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a b s t r a c t 

This paper addresses power allocation problems for a dual-hop full-duplex multicarrier decode-forward 

relay system with or without a direct link from the source to the destination. The full-duplex relay has 

a residual self-interference proportional to its transmitted power. We consider two schemes of decode- 

forward at the relay: carrier-wise decode-forward (CDF) and group-wise decode-forward (GDF). For the 

CDF scheme, we consider problems of optimal power allocation subject to system-wise total power con- 

straint, node-wise individual power constraint and system-wise rate constraint, respectively. All these 

problems are shown to be equivalent to convex problems, and fast algorithms for finding the exact solu- 

tions are developed. For the GDF scheme, we focus on the case of node-wise individual power constraint. 

This problem is non-convex for which we develop fast algorithms for finding locally optimal solutions. 

Using the algorithms developed in this paper, we are able to show that the system capacity with optimal 

power allocation based on either CDF or GDF is higher than that of the half-duplex relay (HDR) system at 

power levels where HDR outperforms the direct transmission via the direct link. Furthermore, the system 

capacity based on GDF is consistently higher than that of HDR for all power levels while both have the 

same degree of freedom. This paper also shows new insights of algorithmic development, which should 

be useful for other related problems. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

It is widely known that wireless relays are useful for fast and

fficient establishment of wireless service, and extending the reach

f the Internet into areas with insufficient or no cellular wireless

overage. Wireless relays are particularly useful for enhancement

f quality-of-service for users at the edge of a cellular network,

nd for direct communications between vehicles and other types

f nodes in mobile ad hoc networks. All of these are because relays

an be used to substantially reduce the power loss of radio wave

ropagation between sources and destinations. There are many ar-

icles on the subject of wireless relays, and it remains an active

esearch area [1] . 

As the world sees an ever increasing level of big data mobile

pplications, the capacity of wireless links must increase. Addi-

ional radio spectrum (such as millimeter wave bands) will likely

e made available for commercial applications by Government

egulation Agencies. But no matter how much new radio spec-
∗ Corresponding author. 
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rum will be allocated, such a physical resource is always limited

nd should be utilized as efficiently as possible. One method for

fficient utilization of radio spectrum is known as full-duplex ra-

io which is able to transmit and receive at the same time and

ame frequency. In order to realize full-duplex radio, many re-

earch groups from both industry and academia have been trying

o develop the best possible ways for radio self-interference can-

ellation and/or isolation, such as [2,3] and [4–8] . Motivated by the

mportance of relay, broad bandwidth and full-duplex radio, this

aper studies a full-duplex multicarrier relay network and in par-

icular focuses on optimal power allocation to maximize the per-

ormance of such a relay network. 

Relay networks can be categorized by many possible combina-

ions of such features as half-duplex versus full-duplex, MIMO ver-

us non-MIMO, multicarrier versus single-carrier, regenerative ver-

us non-regenerative, and presence versus absence of direct-link.

he total number of possible categories just based on the above

ve features is 2 5 = 32 . Within each category, there could be many

ubcategories depending on other features such as presence ver-

us absence of residual self-interference at full-duplex radio, use

ersus no-use of successive interference cancellation for receiving

t the relay and/or destination, use versus no-use of dirty paper
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Fig. 1. A dual-hop full-duplex DF (decode-forward) multicarrier relay network. 
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2 “channels” and “links” are interchangeable. 
3 The residual self-interference channel is the net channel of self-interference 

after the use of self-interference suppression and cancellation at radio frequency 

frontend and/or baseband. For convenience, we will also refer to “residual self- 

interference channel” as “self-interference channel”. 
coding for transmitting at the source and/or relay, and full knowl-

edge versus partial knowledge of the channel state information of

the source-relay, source-destination and/or relay-destination links.

Further categorizations may include the numbers of sources, relays

and/or destinations. Clearly, there are numerous possible setups of

relay networks. While many of these have been addressed in the

literature, still much more are yet to be explored. In the following,

we mention a few of the prior works that are relatively relevant to

this work. 

Many papers on multicarrier (i.e., OFDM based) relay networks

such as [9,10] and [11–22] assume that the relays operate in half-

duplex mode rather than full-duplex mode. And most of these

works address non-regenerative (e.g., amplify-forward) half-duplex

relays because the problems of regenerative (e.g., decode-forward)

half-duplex relays are generally easy to solve and hence of no fur-

ther intellectual challenge. 

A group of recent papers such as [23,24] and [25–33] address

full-duplex relays. But none of them addresses multicarrier full-

duplex decode-forward relay with direct link even though it is

well known that a decode-forward relay generally yields a higher

capacity than an amplify-forward relay [9] . Another group of re-

cent papers [34–36] study the problems of multicarrier full-duplex

decode-forward relays. But their focuses and assumptions still sub-

stantially differ from ours in this paper. In particular, unlike [36] ,

we will not assume zero self-interference of full-duplex radio. It

is known that all practical full-duplex radios have some level of

residual self-interference that increases as the transmitted power

from the radio increases. 

In this paper, we consider a two-hop full-duplex multicarrier

decode-forward relay system 

1 as illustrated in Fig. 1 , where the

residual self-interference of the full-duplex relay and the transmis-

sion via the direct link are treated as sources of additional (addi-

tive) noise at the relay and the destination respectively. We assume

the knowledge of channel amplitudes but not channel phases.

Channel phases are known to be much harder to obtain than chan-

nel amplitudes. We rule out any coding schemes that heavily rely

on full channel state information, which include successive inter-

ference cancellation for receiving at relay and/or destination and

dirty paper coding for transmitting at source and/or relay. We will

consider two decode-forward schemes at the relay: one is carrier-

wise decode-forward (CDF) and the other is group-wise decode-

forward (GDF). Under the CDF scheme, the relay performs decode-

forward on each subcarrier separately. Under the GDF scheme, the

relay performs decode-forward on the entire group of subcarriers

jointly. These two schemes were also introduced in [37] under dif-

ferent names. But they were not treated with optimal power allo-

cation. 

The main contribution in this paper is a novel development of

fast algorithms based on the CDF and GDF schemes to compute the

optimal power allocations among all subcarriers at the source and

the relay to maximize performance of the relay network. By us-

ing these algorithms, we will show via simulation that the system
1 We use “relay system” and “relay network” interchangeably. 

r

j

s

apacity based on either CDF or GDF is higher than that of a cor-

esponding half-duplex relay (HDF) system at power levels where

he HDF system outperforms the direct transmission via the di-

ect link. We will also show that the GDF full-duplex relay system

onsistently outperforms the HDF system at all power levels while

oth have the same degree of freedom. The GDF scheme with opti-

al power allocation optimally benefits from both full-duplex and

frequency division) half-duplex. The algorithmic insights shown in

his paper should also be useful for many other related problems.

e like to note that the direct link and the self-interference cause

 coupling of the optimal power allocation at the source and the

ptimal power allocation at the relay. It is this coupling that makes

he problem much more difficult than otherwise. 

The rest of this paper is organized as follows. The system ar-

hitecture and signal model of the investigated relay system are

etailed in Section 2 . In this section, we also introduce the capac-

ty expressions of various transmission schemes including the di-

ect transmission via the direct link, the half-duplex relay scheme,

he CDF full-duplex relay scheme, and the GDF full-duplex relay

cheme. In Section 3 , we develop fast algorithms for optimal power

llocation based on the CDF full-duplex scheme. We will con-

ider different problem formulations based on (system-wise) total

ower constraint, (node-wise) individual power constraint and also

system-wise) rate constraint. We will also study the asymptotical

erformance of the CDF full-duplex relay system. In Section 3.5 ,

e develop a fast algorithm for optimal power allocation based on

he GDF full-duplex scheme. The simulation results are discussed

n Section 5 . We conclude this paper in Section 6 . 

. System model 

The relay network is illustrated in Fig. 1 where each link has N

ubcarriers. Because the relay is operating in the full-duplex mode,

oth the source node and the relay node will transmit through the

ame frequency band simultaneously. In other words, each of the

 subcarriers will be occupied at the same time by the source for

ransmission, by the relay for reception and transmission, and by

he destination for reception. 

The relay system has four channels: 2 the source to relay chan-

el h SR , the relay to destination channel h RD , the direct link chan-

el h SD and the residual self-interference 3 channel h RR . We also

se h SR , h RD , h SD and h RR to denote the vectors of channel gains.

n principle, each of these vectors is a N × 1 complex vector (i.e.,

n C 

N×1 ) since each channel has N parallel subcarriers. 

Let x S ( k ) and x R ( k ) denote the symbol vectors in C 

N×1 transmit-

ed by the source and the relay respectively at time k . Each of x S ( k )

nd x R ( k ) is assumed to have N i.i.d. symbols, which are also statis-

ically stationary in time. Then the vectors of the signals received

y the relay and the destination can be expressed as follows: 4 

 R (k ) = h SR ◦ x S (k ) + h RR ◦ x R (k ) + n R (k ) , (1)

 D (k ) = h RD ◦ x R (k ) + h SD ◦ x S (k ) + n D (k ) . (2)

ere, the noise vectors n R ( k ) and n D ( k ) are independent of each

ther and each assumed to be CN (0 , I ) (i.e., normalized circular

omplex Gaussian random vectors). The symbol ‘ ◦’ indicates the

adamard product (i.e., element-wise product). 
4 We also assume that both the distortion generated by the limited dynamic 

ange in the transmitter/receiver and the inter-carrier interference leaked from ad- 

acent subcarriers are weak and can be omitted in comparison with the residual 

elf-interference and the direct link interference. 
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We will use x n and y n to denote the powers of the n th elements

f x S ( k ) and x R ( k ) at any k , respectively. Also use A n = | h SRn | 2 ,
 n = | h RRn | 2 , C n = | h RDn | 2 and D n = | h SDn | 2 . Note that h SRn is the

 th element of h SR , for example. For optimal power allocation, we

ill only need these (squared) amplitudes but no phases of the

hannels. 

The (end-to-end) capacity of the relay system depends on fur-

her assumptions of transmission and coding schemes. If the power

llowed from the source 5 is so high that even a weak direct link

an be used for direct transmission from the source to the desti-

ation, then the relay can be simply ignored (i.e., with y n = 0 , ∀ n ).

n this case, the capacity in bits/s/Hz of the system is simply 

 Direct = 

1 

N 

N ∑ 

n =1 

log 2 (1 + D n x n ) (3)

he optimal power allocation to maximize R Direct follows the clas-

ic waterfilling algorithm. 6 

If the source power is not high enough for the direct link to de-

iver a sufficient data rate, a conventional scheme is known as half-

uplex relay scheme where in the first time slot the source trans-

its to the relay and in the second time slot the relay transmits

o the destination. In this case, the capacity of the system (with

ecode-forward relay) is 

 Hal f−dupl ex = 

1 

2 

min (R SR , R RD ) (4)

ith R SR = 

1 
N 

∑ N 
n =1 log 2 (1 + A n x n ) and R RD = 

1 
N 

∑ N 
n =1 log 2 (1 +

 n y n ) . The optimal power allocation to maximize R Hal f−dupl ex is

lso straightforward by following the waterfilling algorithm. 

To improve the spectral efficiency beyond half-duplex, we con-

ider full-duplex relay schemes in this paper. We further assume

hat there is no cooperative coding between the source and the re-

ay so that the signal from the source via the direct link is treated

s an additional noise at the destination. 7 Similarly, the signal from

he relay via the self-interference channel is also treated as an ad-

itional noise at the receiver of the relay. 8 

Consequently, the SINRs (signal to interference and noise ratio)

f the received signals on the n th subcarrier at the relay and the

estination are respectively: 

Rn = 

A n x n 

1 + B n y n 
, (5) 

Dn = 

C n y n 

1 + D n x n 
. (6) 

At the decode-forward multicarrier relay, the information re-

eived on N subcarriers from the source can be re-distributed onto

 subcarriers for transmission to the destination in many possible

ays. But we will consider two such schemes: carrier-wise decode-

orward (CDF) and group-wise decode-forward (GDF). For the CDF

cheme, the information received by the relay on each subcarrier

s forwarded on the same subcarrier. For the GDF scheme, the in-

ormation received by the relay on all subcarriers is re-distributed

nto all subcarriers optimally for transmission to the destination.

he choice of such a scheme depends on application. If the des-

ination node represents a collection of N distributed small nodes
5 In practice, the power from a source node is not only limited by the power ca- 

acity of the source node but also by constraints on its interference to other neigh- 

oring networks. 
6 Subject to 

∑ N 
n =1 x n ≤ P S , R SD is maximized if x n = max (λ − 1 

D n 
, 0) with λ satis- 

ying 
∑ N 

n =1 max (λ − 1 
D n 

, 0) = P S . 
7 Such an assumption is also used in [27,29] . 
8 Without the channel phase information of h RR at the relay, further self- 

nterference cancellation at the relay is not possible. Channel phases change much 

ore rapidly than channel amplitudes and hence much harder to obtain. 

s

c

i

f

p

nd each small node is assigned with one subcarrier (which is a

cenario also discussed in [10] ), then the carrier-wise scheme is

aturally suitable. If the destination node is a single physical node

nd the relay node is also a single physical node, then the GDF

cheme is a natural choice. 

With CDF full-duplex relay, the capacity of the relay system (in

its/s/Hz) over M time windows is 

R F ul l −dupl ex = 

M 

M + 1 

1 

N 

N ∑ 

n =1 

min { log 2 (1 + γRn ) , log 2 (1 + γDn ) } 

= 

M 

M + 1 

1 

N 

N ∑ 

n =1 

log 2 (1 + min { γRn , γDn } ) . 
(7) 

or convenience, we will also refer to R F ul l −dupl ex as R . 

With RDF full-duplex relay, the capacity of the relay system (in

its/s/Hz) over M time windows 9 is 

C F ul l −dupl ex = 

M 

M + 1 

1 

N 

min 

{ 

N ∑ 

n =1 

log 2 (1 + γRn ) , 
N ∑ 

n =1 

log 2 (1 + γDn ) 

} 

(8) 

or convenience, we will also refer to C F ul l −dupl ex as C. 

The expressions of both R and C are consistent with the previ-

usly stated assumption that x S ( k ) and x R ( k ) are stationary random

rocesses. 10 Furthermore, the expression of C requires cooperative

nformation re-distribution among the subcarriers at the relay so

hat the sum of the information received by the relay in time win-

ow m equals the sum of the information transmitted by the re-

ay in time window m + 1 . Note that even though the relay is full-

uplex, the information received by the decode-forward relay dur-

ng one time window cannot be transmitted by the relay in the

ame time window. The time window indexed by each m ∈ {1, ���,

 } needs to be large enough for the capacity C or R to be achiev-

ble. 11 We will also consider a large M so that M 

M+1 ≈ 1 . 

Obviously, R is no larger than C. But this property does not nec-

ssarily suggest that C is more useful than R , which was explained

reviously. In terms of degree of freedom, it is easy to verify that

nder some weak or typical conditions, 
R Direct 
log 2 P 

→ 1 , 
R Hal f−dupl ex 

log 2 P 
→

1 
2 , and 

C F ul l −dupl ex 

log 2 P 
→ 

1 
2 as P = 

∑ N 
n =1 x n → ∞ and/or P = 

∑ N 
n =1 y n →

 . But as shown later, we typically have 
R F ul l −dupl ex 

log 2 P 
→ 0 . While

hese degrees of freedom indicate useful trends as the power in-

reases, fast algorithms for optimal power allocation under power

onstraints are also important in both theory and practice. 

Optimal power allocation based on either R or C is a challenge

ot addressed elsewhere (to our best knowledge) but addressed in

epth in this paper. In the next section, we will consider R for

ptimal power allocation. In Section 4 , we will consider optimal

ower allocation based on C. In all cases, we assume that the chan-

el amplitudes (not phases) of the relay system are available to a

entral scheduler that computes the optimal power allocations to

e implemented at the source and the relay. 
9 During each time window, the source transmits a packet to the relay at the 

ame time as the relay transmits a packet to the destination over the same N sub- 

arriers. The packet transmitted by the relay in time window m contains the same 

nformation as the packet transmitted by the source in time window m − 1 . 
10 The index k may denote a time both within each time window and across dif- 

erent time windows. A time window also corresponds to the transmission of a data 

acket. 
11 Approximately achievable in practice. 
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3. Power allocation for CDF full-duplex relay 

In this section, we first consider the following problem: 

max 
x , y 

R 

s . t . P ower const raint s. 
(9)

where x = [ x 1 , · · · , x N ] 
T (power allocation at the source) and y =

[ y 1 , · · · , y N ] 
T (power allocation at the relay). The computation of

this problem requires a central processor which needs all the chan-

nel amplitude information of the relay system. We will investigate

two types of power constraints: total (sum) power constraint of

the source and the relay, and individual power constraint at each

of the source and the relay. 

Subject to either of the above two types of power constraints,

the following holds: 

Lemma 1. Let (x ∗n , y ∗n ) denotes the optimal power allocation for the

nth subcarrier. Then, 

γRn (x ∗n , y 
∗
n ) = γDn (x ∗n , y 

∗
n ) . (10)

Proof. See Appendix A . The same property was also shown in

[27] and [34] . �

3.1. Total power constraint 

If we just set an upper bound P Total on the sum power of

the source and the relay, we have the following total power con-

strained problem: 

max 
x , y 

1 

N 

N ∑ 

n =1 

log 2 (1 + min { γRn , γDn } ) 

s . t . 

N ∑ 

n =1 

(x n + y n ) ≤ P Total , 

x n ≥ 0 , y n ≥ 0 , ∀ n ∈ N , 

(11)

where N 

. = { 1 , 2 , . . . , N} . 
Let p n = x n + y n . Then, by Lemma 1 , we know that for any given

p n , we can obtain x n and y n by solving: ⎧ ⎨ 

⎩ 

γRn = γDn , 

x n + y n = p n , 

x n ≥ 0 , y n ≥ 0 . 

(12)

When A n D n − B n C n � = 0 , the solution of the above conditions is ⎧ ⎪ ⎨ 

⎪ ⎩ 

x n = h n (p n ) 
. = 

−(A n + C n + 2 B n C n p n ) + �3 ,n 

2(A n D n − B n C n ) 

y n = l n (p n ) 
. = 

(A n + C n + 2 A n D n p n ) − �3 ,n 

2(A n D n − B n C n ) 

(13)

where 

�3 ,n = 

√ 

(A n + C n ) 2 + 4 A n C n p n (B n + D n + B n D n p n ) . (14)

When A n D n − B n C n = 0 , the solution is ⎧ ⎪ ⎨ 

⎪ ⎩ 

x n = h n (p n ) 
. = 

C n p n + B n C n p 
2 
n 

A n + C n + 2 B n C n p n 

y n = l n (p n ) 
. = 

A n p n + B n C n p 
2 
n 

A n + C n + 2 B n C n p n 

. (15)

In terms of p = [ p 1 , · · · , p N ] , the problem (11) reduces to 

min 

p 
J p 

s . t . 

N ∑ 

n =1 

p n = P Total , 

p n ≥ 0 , ∀ n ∈ N . 

(16)
here J p = − 1 
N 

∑ N 
n =1 log 2 (1 + 

A n h n (p n ) 
1+ B n l n (p n ) 

) . The equality 
∑ N 

n =1 p n =
 Total is chosen because J p is a decreasing function of p n , ∀ n . See

he last paragraph in Appendix B . 

The Karush–Kuhn–Tucker (KKT) conditions of the above prob-

em are 

 

 

 

 

 

 

 

 

 

− M n (p n ) − λn + υ = 0 , 

λn p n = 0 , p n ≥ 0 , λn ≥ 0 , ∀ n ∈ N , 

N ∑ 

n =1 

p n − P Total = 0 

(17)

here 

M n (p n ) = − ∂ J p 

∂ p n 
= 

log 2 e 

N 

·
A n h 

′ 
n (p n ) − A n B n h n (p n ) l ′ n (p n ) 

1+ B n l n (p n ) 

1 + B n l n (p n ) + A n h n (p n ) 
. (18)

As shown in Appendix B , M n ( p n ) is a decreasing function of p n 
which suggests that J p is convex), utilizing this monotonic prop-

rty, the KKT conditions in (17) can be solved by Algorithm 1 . For

lgorithm 1 Two-layer bisection algorithm to solve (17) . 

nput: 

A n , B n , C n , D n , ∀ n ∈ N ; 

Total power constraint P Total ; 

Accuracy threshold ε. 

utput: 

Initialized upper bound υ+ = 

log 2 e 
N max { A n C n 

A n + C n , ∀ n } ; 
Initialized lower bound υ− = max { M 1 (P Total ) , . . . , M N (P Total ) } ; 
Temporary variable μ = 0 ; 

p 1 = p 2 = , . . . , = p N = 0 . 

1: while ( | P Total − μ| > ε) do 

2: υ = 

υ−+ υ+ 
2 ; 

3: for n =1: N do 

4: if υ ≥ log 2 e 
N 

A n C n 
A n + C n then 

5: p n = 0 ; 

6: else 

7: Solve M n (p n ) = υ; 

8: end if 

9: end for 

10: μ = 

∑ N 
n =1 p n ; 

11: if μ > P Total then 

12: υ− = υ; 

13: else 

14: υ+ = υ; 

15: end if 

16: end while 

17: return p 1 , p 2 , . . . , p N . 

he solved p n , ∀ n , the x n and y n , ∀ n can be obtained by substi-

uting p n , ∀ n into (13) . The idea behind this algorithm is also il-

ustrated in Fig. 2 . In this algorithm, there are two layers of bi-

ection searches. The outer layer searches for the solution of υ .

nd for each given value of υ, there is an inner layer of N par-

llel bisection searches for p n , ∀ n (i.e., solving M n (p n ) = υ, ∀ n ).

he reason of setting the upper bound υ+ = 

log 2 e 
N max { A n C n 

A n + C n , ∀ n }
s M n (0) = 

log 2 e 
N 

A n C n 
A + C . 
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Fig. 2. Illustration of the idea behind Algorithm 1 . 
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.2. Individual power constraint 

Assuming the total power P S at the source and the total power

 R at the relay, the individual power constrained problem is: 

max 
x , y 

1 

N 

N ∑ 

n =1 

log 2 (1 + min { γRn , γDn } ) 

s . t . 

N ∑ 

n =1 

x n ≤ P S , 

N ∑ 

n =1 

y n ≤ P R , 

x n ≥ 0 , y n ≥ 0 , ∀ n ∈ N . 

(19) 

Applying Lemma 1 , we can use γRn = γDn , and this property im-

lies that the optimal x n and the optimal y n are one to one related

o each other as shown next . 

For any given x n , solving γRn = γDn yields 

y n = f n (x n ) = 

−C n + �1 ,n 

2 B n C n 
, (20) 

here �1 ,n = 

√ 

C 2 n + 4 A n B n C n x n + 4 A n B n C n D n x 2 n . Additionally, we 

ave that 

f ′ n (x n ) = 

A n + 2 A n D n x n 

�1 ,n 

, (21)

f ′′ n (x n ) = 

2 A n C n (D n C n − A n B n ) 

�3 
1 ,n 

. (22)

e will write 

Rn,x (x n ) 
. = 

A n x n 

1 + B n f n (x n ) 
= 

C n f n (x n ) 

1 + D n x n 

. = γDn,x (x n ) . (23)

Similarly, for any given y n , solving γRn = γDn yields 

x n = g n (y n ) = 

−A n + �2 ,n 

2 D n A n 

, (24) 

here �2 ,n = 

√ 

A 

2 
n + 4 A n C n D n y n + 4 A n B n C n D n y 2 n . We also hav e that

 

′ 
n (y n ) = 

C n + 2 C n B n y n 

�2 ,n 

, (25)

 

′′ 
n (y n ) = 

2 A n C n (A n B n − C n D n ) 

�3 
2 ,n 

. (26)

nd we can write 

Rn,y (y n ) 
. = 

A n g n (y n ) 

1 + B n y n 
= 

C n y n 

1 + D n g n (y n ) 
. = γDn,y (y n ) . (27)
We have shown that the optimal x n and the optimal y n are one

o one related to each other. Now let 

1 = { n | C n D n − A n B n ≥ 0 , n ∈ N } , (28)

nd 

2 = { n | C n D n − A n B n < 0 , n ∈ N } , (29)

hich are two complementary subsets of N . Also define 

 1 = − 1 

N 

∑ 

n 1 ∈ �1 

log 2 

(
1 + 

A n 1 x n 1 
1 + B n 1 f n 1 (x n 1 ) 

)
, (30) 

nd 

 2 = − 1 

N 

∑ 

n 2 ∈ �2 

log 2 

(
1 + 

C n 2 y n 2 
1 + D n 2 g n 2 (y n 2 ) 

)
. (31) 

It can be verified that 

∂ 2 J 1 

∂ x 2 n 1 

≥ 0 , ∀ n 1 ∈ �1 , (32)

nd 

∂ 2 J 2 

∂ y 2 n 2 

≥ 0 , ∀ n 2 ∈ �2 , (33)

hich means that function J 1 and J 2 are convex functions. See

he detailed proof in Appendix C . 

With the above preparation, the problem (19) can be trans-

ormed into: 

min 

x �1 
, y �2 

J 1 + J 2 

s . t . 
∑ 

n 1 ∈ �1 

x n 1 + 

∑ 

n 2 ∈ �2 

g n 2 (y n 2 ) ≤ P S , 

∑ 

n 1 ∈ �1 

f n 1 (x n 1 ) + 

∑ 

n 2 ∈ �2 

y n 2 ≤ P R 

x n 1 ≥ 0 , ∀ n 1 ∈ �1 , y n 2 ≥ 0 , ∀ n 2 ∈ �2 . 

(34) 

he above problem is a convex problem, i.e., the objective func-

ion and the constraints are convex with respect to x �1 
= { x n 1 ≥

 , ∀ n 1 ∈ �1 } and y �2 
= { y n 2 ≥ 0 , ∀ n 2 ∈ �2 } . The Lagrangian func-

ion of this problem is: 

 (x �1 
, y �2 

, λ, υ, μ1 , μ2 ) = J 1 + J 2 − μT 
1 x �1 

− μT 
2 y �2 

+ λ

( ∑ 

n 1 ∈ �1 

x n 1 + 

∑ 

n 2 ∈ �2 

g n 2 (y n 2 ) − P S 

) 

+ υ

( ∑ 

n 1 ∈ �1 

f n 1 (x n 1 ) + 

∑ 

n 2 ∈ �2 

y n 2 − P R 

) 

. 

(35) 

Then, the KKT conditions of the problem (34) are: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂L 
∂ x n 1 

= −F n 1 (x n 1 ) − μ1 ,n 1 + λ + υ f ′ n 1 
(x n 1 ) = 0 , 

∂L 
∂ y n 2 

= −G n 2 (y n 2 ) − μ2 ,n 2 + λg ′ n 2 (y n 2 ) + υ = 0 , 

λ ≥ 0 , 
∑ 

n 1 ∈ �1 
x n 1 + 

∑ 

n 2 ∈ �2 
g n 2 (y n 2 ) ≤ P S , 

λ
(∑ 

n 1 ∈ �1 
x n 1 + 

∑ 

n 2 ∈ �2 
g n 2 (y n 2 ) − P S 

)
= 0 , 

υ ≥ 0 , 
∑ 

n 1 ∈ �1 
f n 1 (x n 1 ) + 

∑ 

n 2 ∈ �2 
y n 2 ≤ P R , 

υ
(∑ 

n 1 ∈ �1 
f n 1 (x n 1 ) + 

∑ 

n 2 ∈ �2 
y n 2 − P R 

)
= 0 , 

μ1 ,n 1 ≥ 0 , x n 1 ≥ 0 , μ1 ,n 1 x n 1 = 0 , ∀ n 1 ∈ �1 , 

μ2 ,n 2 ≥ 0 , y n 2 ≥ 0 , μ2 ,n 2 y n 2 = 0 , ∀ n 2 ∈ �2 , 

(36) 

here 

F n (x n ) = −∂J 1 

∂x n 
= 

log 2 e 

N 

·
A n − A n B n x n f 

′ 
n (x n ) 

1+ B n f n (x n ) 

1 + B n f n (x n ) + A n x n 
. (37) 
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Algorithm (2.a) Bisection search of λ, x and y to meet ∑ 

n 1 ∈ �1 
x n 1 + 

∑ 

n 2 ∈ �2 
g n 2 (y n 2 ) = P S . 

1: λMAX = zeros (N, 1) , λMIN = zeros (N, 1) ; 
2: for n 1 ∈ �1 do 

3: λMAX,n 1 
= F n 1 (0) − υ f ′ n 1 

(0) , λMIN,n 1 = F n 1 (P S ) − υ f ′ n 1 
(P S ) ; 

4: end for 
5: for n 2 ∈ �2 do 

6: λMAX,n 2 
= 

G n 2 (0) −υ

g ′ n 2 (0) 
, λMIN,n 2 = 

G n 2 ( f n 2 (P S )) −υ

g ′ n 2 ( f n 2 (P S )) 
; 

7: end for 
8: λmax = max ( λMAX ) , λmin = max ( λMIN ) ; 
9: while ( | P S − ∑ N 

n =1 x n | > ε) do 

10: λ = 

λmax + λmin 
2 

; 
11: for n 1 ∈ �1 do 

12: if λ > λMAX,n 1 
then 

13: x n 1 = 0 ; 
14: else 

15: Obtain x n 1 by solving −F n (x n 1 ) + λ + υ f ′ n 1 
(x n 1 ) = 0 ; 

16: end if 
17: y n 1 = f n 1 (x n 1 ) ; 
18: end for 
19: for n 2 ∈ �2 do 

20: if λ > λMAX,n 2 
then 

21: y n 2 = 0 ; 
22: else 

23: Obtain y n 2 by solving −G n 2 (y n 2 ) + λg ′ n 2 (y n 2 ) + υ = 

0 ; 
24: end if 
25: x n 2 = g n 2 (y n 2 ) ; 
26: end for 
27: if 

∑ N 
n =1 x n > P S then 

28: λmin = λ; 
29: else 

30: λmax = λ; 
31: end if 
32: end while 

33: return λ, x , y ; 

 

T

 

T

L

 

G n (y n ) = −∂J 2 

∂y n 
= 

log 2 e 

N 

·
C n − C n D n y n g 

′ 
n (y n ) 

1+ D n g n (y n ) 

1 + D n g n (y n ) + C n y n 
. (38)

In Appendix C , we prove that the function F n ( x n ) is decreas-

ing with respect to x n ∈ [0 , + ∞} , and G n ( x n ) is decreasing with

respect to y n ∈ [0 , + ∞} . While, function f ′ n (x n ) is increasing with

respect to x n ∈ [0 , + ∞} , and g ′ n (x n ) is increasing with respect to

y n ∈ [0 , + ∞} . So, when λ is fixed, υ is a decreasing function with

regard to x n and y n . When υ is fixed, λ is a decreasing function

with regard to x n and y n . So, we can utilize a two-dimension bisec-

tion search to search for the optimal λ and υ to solve the KKT con-

ditions in (36) . The proposed two-dimensional bisection search is

summarized as Algorithm 2 along with Algorithms (2.a) and (2.b) . 

Algorithm 2 Two-dimensional bisection search to solve (36) . 

Input: 
A n , B n , C n , D n , ∀ n ∈ N ; 
Source power constraint P S , relay power constraint P R ; 
Accuracy threshold ε. 

Output: 
1: �1 = { n | C n D n − A n B n ≥ 0 , n ∈ N } , �2 = { n | C n D n − A n B n < 

0 , n ∈ N } ; 
2: Set υ = 0 , bisection search of λ, x and y to meet∑ 

n 1 ∈ �1 
x n 1 + 

∑ 

n 2 ∈ �2 
g n 2 (y n 2 ) = P S , the detailed proce-

dures are presented in Sub-Algorithm (2.a). 
3: if 

∑ N 
1 y n < P R then 

4: return x , y ; 
5: end if 
6: Set λ = 0 , bisection search of υ , x and y to meet∑ 

n 1 ∈ �1 
f n 1 (x n 1 ) + 

∑ 

n 2 ∈ �2 
y n 2 = P R , the detailed proce-

dures are presented in Sub-Algorithm (2.b). 
7: if 

∑ N 
1 x n < P S then 

8: return x , y ; 
9: end if 

10: while (1) do 

11: Bisection search of λ, x and y to meet 
∑ 

n 1 ∈ �1 
x n 1 +∑ 

n 2 ∈ �2 
g n 2 (y n 2 ) = P S for given υ , the detailed proce-

dures are same as Sub-Algorithm (2.a); 
12: Bisection search of υ , x and y to meet∑ 

n 1 ∈ �1 
f n 1 (x n 1 ) + 

∑ 

n 2 ∈ �2 
y n 2 = P R for given λ, the

detailed procedures are same as Sub-Algorithm (2.b); 
13: if | P S − ∑ N 

1 x n | ≤ ε then 

14: break ; 
15: end if 
16: end while 

17: return x , y ; 

3.3. Power allocation without direct link 

We have discussed the optimal power allocation algorithms for

the scenario where there can be a direct link from the source

to the destination. In this subsection, we consider the special

case where the source to destination channel is h SD = 0 , i.e., D n =
| h SDn | 2 = 0 , ∀ n ∈ N . 

With the total power constraint, the optimal power allocation

algorithm given by Algorithm 1 is not affected. 

With the individual power constraint, the optimal power al-

location algorithm is also given by Algorithm 2 along with

Algorithms (2.a) and (2.b) but with much simplification. To show

this, we start with the following (without the direct link): 

x n = g n (y n ) = 

C n y n + B n C n y 
2 
n 

A n 

, (39)
g ′ n (y n ) = 

C n + 2 B n C n y n 

A n 

, (40)

hen, the problem (19) reduces to 

min 

y 
− 1 

N 

N ∑ 

n =1 

log 2 ( 1 + C n y n ) 

s . t . 

N ∑ 

n =1 

g n (y n ) ≤ P S , 

N ∑ 

n =1 

y n ≤ P R 

y n ≥ 0 , ∀ n ∈ { 1 , 2 , . . . , N} . 

(41)

he Lagrangian function of this problem is 

 (y , λ, υ, μ) = − 1 

N 

N ∑ 

n =1 

log 2 ( 1 + C n y n ) − μT y 

+ λ

( 

N ∑ 

n =1 

g n (y n ) − P S 

) 

+ υ

( 

N ∑ 

n =1 

y n − P R 

) 

. (42)
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Algorithm (2.b) Bisection search of υ, x and y to meet ∑ 

n 1 ∈ �1 
f n 1 (x n 1 ) + 

∑ 

n 2 ∈ �2 
y n 2 = P R . 

1: υMAX = zeros (N, 1) , υMIN = zeros (N, 1) ; 
2: for n 1 ∈ �1 do 

3: υMAX,n 1 
= 

F n 1 (0) −λ

f ′ n 1 (0) 
, υMIN,n 1 = 

F n 1 (g n 1 (P R )) −λ

f ′ n 1 (g n 1 (P R )) 
; 

4: end for 
5: for n 2 ∈ �2 do 

6: υMAX,n 2 
= G n 2 (0) − λg ′ n 2 (0) , υMIN,n 2 = G n 2 (P R ) −

λg ′ n 2 (P R ) ; 

7: end for 
8: υmax = max ( υMAX ) , υmin = max ( υMIN ) ; 
9: while ( | P R − ∑ N 

n =1 y n | > ε) do 

10: υ = 

υmax + υmin 
2 

; 
11: for n 1 ∈ �1 do 

12: if υ > υMAX,n 1 
then 

13: x n 1 = 0 ; 
14: else 

15: Obtain x n 1 by solving −F n (x n 1 ) + λ + υ f ′ n 1 
(x n 1 ) = 0 ; 

16: end if 
17: y n 1 = f n 1 (x n 1 ) ; 
18: end for 
19: for n 2 ∈ �2 do 

20: if υ > υMAX,n 2 
then 

21: y n 2 = 0 ; 
22: else 

23: Obtain y n 2 by solving −G n 2 (y n 2 ) + λg ′ n 2 (y n 2 ) + υ = 

0 ; 
24: end if 
25: x n 2 = g n 2 (y n 2 ) ; 
26: end for 
27: if 

∑ N 
n =1 y n > P R then 

28: υmin = υ; 
29: else 

30: υmax = υ; 
31: end if 
32: end while 

33: return υ , x , y ; 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Then, the KKT conditions of the problem (41) are: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂L 

∂ y n 
= − log 2 e 

N 

C n 

1 + C n y n 
− μn + λg ′ n (y n ) + υ = 0 , 

λ ≥ 0 , 

N ∑ 

n =1 

g n (y n ) ≤ P S , λ

( 

N ∑ 

n =1 

g n (y n ) − P S 

) 

= 0 , 

υ ≥ 0 , 

N ∑ 

n =1 

y n ≤ P R , υ

( 

N ∑ 

n =1 

y n − P R 

) 

= 0 , 

μn ≥ 0 , y n ≥ 0 , μn y n = 0 , ∀ n ∈ { 1 , 2 , . . . , N} . 

(43) 

learly, the above KKT conditions can be solved by

lgorithm 2 along with Algorithms (2.a) and (2.b) and by set-

ing �1 = ∅ and �2 = N . Also, for given λ and υ, the equation
log 2 e 

N 
C n 

1+ C n y n + λg ′ n (y n ) + υ = 0 , ∀ n , is equivalent to a quadratic

olynomial equation and has a closed form solution, which is not

he case if there is a direct link where D n � = 0. 

.4. Asymptotic performance 

roposition 1. If B n > 0 and D n > 0, ∀ n , then as the optimal

ower in each subcarrier becomes large, the end-to-end capacity R
pproaches its upper bound ˜ R , where 

˜ 
 

. = 

1 

N 

N ∑ 

n =1 

log 2 

( 

1 + 

√ 

A n C n 

B n D n 

) 

. (44) 

roof. Given B n > 0 and D n > 0, ∀ n , then as x n and y n , ∀ n , become

arge , γ Rn and γ Dn reduce to 

Rn = 

A n x n 

B n y n 
, (45) 

Dn = 

C n y n 

D n x n 
. (46) 

urthermore, by Lemma 1 , the optimal power allocations x ∗n and y ∗n 
ust be such that γRn = γDn , which leads to 

x ∗n 
y ∗n 

= 

√ 

B n C n 

A n D n 
. (47) 

herefore, one can verify that R → 

˜ R . Since R is an increasing

unction of x ∗n and y ∗n , ˜ R is the upper bound of R . �

It is easy to show that if there is a non-empty subset S 0 such

hat B n D n = 0 and A n C n � = 0 for n ∈ S 0 , i.e., there is one or more

ubcarrier where either the direct link or the self-interference is

bsent while other links are present, then max R → ∞ as P S → ∞
nd P R → ∞ . For example, if A n � = 0, B n � = 0, C n � = 0 but D n = 0 ,

hen we can have y n → ∞ and 

x n 
y n 

→ ∞ such that γR n = 

A n x n 
1+ B n y n =

D n = C n y n → ∞ as P S → ∞ and P R → ∞ . 

.5. Power allocation under rate constraint 

In the previous subsections, we have investigated the optimal

ower allocation under either total power constraint or individual

ower constraint. In this subsection, we consider how to minimize

he total transmitting power under a target end-to-end data rate.

his problem can be formulated as 

min 

x , y 

N ∑ 

n =1 

(x n + y n ) 

s . t . 
1 

N 

N ∑ 

n =1 

log 2 (1 + min { γRn , γDn } ) ≥ R 

∗, 

x n ≥ 0 , y n ≥ 0 , ∀ n ∈ N , 

(48) 

here R 

∗ is the target data rate (which should satisfy R 

∗ < 

˜ R if

 n D n � = 0). 

Applying Lemma 1 and the fact that the system capacity is an

ncreasing function of the total power (see Appendix B ), the above

ptimization problem is equivalent to: 

min 

p 

N ∑ 

n =1 

p n 

s . t . 
1 

N 

N ∑ 

n =1 

log 2 

(
1 + 

A n h n (p n ) 

1 + B n l n (p n ) 

)
= R 

∗, 

p n ≥ 0 , ∀ n ∈ N , 

(49) 

here p n = x n + y n , h n ( p n ) and l n ( p n ) are presented in (13) and

15) . Here, we have transformed an inequality constraint in the

revious form into an equality constraint in the current form, and

educed the number of variables. 
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The KKT conditions of the above problem are: 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 − λn + υM n (p n ) = 0 , ∀ n ∈ N 

λn p n = 0 , ∀ n ∈ { 1 , 2 , . . . , N} 
1 

N 

N ∑ 

n =1 

log 2 

(
1 + 

A n h n (p n ) 

1 + B n l n (p n ) 

)
− R 

∗ = 0 

p n ≥ 0 , λn ≥ 0 , ∀ n ∈ { 1 , 2 , . . . , N} 

(50)

where M n ( p n ) is shown in (18) . Since M n ( p n ) is decreasing with p n ,

a two-layer bisection search algorithm can be formulated (using an

idea similar to that of Algorithm 1 ) to solve (50) . The details of the

algorithm are omitted. 

4. Power allocation for GDF full-duplex relay 

In the previous sections, we have presented power allocation

algorithms based on the carrier-wise decode-forward scheme. We

have seen that the system capacity R is generally saturated as the

power at the source and the relay becomes large. In other words,

the degree of freedom of R is generally zero, i.e., R 

log 2 P 
→ 0 as P =

P S = P R → ∞ . 

In this section, we will investigate the power allocation algo-

rithm for the group-wise decode-forward scheme. For this scheme,

it is easy to show that the system capacity C as in (8) is no longer

upper bounded as the power increases but rather has a degree

of freedom equal to 0.5 if N is even. This degree of freedom is

achieved when one half of the subcarriers are used by the source

for transmission and the other half of the subcarriers are used by

the relay for transmission. In this case, there is no self-interference

at the relay nor interference via the direct link at the destination,

and 

C 
log 2 P 

→ 0 . 5 as P = P S = P R → ∞ . This particular scenario is also

equivalent to a half-duplex relay network. Therefore, the system

capacity C inherently benefits from both the full-duplex mode and

the half-duplex mode. In the following, we will develop fast al-

gorithms for optimal power allocations to maximize C subject to

power constraints. 

Since the source and the relay typically have separated power

sources, the individual power constraint is often more meaning-

ful than the total power constraint. Hence, in this section, we will

only consider the individual power constraint. The power alloca-

tion problem now is: 

max 
x , y 

min 

{ 

1 

N 

N ∑ 

n =1 

log 2 

(
1 + 

A n x n 

1 + B n y n 

)
, 

1 

N 

N ∑ 

n =1 

log 2 

(
1 + 

C n y n 

1 + D n x n 

)} 

s.t. 

N ∑ 

n =1 

x n ≤ P S , 

N ∑ 

n =1 

y n ≤ P R , x n ≥ 0 , y n ≥ 0 , ∀ n ∈ N 

(51)

Lemma 2. Let ( x ∗, y ∗) denote the solution to the problem (51) , it

holds that 

1 

N 

N ∑ 

n =1 

log 2 

(
1 + 

A n x 
∗
n 

1 + B n y ∗n 

)
= 

1 

N 

N ∑ 

n =1 

log 2 

(
1 + 

C n y 
∗
n 

1 + D n x ∗n 

)
. (52)

Proof. The proof is similar to that of Lemma 1 , and is omitted

here. �
Then, the problem (51) can be transformed into: 

min 

x , y 
− 1 

N 

N ∑ 

n =1 

log 2 

(
1 + 

A n x n 

1 + B n y n 

)

s.t. 
1 

N 

N ∑ 

n =1 

log 2 

(
1 + 

A n x n 

1 + B n y n 

)
= 

1 

N 

N ∑ 

n =1 

log 2 

(
1 + 

C n y n 

1 + D n x n 

)
N ∑ 

n =1 

x n ≤ P S , 

N ∑ 

n =1 

y n ≤ P R , x n ≥ 0 , y n ≥ 0 , ∀ n ∈ N . 

(53)

The new optimization problem (53) has the same solution as

he original problem (51) . And the non-differentiable objective

unction in (51) has been transformed into a differentiable one

n (53) . However, the problem (53) is still a non-convex problem.

ere, we propose a two-phase iteration algorithm to find a locally

ptimal solution. This algorithm iterates between a source phase

nd a relay phase. In the source phase, we compute the optimal

ource power allocation with a given relay power allocation; and

n the relay phase, we compute the optimal relay power allocation

or a given source power allocation. The two-phase iteration algo-

ithm is a special case of block coordinate descent type methods , and

s guaranteed to be locally convergent [38] . 

.1. The source-phase computation 

With a given relay power allocation, the problem (53) reduces

o: 

min 

x 
− 1 

N 

N ∑ 

n =1 

log 2 

(
1 + 

A n x n 

1 + B n y n 

)

s.t. 
1 

N 

N ∑ 

n =1 

log 2 

(
1 + 

A n x n 

1 + B n y n 

)
= 

1 

N 

N ∑ 

n =1 

log 2 

(
1 + 

C n y n 

1 + D n x n 

)
N ∑ 

n =1 

x n ≤ P S , x n ≥ 0 , ∀ n ∈ N . 

(54)

This problem is still non-convex. We will now use a sequen-

ial convex programming (SCP) method [39] to relax this non-convex

roblem into a convex problem by sequential linearization. 

Let

(x ) = 

1 

N 

N ∑ 

n =1 

log 2 

(
1 + 

A n x n 

1 + B n y n 

)
− 1 

N 

N ∑ 

n =1 

log 2 

(
1 + 

C n y n 

1 + D n x n 

)
(55)

y the first order Taylor’s series expansion around x = x (k ) , H ( x )

an be approximated as: 

H T (x , x 

(k ) ) = H(x 

(k ) ) + (∇ H(x 

(k ) ) ) T (x − x 

(k ) ) 

= H(x 

(k ) ) + 

N ∑ 

n =1 

φn (x n − x (k ) 
n ) , 

(56)

here 

n = 

log 2 e 

N 

(
A n 

1 + A n x 
(k ) 
n + B n y n 

− D n 

1 + D n x 
(k ) 
n + C n y n 

+ 

D n 

1 + D n x 
(k ) 
n 

)
(57)
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We compute the updated estimate x (k +1) by the following: 

x 

k +1 = arg min 

x 

{ 

− 1 

N 

N ∑ 

n =1 

log 2 

(
1 + 

A n x n 

1 + B n y n 

)} 

s.t. H T (x , x 

(k ) ) = 0 , 

N ∑ 

n =1 

x n ≤ P S , 

x n ≥ 0 , ∀ n ∈ N . 

(58) 

he Lagrangian function of this problem is: 

 (x , λ, υ, μ) = − 1 

N 

N ∑ 

n =1 

log 2 

(
1 + 

A n x n 

1 + B n y n 

)

+ λH T (x , x 

(k ) ) + υ

( 

N ∑ 

n =1 

x n − P S 

) 

− μT x . (59) 

he KKT conditions of (58) are: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂L 

∂ x n 
= − log 2 e 

N 

A n 

1 + A n x n + B n y n 
+ λφn + υ − μn = 0 , 

H T (x , x 

(k ) ) = 0 , 

υ ≥ 0 , 

N ∑ 

n =1 

x n − P S ≤ 0 , υ

( 

N ∑ 

n =1 

x n − P S 

) 

= 0 , 

x n ≥ 0 , μn ≥ 0 , μn x n = 0 , ∀ n ∈ N . 

(60) 

rom the first equation of (60) , if λ is fixed, υ is a decreasing func-

ion of x n , and if υ is fixed, λ is also a decreasing function of x n .

ence, the conditions of (60) can be solved by a two-dimensional

isection search, which is summarized as Algorithm 3 . 

lgorithm 3 Two-dimensional bisection search to find the solu-

ion to (60) . 

nput: 
A n , B n , C n , D n , y n , ∀ n ∈ N ; 
Source power constraint P S ; 
Accuracy threshold ε. 

utput: 
1: Set υ = 0 , bisection search of λ and x to meet

H T (x , x 

(k ) ) = 0 ; 
2: if 

∑ N 
1 x n < P S then 

3: return x ; 
4: else 

5: while (1) do 

6: Bisection search of λ and x to meet H T (x , x 

(k ) ) = 0
for given υ; 

7: Bisection search of υ and x to meet 
∑ N 

1 x n = P S for
given λ; 

8: if | H T (x , x 

(k ) | < ε then 

9: break ; 
10: end if 
11: end while 

12: return x . 
13: end if 
.2. The relay-phase computation 

With a given source power allocation, the problem (53) reduces

o 

min 

y 
− 1 

N 

N ∑ 

n =1 

log 2 

(
1 + 

C n y n 

1 + D n x n 

)

s.t. 
1 

N 

N ∑ 

n =1 

log 2 

(
1 + 

A n x n 

1 + B n y n 

)
= 

1 

N 

N ∑ 

n =1 

log 2 

(
1 + 

C n y n 

1 + D n x n 

)
N ∑ 

n =1 

y n ≤ P R , y n ≥ 0 , ∀ n ∈ N . 

(61) 

This problem is similar to that of (54) and can be solved by a

imilar algorithm as Algorithm 3 . We will omit the details. 

.3. Initialization 

The two-phase iteration algorithm is locally convergent. The re-

ult of the algorithm may depend on the initialization of x n , y n ,

 n . There are many possible ways to do the initialization. We have

ried two as follows: 

Method 1: x n ∀ n is such that R SR = 

1 
N 

∑ N 
n =1 log 2 (1 + A n x n ) is

aximized subject to 
∑ N 

n =1 x n ≤ P S . And y n ∀ n is such that R RD =
1 
N 

∑ N 
n =1 log 2 (1 + C n y n ) is maximized subject to 

∑ N 
n =1 y n ≤ P R . This

ethod effectively ignores all the interferences at the relay and the

estination. 

Method 2: x n ∀ n is such that R SR is maximized subject to
 N 
n =1 x n ≤ P S and x n = 0 , ∀ n / ∈ N x . And y n ∀ n is such that R RD 

s maximized subject to 
∑ N 

n =1 y n ≤ P R and y n = 0 , ∀ n / ∈ N y . Here,

 x 
⋃ 

N y = N , and N x is half (or approximate half if N is odd) of

he set N . In the simulation, we will choose N to be even and

 x = { 1 , · · · , N 2 } . 
By simulation, we have found that the optimal results starting

rom the two methods of initialization are somewhat different. In

he higher power region, e.g., the per subcarrier power is �P >

0 dB, method 2 is better. But in the lower power region, e.g.,

P < 40 dB, method 1 is better. Our explanation is that at higher

ower the frequency-division half-duplex is closer to the globally

ptimal solution, but at lower power the impact of interferences

t the relay and the destination is relatively small. We have used

ethod 1 for all simulation examples except Fig. 13 . In this figure,

e used both methods of initialization and then chose the better

esult. 

. Simulation and discussion 

All algorithms developed in this paper have been tested in

atlab successfully. For the case of carrier-wise decode-forward,

ll the problems formulated have been reduced equivalently to

heir convex versions, and hence the globally optimal solutions are

chieved by our algorithms. For the case of group-wise decode-

orward, locally optimal solutions are obtained by our algorithms.

ince our algorithms are designed with a full exploitation of the

roblem structures, they are much faster than using a general pur-

ose convex optimization package and more suitable for real-time

pplications where channel gains/attenuations may change rapidly.

For the simulation examples to be shown, we choose the chan-

el parameters based on h SR ∼ CN (0 , σ 2 
SR I ) , h RR ∼ CN (0 , σ 2 

RR I ) ,

 RD ∼ CN (0 , σ 2 
RD 

I ) , and h SD ∼ CN (0 , σ 2 
SD 

I ) . We let P Total = N�P 

here �P denotes the per-subcarrier power. We set N = 8 , σ 2 
SR 

=
2 
RD = 0 dB, σ 2 

RR = −10 dB and σ 2 
SD = −20 dB for all examples un-

ess stated otherwise. 
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Fig. 3. Optimal capacity R vs. per-subcarrier power �P under individual power 

constraint. Averaged over 100 channel realizations. OA denotes optimal allocation, 

and UA uniform allocation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Optimal capacity R vs. per-subcarrier power �P under total power con- 

straint. Averaged over 100 channel realizations. 

Fig. 5. Optimal total power (in dB) vs. optimal capacity under either total power 

constraint or capacity (rate) constraint . One channel realization. 
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5.1. Carrier-wise decode-forward 

Shown in Fig. 3 are the results under individual power con-

straint with three different values of λ such that P S = λP Total and

P R = (1 − λ) P Total . We see that for each value of λ, the optimal allo-

cation of powers by the optimization algorithm yields much higher

capacity than uniform allocation of powers. With the direct link,

Fig. 3 (a) shows that as the power increases the system capacities

based on optimal allocations all converge to their common upper

bound 

˜ R while the system capacities based on uniform allocation

saturate at values much smaller than 

˜ R . Without the direct link,

Fig. 3 (b) shows that the system capacities based on optimal allo-

cation do not saturate while those based on uniform allocation still

saturate. 

Shown in Fig. 4 are the results under total power constraint.

Both the cases with and without the direct link are shown in this
gure. Like Fig. 3, Fig. 4 also suggests that the capacity gap be-

ween optimal allocation and uniform allocation is significant. 

Shown in Fig. 5 are two identical curves of optimal total power

ersus optimal capacity achieved either by maximizing the capacity

ubject to a total power constraint N �P or by minimizing the to-

al power subject to a capacity constraint R . We see that the two

urves are identical as expected. It should be noted that, due to

ogarithmic scale of P Total , the curve shown in this figure does not

uggest that the capacity R increases with P Total faster in the lower

ower region than in the higher power region. In fact, the contrary

s true. 

In practice, the number of subcarriers can be large. But there

s a good reason not to perform optimal power allocation over the

ntire set of subcarriers. Shown in Fig. 6 are curves of the optimal

apacity R versus the number of subcarriers N under individual

ower constraint. Shown in Fig. 7 are curves of the same but under

otal power constraint. We see that the impact of N is small when
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Fig. 6. Optimal capacity vs. the number of subcarriers under individual power con- 

straint. Averaged over 10 0 0 channel realizations. 

Fig. 7. Optimal capacity vs. the number of subcarriers under total power constraint. 

Averaged over 10 0 0 channel realizations. 
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Fig. 8. Optimal allocation vs. sub-optimal (simplified) allocation under individual 

power constraint. N = K�N = 16 and P S = P R = 0 . 5 P Total = 0 . 5 N�P. Averaged over 

100 channel realizations. 

Fig. 9. Optimal allocation vs. sub-optimal (simplified) allocation under total power 

constraint. N = K�N = 16 and P Total = N�P. Averaged over 100 channel realizations. 
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12 If �P becomes very large, the impact of N on optimal power allocation dimin- 

ishes. 
 is large. 12 This suggests a possible way to reduce the complexity

s shown next. 

The complexity of Algorithm 1 is: 

 

(
log 2 

(
P 

ε 

)
· N · log 2 

(
P 

ω 

))
. (62) 

here ε is the precision threshold of the first layer bisection

earch, and ω is the same of the second layer bisection search

which solves M n (p n ) = υ for p n when given upsilon ). The com-

lexity scales mostly linearly with N . For a large N , we can reduce

he complexity with little loss of performance by dividing the N

ubcarriers into several smaller groups. All these groups can be

andled in parallel with equal shares of total powers, and each

roup can be handled more efficiently in computation. For better

iversity, the subcarriers from different groups may need to inter-

eave with each other. 
The performances shown in Figs. 8 and 9 are examples of the

bove simplified approach with N = K�N = 16 , i.e., K groups with

ach group containing �N subcarriers. We see that for �N = 4 , the

implified approach is very close in performance to the optimal ap-

roach. Note that when �N = 1 , the total power is divided evenly

mong all N subcarriers. But unlike uniform allocation which is also

hown in these two figures, the simplified approach optimally ad-

usts the power in each subcarrier for both the source and the re-

ay. For this reason, the simplified approach even with �N = 1 is

ar better than the uniform distribution of power. 

.2. Group-wise decode-forward 

Shown in Fig. 10 are four curves of the optimal capacity C ver-

us the per-subcarrier power �P of the relay system with group-
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Fig. 10. Optimal capacity C vs. per-subcarrier power �P of group-wise decode- 

forward. Averaged over 100 channel realizations. OA means optimal allocation of 

power, and UA means uniform allocation of power. 

Fig. 11. R Hal f−dupl ex , R = R Ful l −dupl ex and C = C Ful l −dupl ex versus σ 2 
RR . Averaged over 

100 channel realizations. �P = 30 dB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Optimal power allocation results at source and relay for the group-wise 

protocol when �P = 30 dB. The horizontal axis n indicates the n th subcarrier. 

Fig. 13. Five optimized capacities versus �P . Averaged over 100 channel realiza- 

tions. 
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13 Due to the noise via the direct link, C < 2 R Hal f−dupl ex even if σ 2 
RR = 0 . 
wise decode-forward and individual power constraint. The four

curves correspond to the four cases: UA (uniform allocation of

power) at both the source and the relay; OA (optimal allocation

of power) at the source and UA at the relay; and OA at both the

source and the relay via the two-phase iteration. We see that in

the low power region the optimization for the relay alone is as

good as the optimization for both the source and the relay. This is

because the noise caused by the self-interference at the relay (with

σ 2 
RR = −10 dB) is stronger than the noise caused by the source via

the direct link (with σ 2 
SD 

= −20 dB). But in the high power re-

gion, the joint optimization becomes important. This is because

the noise caused by the source via the direct link increases as the

power from the source increases. 

5.3. Comparison of R Hal f−dupl ex , R , C and more 

While keeping σ 2 
SR = σ 2 

RD = 0 dB and σ 2 
SD = −20 dB, we now let

σ 2 be a variable. Shown as Fig. 11 is a comparison of the (maxi-

RR 
ized) capacities of the half-duplex scheme R Hal f−dupl ex , the full-

uplex scheme with carrier-wise decode-forward R and the full-

uplex scheme with group-wise decode-forward C as the strength
2 
RR of the self-interference channel varies. We see that R Hal f−dupl ex 

tays constant as expected while both R and C decrease as σ 2 
RR 

in-

reases. However, C always stays higher than R Hal f−dupl ex no mat-

er how large σ 2 
RR 

becomes. 13 This is because, with optimal power

llocation based on group-wise decode-forward, the relay sys-

em automatically transforms into frequency-division half-duplex

s σ 2 
RR 

becomes large. 

Fig. 12 confirms the transformation. Fig. 12 (a) shows the op-

imal power allocation results when the self-interference is weak

 σ 2 
RR = −20 dB). In this case, all subcarriers are fully occupied by

oth the source and the relay for transmission. Fig. 12 (b) shows the

ame but when the self-interference is strong ( σ 2 = 0 dB). In this
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ase, the source uses one half of the subcarriers for transmission

nd the relay uses mostly the other half for transmission. Yet, the

rd subcarrier is still utilized by the relay in the full-duplex mode.

n other words, the optimized C benefits from both half-duplex and

ull-duplex, and hence is always larger than R Hal f−dupl ex . 

In Fig. 13 , we compare the five optimized capacities (as �P

aries): the direction transmission from the source to the relay

 direct , the half-duplex decode-forward scheme R Hal f−dupl ex , the

ull-duplex carrier-wise decode-forward R = R F ul l −dupl ex , the full-

uplex group-wise decode-forward C = C F ul l −dupl ex and the hybrid

cheme R Max = max (R direct , C) . We see that, when the power is

ery high (e.g., �P > 50 dB), the direction transmission scheme

utperforms all other schemes as expected. We also see that, in the

igh power region, C and R Hal f−dupl ex move in parallel, which is

lso expected since both have the degree of freedom equal to 1 
2 . In

ractice, we can hardly afford to have �P > 50 dB due to limited

ower resources as well as constrained interference to other neigh-

oring networks. For moderate power levels, e.g., �P < 30 dB, we

ee that both R and C exceed R Hal f−dupl ex and R direct . 

. Conclusion 

In this paper, we have explored the optimal power allocation

roblems of a dual-hop multi-carrier relay system using a decode-

orward full-duplex relay. We allow the presence of the direct

ink from the source to the destination and a residual level of

elf-interference at the full-duplex relay. We have considered two

chemes of multi-carrier decode-forward: carrier-wise and group-

ise. For the carrier-wise scheme, we have transformed the origi-

al problems into equivalent convex problems and developed fast

lgorithms to find the exact optimal solutions. For the group-wise

cheme, we have developed a locally convergent fast algorithm.

he simulation results based on our algorithms consistently show

hat both schemes yield higher system capacities than the half-

uplex scheme at power levels where the half-duplex scheme out-

erforms the direct transmission via the direct link. 

The algorithms developed require channel amplitude informa-

ion but not channel phase information. The coding schemes on

hich the power allocation problems in this paper are formulated

ave a standard complexity without the need for dirty paper cod-

ng at transmitters and/or successive interference cancellation at

eceivers. The optimal power allocation algorithms based on both

 F ul l −dupl ex and C F ul l −dupl ex are important. We believe that the in-

ights shown in this paper can be applied to solve many other re-

ated problems. 

ppendix A. Proof of Lemma 1 

Note that γ Rn increases with x n and decreases with y n , while

Dn decreases with x n and increases with y n . Let (x ∗n , y ∗n ) denote

he optimal power allocation of the n th subcarrier, which maxi-

izes min { γR n , γD n } . If γRn (x ∗n , y ∗n ) > γDn (x ∗n , y ∗n ) , we could increase

Dn (x ∗n , y ∗n ) and hence min { γR n , γD n } by reducing x ∗n . If γRn (x ∗n , y ∗n ) <
Dn (x ∗n , y ∗n ) , we could increase γRn (x ∗n , y ∗n ) and hence min { γR n , γD n }
y reducing y ∗n . Therefore, we must have γRn (x ∗n , y ∗n ) = γDn (x ∗n , y ∗n ) . 

ppendix B. Proof of the monotone property of M n ( p n ) 

In this appendix, we will prove that the function M n ( p n ) defined

n (18) is decreasing with respect to p n ∈ [0 , + ∞} . To simply the

xpression, we ignore the subscript n in the following. 

Taking the derivative of M ( p ), we have 

 

′ (p) = 

log 2 e 

N 

α′ (p) β(p) − α(p) β ′ (p) 

β2 (p) 
, (B.1) 
here 

α(p) = Ah 

′ (p)(1 + Bl(p)) − ABh (p) l ′ (p) , 

α′ (p) = Ah 

′′ (p) + AB (h 

′′ (p) l(p) − h (p) l ′′ (p)) , 

β(p) = (1 + Bl(p)) 2 + Ah (p)(1 + Bl(p)) , 

β ′ (p) = (1 + Bl (p))(2 Bl ′ (p) + Ah 

′ (p)) + ABh (p) l ′ (p) . 

(B.2) 

ase 1 where AD − BC � = 0 : It follows that 

h 

′ (p) = 

1 

AD − BC 

[
−BC + 

AC(B + D ) + 2 ABCDp 

�3 

]
, 

h 

′′ (p) = 

2 AC(AB − CD ) 

�3 
3 

, 

l ′ (p) = 

1 

AD − BC 

[
AD − AC(B + D ) + 2 ABCDp 

�3 

]
, 

l ′′ (p) = 

−2 AC(AB − CD ) 

�3 
3 

, 

�3 = 

√ 

(A + C) 2 + 4 ACp(B + D ) + 4 ABCDp 2 . 

(B.3) 

n this case, there are three subcases as discussed below: 

Subcase 1 where AB < DC : We see that h ′ ′ ( p ) < 0. Given

lim 

p→ + ∞ 

h ′ (p) = 

√ 

BC √ 

BC + 
√ 

AD 
> 0 , so h ′ (p) > 0 , ∀ p ∈ [0 , + ∞ ) . We also see

hat l ′ ′ ( p ) > 0 and l ′ (0) = 

A 
A + C > 0 , and hence l ′ (p) > 0 , ∀ p ∈

0 , + ∞ ) . Since h ( p ) > 0 and l ( p ) > 0, so we have α′ ( p ) < 0, β( p )

 0 and β ′ ( p ) > 0. Moreover, because α′ ( p ) < 0 and lim 

p→ + ∞ 

α(p) =
A ( 

√ 

BCD + B 
√ 

A ) 

2( 
√ 

BCD + D 
√ 

A ) 
> 0 , we have α( p ) > 0. Therefore, M 

′ ( p ) < 0, i.e., M ( p )

s decreasing with p . 

Subcase 2 where AB = DC: We have h ′′ (p) = l ′′ (p) = 0 , h ′ (p) =
B 

B + D , l ′ (p) = 

D 
B + D , and α(p) = 

AB 
B + D . Since h ( p ) > 0 and l ( p ) > 0, it

ollows that α( p ) > 0, α′ (p) = 0 , β( p ) > 0, and β ′ ( p ) > 0. Thus,

 

′ ( p ) < 0. 

Subcase 3 where AB > DC : By γR = γD in the Eq. (12) , M ( p ) can

e written as: 

(p) = 

log 2 e 

N 

· Cl ′ (p)(1 + Dh (p)) − CDl(p) h 

′ (p) 

(1 + Dh (p)) 2 + Cl(p)(1 + Dh (p)) 
. (B.4) 

aking the derivative, we have 

 

′ (p) = 

log 2 e 

N 

· ˆ α′ (p) ̂  β(p) − ˆ α(p) ̂  β ′ (p) 

ˆ β2 (p) 
, (B.5) 

here 

ˆ α(p) = Cl ′ (p)(1 + Dh (p)) − CDl(p) h 

′ (p) , 

ˆ α′ (p) = Cl ′′ (p) + CD (l ′′ (p) h (p) − l(p) h 

′′ (p)) , 

ˆ β(p) = (1 + Dh (p)) 2 + Cl(p)(1 + Dh (p)) , 

ˆ β ′ (p) = (1 + Dh (p))(2 Dh 

′ (p) + Cl ′ (p)) + CDl(p) h 

′ (p) . 

(B.6) 

ecause AB > DC , l ′ ′ ( p ) < 0. Since lim 

p→ + ∞ 

l ′ (p) = 

√ 

AD √ 

BC + 
√ 

AD 
> 0 , so

 

′ (p) > 0 , ∀ p ∈ [0 , + ∞ ) . Similarly, we have h ′ ′ ( p ) > 0 and h ′ (0) =
C 

A + C > 0 . Hence, h ′ (p) > 0 , ∀ p ∈ [0 , + ∞ ) . By the fact that h ( p ) >

, l ( p ) > 0, we have ˆ α′ (p) < 0 , ˆ β(p) > 0 , and 

ˆ β ′ (p) > 0 . More-

ver, because ˆ α′ (p) < 0 and lim 

p→ + ∞ 

ˆ α(p) = 

C( 
√ 

ABD + D √ 

C ) 

2( 
√ 

ABD + B √ 

C ) 
> 0 , we ob-

ain that ˆ α(p) > 0 . Therefore, M 

′ ( p ) < 0. 
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Case 2 where AD − BC = 0 : We have 

h 

′ (p) = 

C(A + C) + 2 BC(A + C) p + 2 B 

2 C 2 p 2 

(A + C + 2 BCp) 2 
, 

h 

′′ (p) = 

2 BC (A 

2 − C 2 ) 

(A + C + 2 BCp) 3 
, 

l ′ (p) = 

A (A + C) + 2 BC(A + C) p + 2 B 

2 C 2 p 2 

(A + C + 2 BCp) 2 
, 

l ′′ (p) = 

2 BC (C 2 − A 

2 ) 

(A + C + 2 BCp) 3 
. 

(B.7)

We also have the following three subcases: 

Subcase 1 where A < C : Then h ′ ′ ( p ) < 0. Given lim 

p→ + ∞ 

h ′ (p) = 

1 
2 >

0 , hence h ′ ( p ) > 0. Because l ′ ′ ( p ) > 0 and l ′ (0) = 

A 
A + C > 0 , we have

l ′ ( p ) > 0. Since h ( p ) > 0 and l ( p ) > 0, we have α′ ( p ) < 0, β( p ) > 0,

and β ′ ( p ) > 0. Since α′ ( p ) < 0 and lim 

p→ + ∞ 

α(p) = 

A 2 + AC 
4 C > 0 , it holds

that α( p ) > 0. Therefore, M 

′ ( p ) < 0. 

Subcase 2 where A = C: we have h ′′ (p) = l ′′ (p) = 0 , h ′ (p) = 

1 
2 ,

l ′ (p) = 

1 
2 , and α(p) = 

A 
2 . Since h ( p ) > 0 and l ( p ) > 0, it follows

that α( p ) > 0, α′ (p) = 0 , β( p ) > 0, and β ′ ( p ) > 0. Therefore M 

′ ( p )
< 0. 

Subcase 3 where A > C : we can write M ( p ) as (B.4) and the

derivative of M ( p ) as (B.5) . Because A > C , we have l ′ ′ ( p ) < 0. Given

lim 

p→ + ∞ 

l ′ (p) = 

1 
2 > 0 , then l ′ ( p ) > 0. By h ′ ′ ( p ) > 0 and h ′ (0) = 

C 
A + C >

0 , we have h ′ ( p ) > 0. By h ( p ) > 0 and l ( p ) > 0, we have ˆ α′ (p) <

0 , ˆ β(p) > 0 , and 

ˆ β ′ (p) > 0 . Because ˆ α′ (p) < 0 and lim 

p→ + ∞ 

ˆ α(p) =
C 2 + AC 

4 A 
> 0 , we obtain that ˆ α(p) > 0 . Therefore, M 

′ ( p ) < 0. 

Finally, we prove that M ( p ) is decreasing with p . Note that,

by the fact that M ( p ) is the derivative of 1 
N log 2 (1 + 

Ah (p) 
1+ Bl(p) 

) and

lim 

p→ + ∞ 

M(p) = 0 , it is true that M ( p ) > 0 which means 1 
N log 2 (1 +

Ah (p) 
1+ Bl(p) 

) is increasing with p , so the system capacity (or the objec-

tive function in (11) ) is increasing with P Total . 

Appendix C. Proof of convexness of J 1 and J 2 

To prove the convexness of J 1 and J 2 shown in (30) and (31) ,

let F n (x n ) = − ∂J 1 
∂x n 

and G n (y n ) = − ∂J 2 
∂y n 

. We only to prove that F n ( x n )

and G n ( y n ) are both decreasing functions. The proof of each case is

similar to the other. So, we will only focus on F n ( x n ). 

To simplify the expressions, we will ignore the subscript n in

the following derivations. The derivative of F ( x ) with respect to x

is 

F ′ (x ) = 

log 2 e 

N 

· α(x ) β(x ) − φ(x ) ψ(x ) 

(ϕ 

2 (x ) + Axϕ(x )) 2 
, (C.1)

where 

α(x ) = −ABx f ′′ (x ) , 

β(x ) = ϕ 

2 (x ) + Axϕ(x ) , 

φ(x ) = 

A 

2 

(1 + 

C + 2 ABx 

�1 

) , 

ψ(x ) = B f ′ (x )(2 ϕ(x ) + Ax ) + Aϕ(x ) , 

ϕ(x ) = 1 + B f (x ) ;

f ′ (x ) = 

A + 2 ADx 

�1 

, 

f ′′ (x ) = 

2 AC(DC − AB ) 

�3 
1 

, 

�1 = 

√ 

C 2 + 4 ABCx + 4 ABCDx 2 . 

(C.2)

For DC ≥ AB and x ≥ 0, we have 

α(x ) ≤ 0 , β(x ) > 0 , φ(x ) > 0 , ψ(x ) > 0 , ϕ(x ) > 0 . (C.3)
hen, we obtain F ′ ( x ) < 0. 

Based on Eq. (23) , F ( x ) can be transformed into another form:

 (x ) = 

log 2 e 

N 

· C f ′ (x )(1 + Dx ) − CD f (x ) 

( 1 + Dx ) 2 + C f (x )(1 + Dx ) 
, (C.4)

aking its derivative with respect to x , we have 

 

′ (x ) = 

1 

N 

· ˆ α(x ) ̂  β(x ) − ˆ φ(x ) ˆ ψ (x ) 

( ̂  ϕ 

2 (x ) + C f (x ) ̂  ϕ (x )) 2 
, (C.5)

here, 

ˆ α(x ) = C(1 + Dx ) f ′′ (x ) , 

ˆ β(x ) = ˆ ϕ 

2 (x ) + C f (x ) ̂  ϕ (x ) , 

ˆ φ(x ) = 

ABC(2 Dx + 1) + C(AB − CD ) 

2 B �1 n 

+ 

CD 

2 B 

, 

ˆ ψ (x ) = ˆ ϕ (x )(2 D + C f ′ (x )) + CD f (x ) , 

ˆ ϕ (x ) = 1 + Dx ;

f ′ (x ) = 

A + 2 ADx 

�1 

, 

f ′′ (x ) = 

2 AC(DC − AB ) 

�3 
1 

. 

(C.6)

Now we see that for DC < AB and x ≥ 0, we have 

ˆ α(x ) < 0 , ˆ β(x ) > 0 , ˆ φ(x ) > 0 , ˆ ψ (x ) > 0 , ˆ ϕ (x ) > 0 , (C.7)

hich again imply that F ′ ( x ) < 0. 

Similarly, we can also prove that G n ( y n ) is decreasing with re-

pect to y n ∈ [0 , + ∞} . 
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