Abstract—This paper presents a generalized channel probing (GCP) method and a generalized pre-processing (GPP) method as two consecutive frontend steps for secret key generation from a MIMO channel between two multi-antenna legitimate nodes against a multi-antenna eavesdropper (Eve). The degree of freedom (DoF) of the secret key capacity (SKC) of GCP/GPP are highlighted and discussed. If the number of antennas on Eve is larger than or equal to the larger number of the antennas on the two legitimate nodes, the SKC-DoF of GCP/GPP within each coherence period equals its minimum, which is either zero for non-reciprocal channel or the product of the numbers of antennas on the two legitimate nodes for reciprocal channel. Otherwise, the SKC-DoF of GCP/GPP increases with the number of random transmissions in GCP within each coherence period regardless of the channel reciprocity. A computational algorithm required for GPP is also discussed, and its performance illustrated via simulations.

Index Terms—Secret key generation, secret key capacity, degree of freedom, channel probing, pre-processing.

I. INTRODUCTION

Future networks such as Internet-of-Things will continue to increase its massive scale involving many billions of nodes. There will be increased levels of challenges for security problems including authenticity, confidentiality and integrity. All these security problems can be alleviated if there is a strong secret key between each pair of legitimate nodes (Alice and Bob). This paper addresses how to generate a secret key from a MIMO channel between Alice and Bob.

There have been many prior works on secret key generation (SKG) from wireless channels such as [1] and [2]. The basic concept behind these works is that if a wireless channel (including all relevant transceivers) between Alice and Bob is reciprocal then Alice and Bob can each send a public pilot so that they can each obtain a consistent estimate of the reciprocal channel gain. With the consistent estimates that are highly correlated with each other, they can perform quantization, information reconciliation and privacy amplification to generate a final secret key. But the degree of freedom (DoF) of the secret key capacity (SKC) of such a method for a $n_A \times n_B$ MIMO channel can be shown to be $n_A n_B$ (in bits per doubling of power per coherence time and band) as long as the eavesdropper (Eve) in the neighborhood has at least one antenna. This means that the maximum achievable secret key rate of such a method in bits per coherence period is always fixed for a given power regardless of coherence bandwidth and duration.

Recently there have been attempts such as [3] and [4] to increase the secret key rate in bits per second per subchannel beyond the constraint imposed by coherence time. In [3], the authors considered a SISO channel between Alice and Bob, and proposed that Alice and Bob each transmits a sequence of random pilots in hope that the secret key rate would increase with the length of the two random sequences. But we can show that the SKC-DoF of their scheme is only one as long as Eve is present. In [4], the authors considered a $n_A \times 1$ MISO channel from Alice to Bob, and proposed that Alice transmits a sequence of random symbols per subchannel via a randomly chosen antenna while Bob sends a public pilot in return. They also proposed that within each coherence period, Alice and Bob repeat the above transmissions multiple times (more than n_A times) each via a randomly chosen antenna at Alice. We can also show that the SKC-DoF of the scheme in [4] is only n_A (invariant to the lengths of the transmitted random sequences) even if Eve has just a single antenna.

In this paper, we look deeper into the frontend of the entire process of SKG. We will focus on the frontend steps of SKG, i.e., channel probing and pre-processing, as shown in Fig. 1, which is in great contrast to the conventional framework such as in [5] and [11] where channel probing and pre-processing have not received sufficient attention. More specifically, we consider a single-subcarrier (with no loss of generality for applications in orthogonal frequency division multiplexing systems) $n_A \times n_B$ MIMO channel from Alice to Bob in the presence of an eavesdropper (Eve) with n_E antennas. We first present a generalized channel probing (GCP) method where Alice and Bob each transmits a sequence of random vectors within each coherence period. We will show that under a Gaussian assumption of all the random vectors and channel parameters, the SKC-DoF of the GCP method increases with the number of transmitted random vectors from Alice if
n_A > n_E and/or increases with the number of transmitted random vectors from Bob if n_B > n_E. If n_E ≥ max(n_A, n_B), the SKC-DoF of GCP equals its minimum n_A n_B δ where δ = 1 if the MIMO channel is reciprocal and δ = 0 if the MIMO channel is not reciprocal.

It is useful to compare the above result with the DoF of the secrecy capacity of directly transmitting a secret over a n_A × n_B MIMO channel. The latter as shown in [7] is zero if n_E ≥ min(n_A, n_B). This highlights a significant difference between “secret key capacity” and “secrecy capacity” for MIMO channels. It is important to stress that secret key capacity is achieved with additional public communication, e.g., see [13] and [14].

In this paper, we will also present a generalized pre-processing (GPP) method that allows Alice and Bob to generate a pair of highly correlated secret vectors that are ready to be quantized, which is then followed by reconciliation and privacy amplification to produce a final secret key. Furthermore, we show that the GPP method preserves the SKC-DoF. In other words, the public communications used for GPP does not change the SKC-DoF.

Unlike all prior methods for SKG that depend on the availability of channel reciprocity even if Eve has just a single antenna, the methods shown in this paper can still yield a high secret key rate from a non-reciprocal channel provided that Alice or Bob has (or both have) more antennas than Eve.

In the rest of this paper, we will provide more details of the GCP and GPP methods. Further details other than simulation results can be found in [16].

II. GENERALIZED CHANNEL PROBING

We consider a flat-fading or single-subcarrier MIMO channel between Alice and Bob in the presence of Eve. They have n_A, n_B and n_E antennas respectively. To extract a secret key from the MIMO channel, we consider the channel probing method where Alice transmits a random matrix X_A = [x_{A,1}, ..., x_{A,n_A}] using n_A antennas and m_A ≥ n_A time slots, and then Bob transmits another random matrix X_B = [x_{B,1}, ..., x_{B,m_B}] using n_B antennas and m_B ≥ n_B time slots. Alice does not know X_B, and Bob does not know X_A. (This channel probing method is a generalization of that using random pilots as proposed in [3] and [6] for SISO channel.) Consequently, the signals received by Alice and Bob can be written as

\[Y_A = H_{A,B} X_B + W_A, \]
\[Y_B = H_{B,A} X_A + W_B. \]

Here H_{A,B} is the channel matrix from Bob to Alice, H_{B,A} is the channel matrix from Alice to Bob, and W_A and W_B are the noise matrices. Correspondingly, the signals received by Eve are

\[Y_{E,A} = G_{A} X_A + W_{E,A}, \]
\[Y_{E,B} = G_{B} X_B + W_{E,B}. \]

where the notations are defined in an obvious way. At the conclusion of the channel probing, the complete data sets available at Alice, Bob and Eve are respectively \(\mathcal{X} = \{ X_A, Y_A \} \), \(\mathcal{Y} = \{ X_B, Y_B \} \) and \(\mathcal{Z} = \{ Y_{E,A}, Y_{E,B} \} \).

The capacity C_S of the secret key, in bits per independent realization of \(\{ \mathcal{X}, \mathcal{Y}, \mathcal{Z} \} \), that Alice and Bob can generate is known to be bounded as follows:

Lemma 1: \(C_L \doteq \max(C_A, C_B) \leq C_S \leq \min(C_0, C_Z) \leq C_Z \doteq C_U \) with \(C_0 = I(\mathcal{X}; \mathcal{Y}) \), \(C_Z = I(\mathcal{X}; \mathcal{Y}|\mathcal{Z}) \), \(C_A = C_0 - I(\mathcal{X}; \mathcal{Z}) \) and \(C_B = C_0 - I(\mathcal{Y}; \mathcal{Z}) \).

This lemma follows from the results shown in [13] and [14] for discrete \(\{ \mathcal{X}, \mathcal{Y}, \mathcal{Z} \} \), and hence follows from the generalized definition of mutual information shown in [15] for continuous \(\{ \mathcal{X}, \mathcal{Y}, \mathcal{Z} \} \).

To analyse C_S, we assume the following. All entries in X_A and X_B are independent and identically distributed (i.i.d.) circular complex Gaussian random variables with zero mean and variance P, i.e., with the probability density function (PDF) \(\mathcal{CN}(0, P) \). All entries in W_A, W_B, W_{E,A} and W_{E,B} are i.i.d. \(\mathcal{CN}(0,1) \). All entries in G_A and G_B are i.i.d. \(\mathcal{CN}(0,1) \). All entries in each of H_{A,B} and H_{B,A} are i.i.d. \(\mathcal{CN}(0,1) \). But vec(H_{A,B}) and vec(H_{B,A}) are jointly Gaussian with the correlation matrix \(P \mathbf{I}_{n_A n_B} \). If \(| \rho | = 1 \), the channel between Alice and Bob is said to be (perfectly) reciprocal. If \(| \rho | < 1 \), the channel is said to be not reciprocal. Unless already mentioned otherwise, the above matrices are independent of each other.

With the above assumptions, a complete characterization of C_L and C_U seems hard. It seems still hard to just find an expression useful for numerical computation of C_L and C_U. Part of the reason seems to be the difficulty to obtain the PDF of such terms like H_{A,B} \cdot X_B where both matrices are Gaussian.

To void the above mentioned difficulty, we will only consider the DoF of C_L and C_U. Note that if a function \(f(P) \) can be written as \(f(P) \approx d \log_2 P + c \) as \(P \to \infty \) where d and c are invariant to P, then d is said to be the DoF of \(f(P) \) (relative to \(\log_2 P \)).

The following is proven in [16]:

![Diagram of an enhanced framework for SKG](image_url)
Theorem 1: \(\text{DoF}(C_L) = \text{DoF}(C_S) = \text{DoF}(C_U) = \text{DoF}(C_Z) \) with
\[
\text{DoF}(C_S) = a_{A,B} + a_{B,A} + b_{A,B} + b_{B,A} - 2n_A n_B + n_A n_B \delta_{|\rho|-1}
\]
where \(a_{A,B} = \min(n_B, (n_A - n_E)^+) m_A, b_{A,B} = \min(n_B, n_B - n_A)^+ n_A, \delta_{|\rho|-1} = 0 \) if \(|\rho| < 1\), and \(\delta_{|\rho|-1} = 1 \) if \(|\rho| = 1\). Furthermore, \(\text{DoF}(C_B) = \text{DoF}(C_S) \) if \(n_A \geq n_B \), and \(\text{DoF}(C_A) = \text{DoF}(C_S) \) if \(n_A \leq n_B \).

This theorem can be simplified in the following cases of \(n_E \):

1. For \(n_E \geq \max(n_A, n_B) \),
 \(\text{DoF}(C_S) = n_A n_B \delta_{|\rho|-1} \)
 which is zero if \(|\rho| < 1\), or \(n_A n_B \) if \(|\rho| = 1\). In [3], the case of \(n_A = n_B = 1 \) was considered. The above result shows that their channel probing scheme with \(m_A \geq 1 \) and/or \(m_B \geq 1 \) has the same DoF (which is one) as using \(m_A = m_B = 1 \).

2. For \(n_B \leq n_E < n_A \),
 \(\text{DoF}(C_S) = \min(n_B, (n_A - n_E)^+) m_A + (n_B + n_E - n_A)^+ n_A - n_A n_B + n_A n_B \delta_{|\rho|-1} \)
 which increases as \(m_A (\geq n_A) \) increases, but is invariant to \(m_B (\geq n_B) \). Also in this case, the channel reciprocity is not very crucial for a large DoF. The above result is very useful for the situation where a base station with a large number of antennas is used to establish a secret key with a mobile node with a small number of antennas. Note that the scheme in [4] for the case of \(n_A > n_B = 1 \) has its SKC-DoF equal to \(C_S \) as long as \(n_E \geq 1 \). In other words, the SKC-DoF of the scheme in [4] does not benefit from the situation where \(n_E < n_A \).

3. For \(n_E \leq n_B < n_A \),
 \(\text{DoF}(C_S) = \min(n_B, (n_A - n_E)^+) m_A + \min(n_A, (n_B - n_E)^+) m_B + n_A n_B \delta_{|\rho|-1} \)
 which increases as either \(m_A \) or \(m_B \) increases. The first term corresponds to the transmission from Alice to Bob while the second term corresponds to the transmission from Bob to Alice.

A. Comparison to Wiretap Channel Model

Theorem 1 is based on what is called source model for physical layer security [14]. In [7], a MIMO wiretap-channel (WTC) model is considered where secret information is directly transmitted over the channel without additional public communications. Using the notations defined in this paper, the main conclusion from [7] is that the DoF of the secrecy capacity \(C_{S,WTC} \) (also called secure DoF) for direct transmission over the \(n_A \times n_B \) MIMO channel against Eve with \(n_E \) antennas in bits per channel coherent period of total \(T \) sampling intervals is
\[
\text{DoF}(C_{S,WTC}) = (\min(n_A, n_B) - n_E)^+ (T - \min(n_A, n_B))
\]
on C_S is achieved. But an application of that approach for \{X, Y, Z\} obtained via the generalized channel probing would require a specific coding scheme, which is not yet available.

Furthermore, if the MIMO channel is not reciprocal, i.e., $|\rho| < 1$, the following Corollary is proved in [16]:

Corollary 1: If $|\rho| < 1$ and $n_A \geq n_B$, and we let U_0 and the first $n_A - n_B$ columns of U_1 be public, then the secret key capacity C'_S based on $\{X', Y', Z'\}$ has the same DoF as C_S based on $\{X, Y, Z\}$, i.e., $\text{DoF}(C'_S) = \text{DoF}(C_S)$.

It is important to notice that without the reciprocity of the MIMO channel, DoS(C_S) does not vanish unless $n_E \geq \max(n_A, n_B)$. See the discussion of Theorem 1.

IV. Estimation of Secret Vector at Alice

Assuming $n_A \geq n_B$, the implementation of the GPP method requires Alice to obtain a good estimate of U from her knowledge of $X' = \{X_A, Y_A, X'_B, Y'_B\}$. We will consider separately the cases of reciprocal channel and non-reciprocal channel.

A. The case of $|\rho| = 1$

For the reciprocal channel case, the key equations that Alice needs to exploit are

\[
Y_A = H(X'_B + [U_0, U_2]) + W_A, \quad (14)
\]

\[
Y'_B = H'X_A + [U_0, U_1] + W_B, \quad (15)
\]

where the unknowns are H and $U = [U_0, U_1, U_2]$. Also notice that (14) is nonlinear.

To show more insights into (14) and (15), we let $Y_A = [Y_{A,\alpha}, Y_{A,\beta}]$ with $Y_{A,\alpha}$ consisting of the first n_B columns of Y_A and $Y_{A,\beta}$ consisting of all other columns of Y_A. We will use the subscripts α and β to indicate the same partitions for all relevant matrices. Then we know

\[
Y_{A,\alpha} = H[X'_{B,\alpha} - U_0] + W_{A,\alpha}, \quad (16)
\]

\[
Y_{A,\beta} = H[X'_{B,\beta} - U_2] + W_{A,\beta}, \quad (17)
\]

\[
Y'_{B,\alpha} = H'T_A + U_0 + W_{B,\alpha}, \quad (18)
\]

\[
Y'_{B,\beta} = H'T_A + U_1 + W_{B,\beta}. \quad (19)
\]

If \hat{H} is given, then the least-square (LS) estimates of U_0, U_1 and U_2 are as follows:

\[
\hat{U}_0 = (\hat{H}^H\hat{H} + I_{n_B})^{-1}(\hat{H}^H\Delta Y_{A,\alpha} + \Delta Y'_{B,\alpha}), \quad (20)
\]

\[
\hat{U}_1 = Y'_{B,\beta} - \hat{H}^T X_{A,\beta}, \quad (21)
\]

\[
\hat{U}_2 = -(\hat{H}^H\hat{H})^{-1}\hat{H}^H \Delta Y_{A,\beta}, \quad (22)
\]

with $\Delta Y_{A,\alpha} = Y_{A,\alpha} - \hat{H}X_{B,\alpha}$, $\Delta Y_{B,\alpha} = Y'_{B,\alpha} - \hat{H}^T X_{A,\alpha}$, and $\Delta Y_{A,\beta} = Y_{A,\beta} - \hat{H}X_{B,\beta}$. Note that (20) is the LS solution of U_0 to (16) and (18), or equivalently,

\[
\hat{U}_0 = \arg \min_{U_0} J_0 \quad (23)
\]

with

\[
J_0 = \left\| \begin{bmatrix} \Delta Y_{A,\alpha} \\ \Delta Y'_{B,\alpha} \end{bmatrix} - \begin{bmatrix} -\hat{H} \\ I_{n_B} \end{bmatrix} U_0 \right\|^2_F. \quad (24)
\]

Here $\|M\|^2_F = Tr(MM^H)$ for any matrix M. We will also write $J_0 = \|Y_0 - H_0 U_0\|^2_F$ with Y_0 and H_0 defined in an obvious way.

If \hat{U}_0 is a consistent estimate of U_0, then a consistent estimate of H follows from (16), i.e.,

\[
\hat{H} = Y_{A,\alpha}[X'_{B,\alpha} - \hat{U}_0]^{-1} \quad (25)
\]

which then leads to consistent estimates of U_1 and U_2 via (21) and (22).

To find a consistent estimate \hat{U}_0, we can use (25) in (18), which yields

\[
(X'_{B,\alpha} - \hat{U}_0)^T(Y'_{B,\alpha} - \hat{U}_0) = Y'_{A,\alpha} X_{A,\alpha}. \quad (26)
\]

This is an $n_B \times n_B$ quadratic matrix equation of the $n_B \times n_B$ unknown matrix \hat{U}_0, which in general have multiple (but no more than $2^{n_B^2}$) solutions. One of the solutions in the absence of noise is the desired solution U_0. Every solution to (26) can be written as $\hat{U}_0 = U_0 - \Delta \hat{U}_0$. Then (26) implies $(X'_{B,\alpha} + \Delta \hat{U}_0)T(Y'_{B,\alpha} + \Delta \hat{U}_0) = Y'_{A,\alpha} X_{A,\alpha}$. Clearly, every nonzero $\Delta \hat{U}_0$ in the absence of noise is independent of U_0. For example, if $n_B = 1$, then $\Delta \hat{U}_0 = X'_{B,\alpha} - Y'_{B,\alpha}$. Furthermore, one can verify that the corresponding estimates of U_1 and U_2 from (21) and (22) can be also written as $\hat{U}_1 = U_1 - \Delta \hat{U}_1$ and $\hat{U}_2 = U_2 - \Delta \hat{U}_2$ where $\Delta \hat{U}_1$ and $\Delta \hat{U}_2$ in the absence of noise are also independent of U. Therefore, among all solutions to (26) in the absence of noise, the desired solution has the minimum variance. Provided that the number $n_U = n_B(m_A + m_B - n_B)$ of entries in U is large, the desired solution to (26) can be detected by choosing the one corresponding to the smallest $\frac{1}{n_U} \|\hat{U}\|_F^2$, which approaches to one for large n_U.

To show an algorithm to solve (26), we can write $T_1 = X'_{B,\alpha} - \hat{U}_0$ and $T_2 = Y'_{B,\alpha} - \hat{U}_0$. Then (26) is equivalent to

\[
\begin{bmatrix} T_1^T T_2 \\ T_1 - T_2 \end{bmatrix} = Z, \quad (27)
\]

with $Y = X'_{B,\alpha} - Y'_{B,\alpha}$ and $Z = Y'_{A,\alpha} X_{A,\alpha} = X'_{B,\alpha} Y'_{B,\alpha}$. For a random initial guess $\hat{U}_0(0)$ of U_0, let $T_1(0) = X'_{B,\alpha} - \hat{U}_0(0)$. Then for each $T_1(i)$ with $i \geq 0$, we first compute

\[
\begin{bmatrix} T_2(0) \\ T_2(0)^T T_2(0) \end{bmatrix} = T_1(i)^T Z, \quad (28)
\]

which are two possible solutions of T_2 based on the two equations in (27). We then update the estimate of T_2 by taking the average: $T_2(i) = \frac{1}{2}(T_2^{(1)}(i) + T_2^{(2)}(i))$. With the updated T_2, we can renew T_1 in two different ways, i.e., via the nonlinear equation in (28) or the linear equation in (28). (These two choices often lead to two different solutions upon convergence.) We repeat the above process until $\|T_2^{(1)}(i) - T_2^{(2)}(i)\|_F$ is sufficiently small. Upon convergence, an estimate of \hat{U}_0 is $\hat{U}_0 = X'_{B,\alpha} - T_1$.

After a good initial estimate of \hat{H} is found, the maximum likelihood (ML) estimates of all unknowns (i.e., H, U_0, U_1...
and U_2) can be found by minimizing the following cost function:

$$J = \|Y_A - H(X'B - [U_0, U_2])\|_F^2 + \|Y_B - H^T X_A - [U_0, U_1]\|_F^2.$$

(29)

A gradient method for updating the estimate of H is

$$\hat{H}^{(k+1)} = \hat{H}^{(k)} - \eta \frac{\partial J}{\partial H}|_{k}$$

(30)

where k denotes the k-th iteration, and η is a step size which can be optimized by backtracking such as Armijo’s algorithm. Furthermore, one can verify from (29) that

$$\frac{\partial J}{\partial H} = -2(Y_A - H(X'B - [U_0, U_2]))(X'B - [U_0, U_2])^H$$

$$-2[(Y_B - H^T X_A - [U_0, U_1])(X_A^H)^T]$$

(31)

where H, U_0, U_1 and U_2 need to be replaced by their best estimates at every iteration.

B. The case of $|\rho| < 1$

For this non-reciprocal channel case, we will treat $H_{A,B}$ and $H_{B,A}$ as two independent matrices. Also note that in this case, U_0 and the first $n_A - n_B$ columns of U_1 are public.

Alice can now compute an initial consistent estimate of $H_{A,B}$ based on (16) as follows:

$$\hat{H}_{A,B} = Y_{A,\alpha}(X'_{B,\alpha} - U_0)^{-1}.$$

(32)

With any $\hat{H}_{A,B}$, the ML estimate of U_2 is the LS solution of (17), i.e.,

$$\hat{U}_2 = X'_{B,\beta} - (\hat{H}_{A,B}^H\hat{H}_{A,B})^{-1}\hat{H}_{A,B}^H Y_{A,\beta}.$$

(33)

The ML estimate of $H_{A,B}$ (and hence U_2) can be found by a gradient search of the LS solution of (16) and (17) with $H = H_{A,B}$, i.e.,

$$\hat{H}_{A,B,k+1} = \hat{H}_{A,B,k} - \eta \frac{\partial J_1}{\partial H_{A,B}}|_{k}$$

(34)

where J_1 is the first term in (29), and $\frac{\partial J_1}{\partial H_{A,B}}$ is the first term in (31) with $H = H_{A,B}$. For ML estimation of $H_{B,A}$ and the unknowns in U_1, let $Y'_{B,\gamma}$ and $X_{A,\gamma}$ be each the first n_A columns of Y'_{B} and X_A, respectively, U_{γ} be the first n_A columns of $[U_0, U_1]$, and U_{τ}, $Y'_{B,\tau}$ and $X_{A,\tau}$ be each the last $m_B - n_A$ columns of U_1, Y'_{B} and X_A, respectively. Then the ML estimates of $H_{B,A}$ and U_{τ} are given by the LS solution to (18) and (19) with $H' = H_{B,A}$, i.e.,

$$\hat{H}_{B,A,\tau,\tau} = [T_1, Y'_{B,\tau}, X_{A,\tau}, I_{m_B - n_A}]^{-1}$$

(35)

where $T_1 = (Y'_{B,\gamma} - U_{\gamma})X_{A,\gamma}^H + Y'_{B,\tau}X_{A,\tau}^H$.

Note that unlike the case where a reciprocal channel is fully exploited, the complexity of the above method is much lower. Furthermore, if we know that $n_A > n_E \geq n_B$, then the optimal choice of m_B in terms of SKC-DoF can be chosen to be n_B. In this case, U_2 is empty, and the estimation of $H_{A,B}$ is no longer needed. In other words, if $m_B = n_B$, Alice only needs the optimal estimate of the $n_B \times (m_A - n_A)$ matrix U_{τ} as given in (35), which can be further written (using block matrix inversion) as

$$\hat{U}_{\tau} = T_1 T_2 + Y'_{B,\tau} T_3$$

(36)

with $T_2 = -(X_{A,\gamma}X_{A,\gamma}^H)^{-1}X_{A,\tau}$ and $T_3 = I_{m_A - n_A} + X_{A,\tau}^H(X_{A,\gamma}X_{A,\gamma}^H)^{-1}X_{A,\tau}$. Alice and Bob can then use the pair of secret vectors vec(\hat{U}_{τ}) and vec(U_{τ}), respectively, to generate the final secret key.

V. SIMULATION

For simulation, we will normalize all signals such that the entries of U, X_A and X_B all have the unit variance while the entries of W_A and W_B all have the variance equal to $\frac{1}{P}$.

A. The case of $|\rho| = 1$

For the reciprocal channel case, we considered $n_A = 8$, $n_B = 2$, $m_A = 128$ and $m_B = 4$. The algorithm for this case relies on an initial estimate of U_0 from multiple solutions to (26). For $n_B = 2$, our proposed algorithm based on (27) can yield up to four solutions for U_0. Recall that for each U_0, there are corresponding \hat{U}_1 and \hat{U}_2 from (21) and (22). Among the multiple choices of $\hat{U} = [\hat{U}_0, \hat{U}_1, \hat{U}_2]$, we will pick the one which has the smallest value of $\|\hat{U}\|^2_F$. This is the initial estimate of U before the use of gradient search shown in (30). An improved estimate of U follows after the gradient search.

We have run the above algorithm for each of 1000 independent realizations of U, X_A, X_B, H, W_A and W_B at different values of $\text{SNR}(\text{dB}) = 10\log_{10} P$. Figs. 2, 3 and 4 show the distributions of the element-wise squared errors (in log scale) of the entries in \hat{U}_0, \hat{U}_1 and \hat{U}_2 respectively. As expected, the gradient search reduces the error distributions. The MSE values are heavily influenced by the larger errors. We also see that the median errors on \hat{U}_0, \hat{U}_1 and \hat{U}_2 are somewhat different.

![Fig. 2. Distributions ("violin" plots) of squared estimation errors in the elements of \hat{U}_0. The lightly shaded curves facing the left and the heavily shaded curves facing the right are histograms.](image-url)
initializations of \hat{U}_0. In order to show the performances that are not overly impacted by such situations, we also considered a thresholding that only accepted the initial estimates of U which satisfy $\frac{1}{n U} \| U \|^2_F < 1.5$. Note that in the absence of noise, $\lim_{n U \to \infty} \frac{1}{n U} \| U \|^2_F = 1$. The percentages of the accepted realizations is shown in Fig. 5. An effect of the thresholding on the estimated U_1 (for example) can be seen by comparing Fig. 6 with Fig. 3.

B. For the case of $|\rho| < 1$

In this case, we also considered $n_A = 8$, $n_B = 2$, $m_A = 128$ and $m_B = 4$, and chose independent $H_{A,B}$ and $H_{B,A}$. The performance of the algorithm (36) is illustrated in Fig. 7.

REFERENCES

