeled 1 hour 

concentration to the threshold concentration as an indicator of this probability. The key to 

such a relationship is a model for the evolution of the pdf of concentrations as a function 

of averaging time.    

 



SIMULATING THE CONCENTRATION TIME SERIES 
 
In a previous paper (Venkatram 2002), we modeled the pdf using a Binomial distribution.  

We showed that the distribution realistically mimics an exponential distribution at short 

averaging times, and a normal distribution at long averaging times.  However, the 

distribution depends on intermittency, a parameter that cannot be readily estimated in 

practical modeling applications.  In the analysis here, we will use an empirical approach 

based on assuming that time averaged concentrations follow a Weibull distribution.  This 

distribution is useful because it can mimic distributions ranging from exponential to 

Rayleigh depending on the choice of its parameters, α and β,  

 

 ( ) ( ) ( )1 Cf C C e
αα βαβ β − −= , (10) 

 

where C is the concentration. 

To use this distribution we need to relate the mean and variance of the distribution at 

averaging time, T1, to those at another averaging time, T2.  In view of the previous 

discussion, we assume that the arithmetic mean of the distribution does not change with 

averaging time.  The arithmetic variances at the two averaging times are related  
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Venkatram (2002) shows that n=1 using a simple model for the concentration time 

series.  This is consistent with the wind tunnel data presented by Aubrun and Leitl (2004).  

Equations (10) and (11) can be combined to calculate the parameters of the Weibull 

distribution at any averaging, T, given the parameters at a nominal averaging time, T0.    

The next section shows how these equations can be used to provide information relevant 

to concentrations at short averaging times.   

 



APPLICATION OF MODEL 
 
Air pollution models are designed to estimate a value that lies in the middle of the 

distribution of observed concentrations, which suggests that the model estimate, Cp, 

corresponds to the median of the possible observations corresponding to the model inputs.  

If we assume that hourly averaged observations are log-normally distributed about this 

median (See Venkatram et al. 2005), it is reasonable to use the geometric standard 

deviation, sg, of the ratio of observed to model estimated concentrations as a measure of 

the deviation of the 1 hour averaged concentrations about the geometric mean (also the 

median).  Table 1 (bottom of P21) shows the variation of model performance measures 

found in some studies.  We see that sg varies from about 1.5 to 3.  In the analysis that 

follows, we will present results corresponding to this range.   

Figure 5 (upper of P20) shows the effects of averaging time on two statistics of the 

concentration distribution-the median and the standard deviation- for sg = 1.5.  As 

expected, the median approaches a small fraction of the model estimate as the averaging 

time becomes the order of seconds.  The median approaches the model estimate when the 

averaging time is close to a nominal 60 minutes.  The standard deviation of the 

distribution is 20 times the model estimate when the averaging time is 1 s, and is slightly 

less than 1 when the averaging time is 30 minutes.  These results are consistent with our 

intuitive understanding of the effects of averaging on concentrations: when the averaging 

is small, we see a lot of concentrations close to zero, but the excursions from the model 

estimated concentration can be large, as signified by the large value of the standard 

deviation.    

We can interpret these statistics by calculating the probability that the time average 

concentration, TC , exceeds a multiple, m, of the model estimate.  Figure 6 (bottom of 

P20) plots for different values of averaging time and sg = 1.5.  We see that when the 

averaging time is 30 minutes, the probability that the observed concentration is more than 

the 3 times the model estimate is very small.  On other hand, at the short averaging times 

of 1 second and 1 minute, the probability of exceeding a concentration that is 10 times 

the model estimate is about 1 %.  The right panel shows that the shape of the distribution 



changes with averaging time.  At short averaging times, the distribution is close to 

exponential, while it becomes more symmetrical for an averaging time of 30 minutes.   

To translate these results into a form that is familiar to the modeler who uses the 

power law of Equation (9), define a threshold concentration as the concentration that is 

exceeded once during an hour of sampling time.  For example, if the averaging time is 1 

minute, the threshold is the concentration that is exceeded once during the sixty 

consecutive 1 minute averages that can be derived from the sampled one hour period.   

Figure 7 (upper of P21) indicates that when the averaging time is 1 minute, we expect 

a concentration that is about 15 times the model estimate to be exceeded once during a 1 

hour interval.  For an averaging time of 1 second, this peak concentration (defined in a 

special way) is about 500 times the model estimate.  These peak concentrations are a 

function of 1 hour geometric standard deviation, sg, which is a measure of the variation of 

the 1 hour averaged concentrations.  The values of sg can be assigned on the basis of 

experience with evaluating models with observations under varying source and 

meteorological conditions.   

The preceding results allow us to construct rules of thumb, such as the probability 

that the one minute averaged concentration exceeds five times the modeled one hour 

concentration is about 5 %.  This calculation suggests that one hour averaged 

concentrations from models such as ISC (EPA, 1995) and AERMOD can be used to 

examine the odour impact of sources.  If odour is considered a problem if a threshold 

value is exceeded during three minutes of a 60 minute period, the impact of a source can 

be quantified by simply multiplying the one hour averaged model estimate by a factor of 

five, and comparing the resulting value with the threshold concentration.    

 
DISCUSSION AND CONCLUSIONS 
 

AERMOD is one of a new generation of regulatory models that are being used in the 

US, Europe, and Australia.  While the model is undoubtedly more scientifically 

acceptable than the older models, such as ISC, that it has replaced, its application to 

regulatory issues is not as straightforward as it used to be.   



The meteorological inputs required by AERMOD are considerably more complex 

than those of ISC, and thus cannot be readily interpreted by modelers who are not versed 

in micrometeorology.  More importantly, the inputs are relatively sensitive to the 

characteristics of the surface over which the model is applied.  Thus, one can question the 

application of meteorological inputs derived from a measurement site with surface 

characteristics different from the application site.  Furthermore, characterizing the surface 

characteristics of a non-homogeneous site is an ambiguous exercise that does not fit well 

within a legal regulatory framework.  There is a need for a method that can adjust the 

input files for differences in surface characteristics between the official site and the 

application site.  Luhar et al. (2006) have proposed one approach that models the 

modification of the boundary layer as it flows from one site to another.  This approach 

has been evaluated with data from a field study conducted in Switzerland, but it has not 

yet gained the empirical support required for regulatory acceptance.  

There are several other aspects of regulatory modeling that have not been discussed in 

this paper, but need attention.  One is the effect of building downwash on plume rise and 

dispersion.  A recent paper by Olesen et al. (2009) indicates that current regulatory 

models perform poorly in estimating building effects.  As far as we know, none of the 

models deal with the effects of multiple buildings on plume rise and dispersion.  There is 

need for adequate models for such situations because of the regulatory concern with risks 

posed by emissions of toxics in urban areas.  There are also proposals to locate small 

power plants (Allison and Lents 2002; Carreras-Sospedra et al. 2008) in urban areas to 

gain efficiency through distributed energy generation.  Emissions from these plants are 

buoyant but occur from stacks that are of the order of 10 m.  Current models have not 

been evaluated for their ability to model such emissions, which are affected by downwash 

from multiple buildings.  Future modeling improvements will also need to address 

concentrations at scales ranging from scales of few meters to hundreds of kilometers by 

combining large scale grid models with short range dispersion models, such as 

AERMOD.  Although progress has been made in this area (Stein et al. 2007; Isakov et al. 

2007), there are still unresolved issues related to combining concentrations and the 

associated chemistry at vastly different scales. 



With the introduction of short term NO2 standards in the US, the issue of conversion 

of emitted NO to more toxic NO2 has become important.  Current models do have 

elementary treatment (Hanrahan 1999 a, b) of the conversion, but there is room for 

improvement.  Because most urban emissions of NOx originate from automobiles, there is 

a need for adequate treatment of dispersion of emissions from roads and highways at 

source-receptor distances of a few meters (Venkatram et al. 2008).   

After being introduced in 2005, AERMOD has been applied to large number of 

regulatory problems.  The feedback received to date suggests that scientific 

improvements by themselves are not enough for regulatory application.  These 

improvements have to be embedded in a framework that satisfies the criteria for 

regulatory acceptance.  A standing committee, set up the USEPA, is currently working on 

ensuring that AERMOD meets these criteria.     
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FIGURES AND TABLES 
 

Figure 1:  Comparison of estimated surface velocities with observations from the 10 m 

level at the Cardington site during 2005.  Data correspond only to stable conditions. 

Figure 2: Comparison of estimated values of σw and σv with observed values from 

Cardington site.  Red lines in figures correspond to estimates from Equation (6). 

Figure 3: Variation of fr and dilution velocity with mean wind speed. The red lines are 

based on estimates of σv  from Equation (6). 

Figure 4:  Time series of instantaneous concentrations. 

Figure 5:  The left panel shows the median as a function of averaging time.  The right 

panel shows the standard deviation as a function of averaging time. 

Figure 6:  The left panel shows Equation (4) as a function of averaging time.  The right 

panel shows the corresponding histograms. 

Figure 7: Peak/model estimate as a function of averaging time. 

 

Table 1:  Performance statistics from selected studies. 
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Figure 4 (Venkatram) 
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Figure 6 (Venkatram) 



 

Figure 7 (Venkatram) 

 

 

Field Study Type of Source Receptor 
Locations mg sg References

release behind 
power plant 

0.92 1.71 
Wilmington, 

CA 2004 
surface 
release release in open 

area 

100, 400, 1000, 
3000, 5000m 

arcs 0.86 2.68 

Yuan et al. 
2006 

Barrio 
Logan, 
CA 2001 

surface release  200, 500, 1000, 
2000m arcs 1.12 2.27 Venkatram 

et al. 2005 

day 1.17 2.85 Briggs 
formulae evening 0.92 2.02 

day 1.06 2.22 
St. Louis, 
Missouri  

1963-1965  
near ground level 800m – 16km 

arcs Barrio 
Logan 
model evening 0.97 1.87 

Venkatram 
2005 

Table 1 (Venkatram) 

 


