
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 8, AUGUST 2011 3863

On Energy for Progressive and Consensus Estimation
in Multihop Sensor Networks
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Abstract—This paper addresses a transmission energy problem
for distributed (or decentralized) estimation in multihop wireless
sensor networks (WSN). A primary advantage of distributed esti-
mation is its energy efficiency when compared to centralized esti-
mation. Two distributed estimation schemes are considered in this
paper: progressive estimation and consensus estimation. We de-
velop a generalized energy planning algorithm for a progressive
estimation method which exploits routing tree and channel state
information. We also analyze the energy cost for a consensus esti-
mation method used in broadcast multihop WSN. We demonstrate
by analysis and simulation that, subject to an equivalent perfor-
mance, the total energy cost for consensus estimation is typically
much higher than that for progressive estimation, but the peak en-
ergy for the former can be less than that for the latter.

Index Terms—Broadcast network, consensus estimation, decen-
tralized estimation, distributed estimation, energy and power plan-
ning, multihop sensor networks, network with routing tree, net-
work without routing tree, peer-to-peer network, progressive esti-
mation, wireless sensor networks (WSN).

I. INTRODUCTION

W E consider a wireless sensor network (WSN) where
each sensor is a device capable of sensing, computing,

and wireless communication. Although the energy cost for
sensing and computing can be reduced by improving the
performance of individual devices, the energy cost for commu-
nication is dominated by networking architectures, data fusion
protocols and channel characteristics between devices. In this
paper, we study the energy cost for communication in WSN by
jointly considering networking architecture, data fusion method
and channel energy model.

There appear three basic architectures for WSN: single-hop
network with fusion center, multihop network with fusion
center, and peer-to-peer or broadcast multihop network without
fusion center. Many other architectures can be formed by
combinations of the three.
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In a single-hop WSN with fusion center, data are directly
transmitted from sensors to a fusion center before data fusion
(i.e., estimation and/or detection) takes place. In recent years,
there have been many research activities on distributed esti-
mation methods aimed to reduce the communication cost for
single-hop WSN, e.g., see [1]–[8]. However, single-hop WSN
is often not an energy efficient architecture especially when the
network is flat or more generally when the ratio of the distance
between a sensor to the fusion center over the distance between
adjacent sensors is large.

To reduce the transmission energy cost in a flat network, a
data packet can be relayed from one sensor to another until it
reaches a fusion center. This is a multihop WSN. The multihop
architecture is generally more efficient in energy than the
single-hop architecture for a flat network. However, if the data
packets are not compressed as they hop towards the fusion
center, the sensors near the fusion center can be over burdened,
which is a bottleneck effect. To solve this problem, progressive
estimation [10] is a useful idea where data are fused together
as they hop from one sensor to another along a routing path.
This idea resembles an earlier notion known as decentralized
detection in [9]. To further reduce the energy cost at all sensors,
the optimization of the number of bits used for quantization
at each sensor has been shown in [11] and [12] to be very
effective.

A peer-to-peer or broadcast multihop network is useful for
situations where there is no centralized control or the network
is too dynamic to be regulated centrally. A major approach for
distributed fusion in peer-to-peer or broadcast multihop network
is known as consensus estimation where sensors exchange in-
formation with their neighbors and iteratively update their own
information. There are numerous articles in this area, e.g., see
[14]–[33]. Although consensus estimation does not require cen-
tralized control, the rate of its convergence to a desired result de-
pends on the network topology. Without the knowledge of the
network topology or some global statistical information, a node
in the network cannot know when an updated information is re-
liable enough.

In this paper, we present two contributions.
First, we develop a generalized energy planning algorithm for

progressive estimation in multihop WSN with fusion center. We
assume that a central planner has the knowledge of a routing
tree and the channel gains of all communication links for a time
window of interest. The purpose of the central planner is to de-
termine a bit allocation for each sensor such that the energy cost
of the network is minimized subject to a predetermined estima-
tion quality at the fusion center. The bit allocation determines
the number of bits required for quantization of each estimated
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parameter at each sensor as well as the number of bits required
for transmission through each subchannel from each sensor. The
results in this paper are much stronger than that in [12] because
we will use the exact channel energy model (not an upper bound)
and optimize both quantization and transmission bit allocation
(not just quantization bit allocation). We also consider an im-
portant special case where the transmission energy is modeled
as a linear function of the number of bits transmitted.

Second, we study the energy cost for consensus estimation in
a broadcast multihop WSN subject to a pre-given performance.
This allows a comparison between progressive estimation and
consensus estimation in terms of energy cost. It will be shown
that progressive estimation consumes much less total energy
than consensus estimation although the latter has an advantage
in terms of the largest amount of energy cost by individual sen-
sors. This work appears the first that reveals that there are more
energy-efficient estimation schemes than consensus estimation.

In Section II, we review briefly the principle of progressive
estimation for multihop WSN and then formulate an energy
planning problem that is more general than that in [12]. In
Section III, we develop an efficient algorithm for solving the
energy planning problem. In Section IV, a simpler energy
planning algorithm is presented for the linear energy model. In
Section V, we introduce a consensus estimation algorithm for
a broadcast multihop WSN under a similar channel condition
used for progressive estimation. In Section VI, we investigate a
minimized energy cost for consensus estimation. In Section VII,
we present simulation examples to compare the minimized
energy cost for consensus estimation with that for progressive
estimation. We also illustrate the effects of several key param-
eters used in consensus estimation on its performance. The
conclusion is given in Section VIII.

II. PROGRESSIVE ESTIMATION

A. Estimation Protocol

A multihop WSN with a routing tree is illustrated in Fig. 1.
We denote by as the unknown deterministic param-
eter vector of interest during a sampling window of the network,
and as the initial estimate of at sensor in the sampling
window. Here, . We assume that
and where denotes expecta-
tion and is known.

For progressive estimation, sensor performs a fusion only
once within one sampling window. Namely, after sensor re-
ceives the quantized estimates of from all its upstream sensors,
it performs a fusion and a quantization and then forwards its
quantized new estimate to its downstream sensor. More specif-
ically, let be the quantized new estimate at sensor , be
the set of the indices of the upstream sensors of sensor , and

be the size of . The new estimate at sensor is

(1)

This is an estimate by simple average. More advanced estimate
such as the best linear unbiased estimate (BLUE) or minimum

Fig. 1. A multihop sensor network of 400 nodes used for all simulation exam-
ples. The routing tree shown here is for progressive estimation, where the fusion
center is at the center of the network. For consensus estimation, the routing tree
is not needed, each sensor broadcasts its data to its neighbors (assuming no col-
lision), and the neighborhood of each sensor is defined below (37).

mean squared error (MMSE) estimate could be used here. But
it would make it very hard (if not impossible) to establish an
energy planning algorithm as shown later. In this paper, we only
consider estimation by average.

The quantization of into is done element-wise by
the uniform probabilistic quantization as in [2]. In this case,
we have and

where ,
is the number of bits used to quantize the th element
of , and we assume . Here,

is the expectation with respect to the quantization error only, or
equivalently conditional upon . Consequently, we have from
(1) that and

(2)

At the fusion center denoted by sensor , we do not need to
quantize , and its covariance matrix is denoted by . By
using (2), it follows (also shown in [12]) that

(3)

where , and for . Note that in
order to calculate for all , one should start with the fusion
center where and then proceed outwards recursively.
The actual values of depend on the routing tree. Taking the
trace of (3), we have the mean squared error (MSE) equation

MSE (4)

where which is invariant to
.
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If MSE is the desired MSE value at the destination node,
then the choice of for and
must satisfy

(5)

where MSE .

B. Communication Protocol

As implied by the estimation protocol shown above, the com-
munication protocol is such that within a sampling window,
the leaf sensors act first by quantizing their initial estimates
and transmitting the quantized estimates to their downstream
nodes. Each of all other nodes acts accordingly after it receives
the quantized estimates from all of its upstream sensors. Fur-
thermore, we assume that there is no (or virtually no) colli-
sion among the transmissions, which can be achieved by var-
ious medium access control schemes, e.g., see [34], [35], and
the references therein.

The total number of bits to be transmitted from sensor to
its downstream sensor is . If there are trans-
mission bandwidth and transmission time for any sensor,
we can partition it into a set of subchannels where is well
known to be no larger than the time-bandwidth product .
The number of bits that can be transmitted over the th sub-
channel is

(6)

where is a penalty factor due to the heading of
data packet, is the energy used for transmission in the th
subchannel from sensor , and . Here, is the
noise spectral density of the RF communication channel,
is the gain of the th subchannel from sensor , is
a penalty factor due to practical digital coding, and is
a factor due to analog waveform modulation [12]. In terms of
maximizing subject to being a constant,
we can let without loss of generality. Then, assuming

and writing in terms of , we have

(7)

C. Energy Planning Problem

In the next section, we will solve the following optimization
problem to determine and for ,

, and :

(8)

subject to

(9)

for all (10)

for all and (11)

where and is the th norm of all components of the
energy cost in the network. If we choose , the cost corre-
sponds to the sum energy. If we choose a large , the cost cor-
responds approximately to the largest component of the energy
cost.

The problem (8) is more general than that formulated in [12]

where was replaced by its upper bound , and
was chosen to be invariant to the subchannel index assuming
that is invariant to . If denotes a frequency subchannel
and is large, typically depends on . So, it is important
to treat as a function of in general. Consequently, (8)
involves two types of bit allocations. One is bit allocation for
quantization of estimates, which is represented by . The
other is bit allocation for transmission of estimates, which is
represented by . The relationship between and is

not trivial except .
It is also useful to note that for the special case , the sub-

problem subject to being a constant,

or its dual subject to being a con-
stant, has the well known waterfilling solution. But (8) is much
more complex.

One can verify that if and are treated as real num-
bers, (8) is convex. The proof is given in Appendix I. Hence, the
globally optimal solution to the problem, assuming real
and , can be found. If a general-purpose convex optimiza-
tion program such as in Matlab, the computational speed is very
slow. In the next section, we present a much more efficient al-
gorithm to solve this problem.

III. ENERGY PLANNING FOR PROGRESSIVE ESTIMATION

In this section, we develop an energy planning algorithm for
progressive estimation by solving (8). To distinguish this algo-
rithm from that in [12], we call this algorithm the generalized
algorithm. To solve (8), we apply the KKT method [36]. The
complete set of the KKT equations for (8) are given by

for all and (12)

for all and (13)

(14)

for all (15)

(16)

for all and (17)

for all and (18)
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where , , , , and . It
is easy to verify from the KKT equations that for all

and where , and for all and where
. It is also easy to verify that .

Finding the complete solution to the above nonlinear equa-
tions requires iterative search. To derive our search algorithm,
we first define

(19)

From (13), we have that for

(20)

Using (20) in (19) yields

(21)

where and is the size of the set
. Substituting from (21) into (20), we find

(22)

where , and . A slightly
more compact form of this solution is

(23)

where .
To compute (23) with a given , we initially assume that

contains all . We then apply (23) to cal-
culate for all . For those , we exclude the
corresponding indexes from the set . The new set
is then applied to calculate new for all via (23). This
iterative procedure continues until for and

for . In Appendix II, we prove that the
number of iterations in computing (23) is finite.

The first term in (12) is monotonically increasing function
of . So, for a given , there is an unique ,
and for a given , there is either a unique or

. The computation of this one-to-one mapping can be easily
implemented via the bisection method. For convenience, we can
write where the function is the inverse
function of the first term of (12). Note that we do not need any
more explicit expression of for the reason aforementioned.
Because of (15), we can find by solving

(24)

where . The entire left-hand side (LHS) ex-
pression of (24) is a monotonically increasing function of .

So, with a given , it is easy to find the corresponding and
hence the corresponding for all .

Up to now, we have obtained the optimal solutions for
and for all , , and provided that for all are given.
To find the optimal , we need a search algorithm as developed
next. Since , the optimal must be such that

due to (19) and (16). Using and (21), we can
eliminate and obtain

(25)

where . Here is expressed

as a function of and for all . Note that is a
byproduct of for all , and is a byproduct of for
all .

It is important to understand an important meaning of (25).
This equation says that if we have an estimate of the optimal

, denoted by , and computed and based on
, then we can find a new based on (25). Note

that is the iteration index. If is already optimal, so is
, i.e., . But if is not optimal, it

is intuitive to think that is an improved version of
and converges to the optimal as increases. However, this is
not always true. In our simulation, we found that if , the
iteration of based on (25) alone can diverge. To solve this
problem, we propose the following that dampens the change of

from one iteration to another

(26)

where in the right-hand side (RHS) is computed from
(25) based on , and in the LHS is the new estimate
of . The dampening factor at each iteration should be
chosen to be small enough so that there is no divergence. Given
the convexity of (8), there should exist a small enough
such that (26) guarantees the convergence of . Finding an
exact value of for guaranteed convergence in all cases is
difficult. According to our simulation, however, we can choose
any that meets at each
iteration. This simple rule of choosing at each iteration
worked well for all cases in simulation.

With the derivations and discussions shown above, our algo-
rithm for computing the solution to the problem (8) can be sum-
marized here.

1) Initialization: Choose for all .
Also set and for all .

2) Step 1: Compute and by (23).
3) Step 2: Compute and by (24).
4) Step 3: Compute by (26).
5) Step 4: Set , and go to Step 1 until convergence.

Upon convergence of the above algorithm, we have real
valued and . In practice, we must have in in-
tegers. But can be nonintegers such as fractional numbers
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since the coding over different subchannels can be done jointly.
In our simulation examples shown later, upon convergence
of the above algorithm, we will round up each of to its
nearest integer, i.e., and then apply (24) one
more time to calculate with .

The complexity of the above algorithm can be determined as
follows (assuming large , and ). It should be noted that

and constitute variables. Step 1 computes
with no more than number of iterations to solve (23)

for each and . Its complexity is . Step 2 computes
with two layers of 1-D bisection search which converges

exponentially. Its complexity is . Step 3 has the com-
plexity . So, each iteration of the above algorithm has the
complexity . As a contrast, a general-purpose
convex optimization method (using the interior-point method
for example) requires an inverse of Hessian matrix of the dimen-
sion at each iteration. The com-
plexity of that is typically , assuming that no
structure of the problem is exploited. This is why using Matlab
to directly solve (8) is much slower than using the algorithm de-
veloped in this section.

IV. LINEAR ENERGY MODEL FOR PROGRESSIVE ESTIMATION

Suppose that there is a large number of subchannels for each
transmission and the gains of the subchannels are the same.
Then, the optimal should be very small for each and ,
and hence (7) becomes which is a linear
energy model.

Under the linear model, if is not invariant to , then the
optimal would be such that only the largest over all is
allocated with nonzero which could violate the assumption

that all are small subject to
. However, if we simply force which is in-

variant to , then the linear model implies

.
The linear energy model also applies to many existing com-

munication devices where the energy cost is simply proportional
to the number of packets transmitted. Therefore, there is a need
to consider this special case. We will write

(27)

where is the energy spent by sensor to transmit
bits, and is a constant associated with sensor . For com-
parison with the algorithm in Section III, we will choose

in the simulation section. To minimize
the sum energy subject to and the linear energy
model, we need to solve

(28)

subject

(29)

for all and (30)

This problem could be reduced from (8) if , is in-
variant to , and . However, this problem formulation
stands on its own without the above conditions on and .
We also like to mention that for the linear energy model, the
basic energy component is . It is hence tempting to minimize
the more general cost with any . For large , the
cost automatically weighs more for sensors that consume more
energy. But unfortunately, the resulting optimization problem
with respect to the variables is much more difficult, which
will not be addressed in this paper. Next, we present a simple al-
gorithm to solve (28).

The KKT conditions of this problem are given by

for all and (31)

(32)

(33)

for all and (34)

where , and . We define the set
containing the indices of where . For

, . From (34), we can see
where . Plugging this result into (31), we can
see . We then see from (33) that

(35)

For , we know that and hence from
(31) that

(36)

where the constant is chosen such that (35) holds.
The solution (36) is simpler than the general algorithm de-

scribed in Section III because in this case there are no iterations
between the number of quantization bits and the number
of transmission bits . Namely, is determined by (36)

while is determined by .

V. CONSENSUS ESTIMATION

Consensus estimation has been extensively studied as in
[14]–[33]. The purpose of this section and the next is to for-
mulate and analyze an energy efficient version of consensus
estimation. This analysis will allow us to compare a minimized
energy cost for consensus estimation with that for progressive
estimation.

Like the progressive estimation problem shown earlier, the
consensus estimation problem we consider is about the esti-
mation of the unknown vector by averaging . But unlike
progressive estimation, consensus estimation requires network-
wise iterations within each sampling window. For each iteration,
each sensor performs a localized averaging. After iteration time
, the estimate of at the th sensor is denoted by , and its
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quantized version by . Note that . The quan-
tization error is modeled the same way as before. For example,

and
.

For the communication protocol, we assume that after an iter-
ation of fusion has been done at all sensors, each sensor broad-
casts its latest quantized estimate of . We assume that sensor
receives the packet successfully from sensor if and only if the
following holds:

(37)

where is the fading factor of subchannel from sensor
to sensor , is the transmission energy used by sensor .
We will also assume that all links are symmetric, i.e.,

. The other parameters are the same as those described
in the previous sections. In practice, distributed transmission
scheduling scheme [34], [35] is required to avoid packet col-
lision. But we neglect the energy cost required for coordinating
the broadcast from all sensors. The above principle is similar to
the broadcast gossip algorithm as in [27]. We do not consider
the strict peer-to-peer multihop network where for each trans-
mitter there is only one receiver. This is because for a given
transmission range, consensus estimation in a peer-to-peer net-
work consumes more transmission energy than that in a broad-
cast network.

Once sensor has received the packets from all of its neigh-
bors, sensor updates its estimate of as follows:

(38)

where is the neighbor of sensor , i.e., the set of the indices
of the sensors from which sensor successfully receives ,
and is a scalar weight or equivalently the th element
of a matrix . After this computation, sensor quan-
tizes into and then broadcasts
to its neighbors.

In the absence of the quantization noise, we want
for all , which is called

average consensus. As shown in [16], this is equivalent to
where is a vector consisting

of all 1 s. This is also equivalent to the following conditions:
, , and where

denotes the spectral radius of the matrix . We will assume
that always meets the above conditions. For more general
convergence conditions under random perturbations, see [28].

Let ,
and . We can then write (38) for
all in a vector form as

(39)

where is the identity matrix, is the Kronecker
product, , is a diagonal matrix with the
same diagonal elements as .

With the above conditions, one can verify that the mean of
is given by , and the MSE of is given

by

MSE

MSE (40)

where is a diagonal matrix whose th entry is
. Here, we have used

, , ,
and . MSE is an upper
bound on MSE .

It is useful to note a couple of other fusion algorithms. In [29],
the following algorithm is considered:

(41)

In [31], the authors proposed

(42)

Both (41) and (42) are small variations of (38). In fact, if
in (41) and (42) is replaced by its unquantized version ,
both (41) and (42) are identical to (38). Furthermore, due to the
“earlier” quantization used in (41) and (42), MSE of (41) and
(42) is larger than that of (38). Since (41) and (42) are conver-
gent as shown in [29] and [31], so is (38).

VI. ENERGY PLANNING FOR CONSENSUS ESTIMATION

In this section, we further minimize the energy cost of
consensus estimation by optimizing a number of parameters as
follows:

(43)

MSE MSE (44)

(45)

(46)

(47)

(48)

where MSE is the target per-sensor average MSE.
This problem in general is a very difficult one. To simplify the

problem, we choose for all and select as shown
in [16], i.e., where is the Laplacian matrix of
the network graph

(49)
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This satisfies (45) and (46). Furthermore, the condition (47)
is equivalent to as shown in [16]. Here is
the largest eigenvalue of matrix .

With the above simplifications, the previous problem
becomes

(50)

MSE MSE (51)

(52)

(53)

Note that both MSE and depend on and .
We propose a two-loop search algorithm to this problem. In

the inner loop, we fix and and search for the optimal pair
of and , which optimizes the local fusion algorithm. In the
outer loop, we search for the optimal pair of and , which
optimizes the network connectivity. For the outer loop, we use
the brute force search. For the inner loop, the following algo-
rithm will be used.

A. Optimal Selection of and

With a given pair of and , for all are determined,
and hence so is . The problem of the inner loop search can be
formulated as

(54)

MSE MSE (55)

(56)

(57)

We can rewrite (40) as

MSE

(58)

where we have used the eigenvalue decomposition
, , and is the diagonal part of .

Also recall that and for . We
can then write

MSE

(59)

where is diagonal, , and for
.

With the above expressions, MSE can be treated as a
continuous function of to simplify the problem. It is easy to
check that MSE has two components. The first is

which is a decreasing function of , and the
second is
which is an increasing function of . The behavior of
MSE with respect to is not as clear. But knowing

, we know that is a linear function of and
hence according to (59), MSE is a polynomial function
of of degree .

The Lagrangian function of this problem is

MSE MSE

(60)

and the KKT conditions are

MSE
(61)

MSE
(62)

MSE MSE (63)

(64)

(65)

MSE MSE (66)

(67)

This system seems complex. But it can be simplified as follows.
If MSE MSE , then is the solution to
the original optimization, which is trivial. Otherwise for ,
according to (67), we have . From (61), we know ,
which leads to MSE MSE according to (63).
From the constraint , we know and

as well. Finally, the KKT system is simplified to

MSE
(68)

MSE
(69)

MSE MSE (70)

(71)

Although there are three unknowns , and in (68)–(71),
can be obtained readily by plugging and into (68). Now we
only need to solve (69) and (70) for and with constraint in
(71).

We can solve the nonlinear system (69) and (70) by
minimizing the following cost function with logarithmic bar-
riers [36]:

MSE
MSE MSE

(72)

Using gradient descent and Armijo backtracking linear search,
we can minimize for each choice of . Until conver-
gence, the constant is increased after each gradient search for

and .
After convergence, if MSE MSE , the solution is

; else if MSE MSE , the solution is ;
otherwise, the solution does not exist.
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B. Other Selections of and

The previous subsection has presented an optimization of
with consideration of quantization errors. We will refer to that
as . Prior literature has established other choices of without
any consideration of quantization errors. Two common choices
are

(73)

(74)

where . The choice was established in
[16] as optimal in the absence of quantization errors. The choice

was also used in [16] as a simpler option which does not need
any further knowledge of .

With fixed to or , the corresponding optimal can be

found by choosing the smallest to satisfy MSE MSE .
Note that the outer loop algorithm for and is not affected

by the inner loop algorithm for and .

VII. SIMULATION

A. Progressive Estimation

The network we consider is shown in Fig. 1 where there are
nodes. The routing tree is generated by following the

minimal distance principle [37]. The distance between a sensor
and its upper-stream sensor is where is uniformly dis-
tributed within the range [0.5, 1.5] and D is a normalizing factor.

For the simulation, we assume that sensor observes the data
vector , where is the observation matrix as-
sociated with sensor , which is assumed to be known to sensor

, and is white noise with the identity covariance matrix
. With this observation model, the initial estimate of

at sensor is obtained by the best linear unbiased estimate:
for which we have .

For each , is chosen independently to be a real ma-
trix with i.i.d. elements from a Gaussian distribution with zero
mean and standard deviation equals to 10.

Each entry of is chosen randomly from [ 1, 1]. The squared
channel gain of channel from sensor to its downstream sensor
is , where is the distance from sensor to
its downstream sensor, and is randomly chosen from
an exponential distribution with mean equal to one. The same
model is applied to for the link between
sensor and sensor . We also choose , ,

, , , , for .
The results of the energy planning algorithm depend on the

choice of in (8). However, for any used for computing ,
the sum energy is determined by

(75)

The sum of transmission energy to be illustrated is given by .
For convenience of reference, we will refer to the algorithm

developed in Section III as the “generalized” algorithm, the al-
gorithm under linear energy model in Section IV as the “linear”
algorithm, and the algorithm shown in [12] as the “previous”

Fig. 2. The sum energy required by different energy planning algorithms for
progressive estimation. Also shown is the minimized sum energy required by
consensus estimation under (38).

algorithm. We also have a “uniform” algorithm for which the
same number of quantization bits is assigned to each element of
the estimate at each sensor (i.e., is independent of and

), the same number of transmission bits is assigned to each
subchannel (i.e., is independent of and ), and however

and the MSE constraint (4) hold.
We like to note here that for , , ,

, , it took the generalized algorithm 2.3125 s (on a
computer with Pentium (R) 4 CPU 3.00 GHz, and 1G memory)
to find the solution of (8). In contrast, it took the Matlab non-
linear constrained optimization routine fmincon 219.56 s to find
the same solution.

1) Comparison of Sum Energy: Fig. 2 compares several
curves of the sum energy versus the target MSE. Each of these
curves (except one) is determined by one of the following
energy planning algorithms for progressive estimation: the
generalized algorithm with , , and , the
previous algorithm with , , and , the linear
algorithm, and the uniform algorithm.

Also shown in this figure is a curve of the sum energy cost
for consensus estimation. The network we consider for con-
sensus estimation is the same as in Fig. 1 except that there is no
routing tree. All other simulation parameters remain the same
as those used previously. Also note that the target MSE for pro-
gressive estimation is achieved at the fusion center, but the target
MSE for consensus estimation is achieved “on average” at each
sensor.

We see that with , progressive estimation with the gen-
eralized algorithm consumes much less sum energy than con-
sensus estimation especially when the target MSE is small. With
increased , the sum energy determined by the generalized al-
gorithm increases as expected. The same is true for the previous
algorithm. However, the sum energy by the generalized algo-
rithm is always smaller than that by the previous algorithm for
each given . This is because the generalized algorithm uses the
exact energy model (as opposed to its upper bound) and also ex-
ploits the variation of the subchannel gains.

We also see that the linear algorithm requires more sum en-
ergy than the previous algorithm with , which is expected.
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Fig. 3. The sum energy required by four different energy planning algorithms
for progressive estimation versus the time-bandwidth product �, where
MSE � ����. For both the previous and generalized algorithms, � � � was
used.

Note that although the energy model used for developing the
linear algorithm is linear, i.e., (27), the actual amount of energy
required by all algorithms (as shown in all figures) is computed
by using the original energy model (7) where for the linear algo-
rithm we use . But when the number of subchannels

becomes large, the linear algorithm and the previous algo-
rithm with should require the same sum energy, which
will be illustrated in the next figure.

The uniform algorithm is clearly a bad choice for progressive
estimation in terms of the sum energy cost.

This figure also illustrates that progressive estimation con-
sumes less sum energy than consensus estimation only when a
proper energy planning algorithm is applied for progressive es-
timation. With the previous energy planning algorithm, progres-
sive estimation can even consume more energy than consensus
estimation when the target MSE is large.

2) Effect of the Number of Subchannels: Fig. 3 illustrates
the sum energy versus the number of subchannels, where the
target MSE is 0.01. For all algorithms, the sum energy cost de-
creases as increases, and becomes less sensitive to when
is large. An explanation of this is available in [12]. As expected,
the sum energy required by the linear algorithm becomes the
same as that by the previous algorithm when is large. In this
figure, the curves for the previous algorithm and the generalized
algorithm appear overlapping in the region of small because
of the large scale. In fact, the generalized algorithm is always
better than the previous algorithm.

3) Effect of on Energy Distribution: Fig. 4 shows the ef-
fect of used in the generalized algorithm for progressive esti-
mation on the peak energy consumed by individual sensors. We
see that the peak energy is reduced when is increased. How-
ever, as shown in Fig. 5, the peak energy required by progressive
estimation (which always occurs near the fusion center) is gen-
erally larger than that by consensus estimation. Fig. 6 shows the
average number of quantization bits allocated for each ele-
ment at individual sensors. We see that the distribution of is
almost invariant to the choice of , and the sensors near the fu-
sion center always uses larger . Different from this property,
the distribution of the quantization bits generated by the pre-

Fig. 4. Amount of transmission energy consumed by an individual sensor
versus the sensor index for the generalized algorithm for progressive estimation,
with � � �, 8, and 64, where MSE � �����. The sensor index is sorted
increasingly as the distance between the sensor and the fusion center increases.
For progressive estimation, sensor zero in this and the following figures is the
fusion center.

Fig. 5. Amount of transmission energy (in log scale) consumed by an indi-
vidual sensor versus the sensor index, where MSE � �����. For the gener-
alized algorithm, the curve for � � � is shown here, and the curves for other
values of � would differ slightly due to the log scale.

Fig. 6. Averaged number of quantization bits per element allocated by different
energy planning algorithms versus the sensor index, where MSE � �����.

vious algorithm shown in [12] depends significantly on , and
becomes more uniform when becomes large.
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TABLE I
TOTAL TRANSMISSION ENERGY CONSUMED BY THE NETWORK UNDER DIFFERENT CHOICES OF � AND �. THE MSE TARGET IS SET MSE � �����

Fig. 7. Gap between the MSE upper bound MSE ��� and the actual MSE
MSE��� over iteration index �. � � ����, � � 	, � � ���
�
, and
MSE � �����. Here, “quantize-after-fusion” follows (38), “quantization-be-
fore-fusion” follows (41), and “quantization-before-subtract” follows (42).

B. Consensus Estimation

Here we use the same channel model and the same network
as previously except that there is no routing tree.

1) Gap between MSE and Its Upper Bound: As discussed
in Section VI, the MSE upper bound MSE (59) is used for
develop the energy planning algorithm of the consensus estima-
tion. This upper bound becomes loose when is large due to the
quantization error introduced at each iteration. Therefore, it is
important to exam the tightness of the bound in the region of
interest, i.e., the region where is small before the upper bound
actually diverges. With and , Fig. 7 shows

the actual averaged MSE per sensor MSE for the three dif-
ferent fusion algorithms (38), (41), and (42), and the MSE upper

bound MSE for (38). We see that the MSE of all three algo-
rithms converge as increases. This is expected given the study
of [29, eq. (41)]. One should notice that we only use the de-
creasing segment of the curve MSE in the energy planning.

If a selection of and cannot allow MSE MSE to be
achieved before MSE starts to increase, it will cause
and . We see that the gap between MSE of (38)
and its MSE is not very large in this region.

2) Effect of Selection: Fig. 8 illustrates the effects of
on MSE versus , where , ,
and . Here, we assumed and
to compute . Recall that where represents
a small amount of information from ,
which depends much more strongly on , and is optimized to

Fig. 8. MSE of consensus estimation under (38) versus the iteration
index �, with different � values: � � ���		� (optimized with quantization er-
rors), � � ������ (optimized without quantization errors) and � � �����

(using maximum degree of connectivity), where � � ���,� � 	, MSE �
�����.

Fig. 9. The contour of the sum energy required by consensus estimation under
(38) in terms of � and �. The target MSE is set at MSE � �����.

minimize to meet a target MSE where we used MSE .
We have found that with . However, with and ,
the target MSE MSE is not achievable with any .

3) Effect of and : The optimization of and cor-
responds to the outer-loop of the energy planning algorithm for
consensus estimation. For each given pair of and , the total
energy is minimized by the inner-loop of the algorithm. Table I
and Fig. 9 illustrate the total energy cost as function of and

. If becomes too small, the network loses connectivity be-
tween nodes. If becomes too small, the quantization errors
dominate. In either case, the target MSE may become unachiev-
able even after infinite number of iterations, which corresponds
to the case .
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Fig. 10. The optimal �, � and � required by consensus estimation versus
MSE .

Fig. 11. Comparison of the real MSEs for progressive estimation (with � � �

for energy planning) and consensus estimation.

Corresponding to the curve for consensus estimation in Fig. 2,
Fig. 10 shows the optimized , and versus the target MSE.

C. Comparison of Actual MSE

As shown in Fig. 2, under the same target MSE, progressive
estimation (with for energy planning) consumes much
less energy than consensus estimation. Since the target MSE
used for energy planning is only an upper bound on the actual
MSE, it is useful to compare the actual MSE between the two
estimation schemes. Fig. 11 shows the actual or real MSE of
the two schemes versus a common target MSE. The values of
the actual MSE were computed based on 50 independent real-
izations. For each realization, each entry of was chosen ran-
domly between 1 and 1, and each quantized estimate of it (at
various stages) was obtained via the probabilistic quantization
with the number of bits determined by the corresponding energy
planning algorithm. The quantization errors over 50 realizations
were used to compute the actual MSE shown in Fig. 11. We see
that the actual MSE of progressive estimation is smaller than
that of consensus estimation. This is because the upper bound
used for progressive estimation is conservative. This conserva-
tiveness only helps to support the conclusion that consensus esti-
mation consumes more energy than progressive estimation sub-
ject to the same MSE (for both the target MSE and actual MSE).

VIII. CONCLUSION

In this paper, we have made contributions in two aspects. One
is a generalized energy planning algorithm for progressive es-
timation in multihop sensor network with routing tree. Using
the exact energy model and taking advantage of diverse channel
gains of multiple subchannels, this algorithm is more general
and yields more energy saving than the previous algorithm de-
veloped in [12]. The other aspect is an in-depth study of the en-
ergy cost for consensus estimation in broadcast multihop sensor
networks. Insights have been developed into the energy cost in
terms of transmission energy, quantization bits allocation and
fusion rule. Furthermore, this study is the first that has provided
a quantitative comparison of the energy cost between progres-
sive estimation and consensus estimation. In applications, the
flexibility of consensus estimation on one hand and the total en-
ergy efficiency of progressive estimation on the other hand may
both affect the decision by the network designers.

APPENDIX I
PROOF OF CONVEXITY OF (8)

Here, we assume that and are nonnegative real
numbers, and . The objective function in (8) is a sum
of . We know that does not depend on unless

and . We also know

(76)
Hence, is a convex function of , and hence is a
convex function of all . Since does not depend on ,

is also a convex function of all and . The above is
equivalent to the fact that the Hessian matrix of with respect
to all and is diagonal and each of its diagonal ele-
ments is nonnegative.

In a similar way, it is easy to verify that the LHS function,
denoted by , of (9) is a sum of convex functions, and hence is
also convex. Then, the set defined by (9) is convex. It is obvious
that the set defined by each of (10) and (11) is convex. So, we
see that the set defined by all of (9)–(11) is convex. Hence, (8)
with the associated constraints is convex.

APPENDIX II
PROOF OF CONVERGENCE OF (23)

We now show that the number of iterations in computing (23)
until convergence is always finite. Without loss of generality,
we assume . Therefore, according to
(23), the set contains a set of contiguous integers from a
number no larger than to the number , i.e., if
then are all in the set . The next
proposition shows that once an index is excluded from , it
will never come back into in later iterations. Since is
finite, we have proved that the number of iterations is finite, i.e.,
no larger than .
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(78)

Proposition 1: Suppose . Denote
as the set containing the indices of all

positive after the th iteration. Then, is nondecreasing
with , and hence is a nongrowing set with .

Proof: We prove this lemma using induction. Initially, we
know , i.e., . It is obvious to see

. We can now assume in order to prove
.

We know that using , the itera-
tion yields the solution of as given by

(77)

where and

. Since , it implies
that .

Then, using , the iteration yields
the solution of as given by (78), shown at the top
of the page, where and

. As and
, we know that . Combining this with , we

obtain . Recall that because of

, (23) implies that for . Therefore,
.
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