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Abstract—Due to its time-varying nature, oscillator phase noise
can significantly degrade the performance of the channel estima-
tion, carrier recovery, and data detection blocks in high-speed
wireless communication systems. In this paper, we propose a
new data-aided joint channel, carrier frequency offset (CFO) and
phase noise estimator for orthogonal frequency division multi-
plexing (OFDM) relay systems. For the data transmission phase,
we propose a new iterative receiver that tracks phase noise and
detects the transmitted symbols. Additionally, we derive the hybrid
Cramér–Rao lower bound for evaluating the performance of chan-
nel estimation and carrier recovery algorithms in OFDM relay
networks. Extensive simulations demonstrate that the applica-
tion of the proposed estimation and receiver blocks significantly
improves the performance of OFDM relay networks in the pres-
ence of phase noise and CFO.

Index Terms—Relay, orthogonal frequency division multiplex-
ing (OFDM), channel estimation, phase noise.

I. INTRODUCTION

A PPLICATION of relaying has been identified as a
suitable approach for combating long-distance channel

distortion and small-scale fading in wireless communica-
tion systems [2]. Various physical layer techniques, such as
distributed space-time block coding [3], [4], precoding [5],
[6], power scheduling [7], etc., for relay systems have been
extensively studied. From these works, it can be deduced
that to deliver the advantages of relay networks, the network’s
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channel state information (CSI) needs to be accurately obtained
[8]–[14], while the negative impact of impairments such as
carrier frequency offset (CFO) and phase noise (PN) caused
by Doppler shifts and oscillator imperfections needs to be
mitigated [15].

In single carrier communication systems, CFO and PN are
multiplicative and result in a rotation of the signal constellation
from symbol to symbol and erroneous data detection [16], [17].
On the other hand, in the case of orthogonal frequency divi-
sion multiplexing (OFDM) systems, CFO and PN are convolved
with the data symbols, resulting in the rotation of the signal
constellation and inter-carrier interference (ICI), which can
significantly deteriorate the overall performance of an OFDM
system [18]–[22]. Thus, extensive research has been recently
carried out to find carrier recovery schemes that complement
traditional approaches, e.g., those based on the phase-locked
loop (PLL). More importantly, as demonstrated in [18], [23],
[24], to accurately obtain the channel, CFO, and PN parame-
ters in communications systems, these parameters need to be
jointly estimated. However, the prior art on channel and CFO
estimation in relay networks has not taken into consideration
the detrimental impact of PN. In fact, unlike in single carrier
systems [25], PN in OFDM systems cannot be modeled as an
additive noise, since such an approach significantly deteriorates
the performance of algorithms for estimating and mitigating the
impact of this impairment [24].

Due to the presence of multiple hops between source and des-
tination, channel estimation in relay systems is quite different
from traditional point-to-point systems. For the amplify-and-
forward (AF) relaying strategy, one approach is to only estimate
source to destination channels [8], [9]. However, to further
enhance cooperative system performance by enabling relay pre-
coding/beamforming or relay resource allocation, the channel
response of each hop needs to be separately estimated [9]–
[12]. Furthermore, since the channel response from relay to
destination affects the destination noise covariance matrix, esti-
mating individual channel responses is generally required for
more accurate signal detection at the destination. It is worth
noting that the contributions in [8]–[12] only focus on channel
estimation while ignoring the effect of CFO and PN.

Joint estimation of the channel responses and CFO in sin-
gle carrier relay systems has been considered in [23], [26].
In [26], the Gauss-Hermite integration and approximate Rao-
Blackwellization based joint CFO and channel estimators are
proposed, while in [23] joint CFO and channel estimation via
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the MUSIC algorithm is analyzed. However, the works in [23],
[26] ignore the effect of PN. In fact, although both CFO and
PN result in an unknown rotation of the signal constellation,
PN is a time-varying parameter compared to the CFO and can
be more difficult to track [17], [18]. More importantly, the nega-
tive impact of CFO and PN may be greater in the case of OFDM
systems compared to single carrier systems [27], [28].

Due to its capability of combating frequency selectivity in
the wireless channel, OFDM techniques have been extensively
adopted in the latest wireless communication standards, e.g.,
Long Term Evolution, IEEE 802.11ac, Bluetooth, etc. The dete-
riorating effect of PN on the performance of point-to-point
OFDM systems is analyzed in [27], [28]. Undoubtedly, this
effect can also be observed in OFDM based corporative relay
systems. Hence, conducting accurate channel and CFO esti-
mation in the presence of PN is important for maintaining the
quality of service in high-speed OFDM relay networks. Joint
estimation of CFO and channel in OFDM relay systems is con-
sidered in [29], [30]. In particular, a two-time-slot cooperative
estimation protocol to obtain these parameters has been pro-
posed in [29], while in [30] the authors studied the maximum
likelihood (ML) and the least squares based joint CFO and
channel estimation algorithms. More importantly, none of the
approaches in [29], [30] consider the effect of PN on channel
and CFO estimation or the overall relaying performance. While
ignoring the effect of CFO, joint channel and PN estimation
in OFDM relay networks is analyzed in [31]. However, none
of the approaches in [29]–[31] consider the effect of PN on
joint channel and CFO estimation. In [32], the authors consider
PN, CFO, and channel estimation in a relay based cooperative
network. However, the work presented in [32] only focuses on
the derivation of an estimator that obtains the cascaded channel
parameters for both hops, does not present a detector for signal
reception in the presence of PN at the destination node.

In this paper, we consider the problem of joint CFO, PN, and
individual channel estimation for OFDM relay systems. The
contributions of this paper can be summarized as follows:

• A training and data transmission framework for OFDM
relay networks is proposed that enables joint estimation
of channel, CFO, and PN parameters at the destination.

• The ambiguities among the estimated PN, CFO, and
channels are analyzed. Based on this analysis, a hybrid
Cramér-Rao lower bound (HCRLB) for analyzing the per-
formance of joint channel, CFO, and PN estimators in
OFDM relay networks is derived, which can effectively
avoid the estimation ambiguities.

• An iterative joint channel, CFO, and PN estimator based
on the maximum a posteriori (MAP) criterion is proposed
that exploits the correlation between PN parameters to
significantly reduce estimation overhead. The approach
proposed here can be also applied to point-to-point sys-
tems to reduce PN estimation and carrier recovery over-
head. Moreover, the estimator’s mean square error (MSE)
performance is shown to be close to the derived HCRLB
at moderate signal-to-noise ratios (SNRs) when the phase
noise variance is not large.

• A comb-type OFDM symbol containing both pilots and
data symbols is proposed to track the time-varying PN
parameters during the data transmission interval. Next, an

iterative receiver that applies the proposed OFDM sym-
bol to perform joint data detection and PN tracking at the
destination node is derived.

The rest of the paper is organized as follows. Section II
presents the system model and assumptions in this paper.
The joint estimation algorithm is presented in Section III. In
Section IV, the HCRLB for the proposed joint estimation prob-
lem is derived. The proposed iterative receiver for joint data
detection and PN tracking is presented in Section V. Extensive
simulation results are illustrated in Section VI. Finally, we
conclude the paper in Section VII.

Notations: E(·) denotes the expectation of its argument. �, �,
and ∗ denote the Hadamard product, linear, and circular convo-
lutions, respectively. Tr(A), A−1, and det(A) denote the trace,
inverse, and determinant of matrix A, respectively. Diag(a)

denotes a diagonal matrix with a being its diagonal entries.
Blkdiag(A0, A1, . . . , AN−1) denotes a block diagonal matrix
with A0, A1, . . . , AN−1 as its diagonal matrices. A(N : M, :
) and A(:, N : M) denote a submatrix containing the N -th
to M-th rows of A and a submatrix containing the N -th to
M-th columns of A, respectively. Superscripts (·)T , (·)∗ and
(·)H denote the transpose, conjugate, and conjugate transpose,
respectively. 0N×M , IN , and 1N denote the N × M zero matrix,
N × N identity matrix, and N × 1 vector of ones, respectively.
�(z) and �(z) denote the real and imaginary operators. Cx×y

and R
x×y denote spaces of x × y matrices with complex and

real entries, respectively. �x
x f (·) � ∂ f

∂x [ ∂ f
∂x f (·)]T denotes the

second order partial derivative of function f (·) with respect
to vector x. Finally, CN(x,�) and N(x,�) denote complex
and real Gaussian distributions, respectively, with mean μ and
covariance �. Moreover, to improve the presentation of this
paper, we summarize the notations in Table I.

II. SYSTEM MODEL

An AF relaying OFDM system is considered, where a source
node transmits its signal to a destination node through a relay.
Here, it is assumed that there is no direct link from the source
to the destination due to physical impairments, such as deep
fading and shadowing effect. Similar to prior work in this field,
e.g., [18], [19], quasi static fading channels are considered, i.e.,
the CSI is assumed to be constant over the duration of a single
packet. Each packet consists of two OFDM training symbols,
which are followed by multiple data symbols as shown in Fig. 1.
The two training symbols are used to separately estimate the
channel responses and CFO in the presence of unknown PN for
both the source to relay and relay to destination hops. Moreover,
the signal received during the data transmission interval is
used for data detection and compensation of phase noise as
elaborated in Section V. Although time synchronization is an
important issue in relay systems, it has been addressed in work
like [53]. Hence, we assume that the overall network is syn-
chronized in time. We consider the following two different relay
operations.

A. Two Relay Operations

1) Analog relay processing: Unlike [31], it is assumed that
the relay node simply forwards the received signal without
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TABLE I
NOTATIONS USED IN THIS WORK

Fig. 1. The proposed timing diagram of the OFDM relay system, in which we
assume that the channel responses and CFO remain time-invariant during the
entire packet while PN is assumed to vary with time.

removing the CP corresponding to the source-to-relay link and
appending a new CP for the relay-to-destination link. This
assumption ensures a considerably simpler relaying structure as
the relay does not need to convert the received signal from pass-
band to baseband. The proposed signal model can be applied to
both full-duplex and half-duplex relaying networks based on
the following system setups and assumptions:

• Full-duplex relaying: In this setup, the proposed sig-
nal model is applicable to relaying networks that utilize
highly directional transmit and receive antennas with
large antenna gains at the relay, e.g., microwave and
millimeter-wave systems [33], [34]. This approach may
also minimize or eliminate the effect of self-interference
at the relay.1 Moreover, it is assumed that the relay for-
wards its signal to the destination in passband without
converting it to baseband. This assumption is practical
since there are various radio frequency (RF) amplifiers
that operate at high carrier frequencies and can be uti-
lized in full-duplex relaying networks, e.g., Mini-Circuits
AVA-24+ with a frequency range of 5–20 GHz [36].

• Half-duplex relaying: In this setup, for analog relay pro-
cessing, it is assumed that the relay forwards its received
signal on a different carrier frequency and may not need
to convert it to baseband, i.e., the relay applies on-
frequency/on-channel RF relaying [37]. Moreover, the
difference between the receive and transmit carrier fre-
quencies are assumed to be small to enable the application
of a low PN oscillator at the relay. An example of such an
oscillator is ROS-209-319+ ultra low noise voltage con-
trolled oscillator that has a very small PN factor of −133
dBc/Hz at an offset frequency of 10 KHz [38]. As such,
in this setup, it is assumed that the signal forwarded from
the relay is not affected by PN.

1Application of sophisticated transceivers has also been shown to mini-
mize or eliminate the impact of self-interference at the relay [35]. In a case
that the self-interference cannot be completely eliminated, the corresponding
discussion can be found in Remark 1.

Fig. 2. Illustration of transceiver structure of the OFDM relay system.

2) Digital relay processing: In this setup, the relay per-
forms a digital processing. That is, the relay first converts the
received passband signal to the basedband. Subsequently, the
relay removes the CP and adds a new CP. Then, after scaling
the new generated signals to satisfy the relay’s power con-
straint, they are converted to the passband and delivered to the
destination.

B. Signal Transmission from Source to Destination

The overall transmission and reception structure of each
OFDM symbol from the source to the destination node is
illustrated in Fig. 2. We assume that N subcarriers are

used for OFDM transmission. Let s[s] �
[
s[s]

0 , s[s]
1 , . . . , s[s]

N−1

]T

denote the frequency domain modulated training or data sig-
nal sequence at the source node, which is then transformed
into a set of parallel symbols s[s]

k , for k = 0, . . . , N − 1.
By conducting an inverse fast Fourier transform (IFFT), we
obtain the time domain signal vector x[s] as x[s] = FH s[s],

where x[s] �
[
x [s]

0 , x [s]
1 , . . . , x [s]

N−1

]T
, and F is the normal-

ized discrete Fourier transform (DFT) matrix with Fn,k =
1√
N

exp
(
− j 2π(n−1)(k−1)

N

)
. After adding the CP, the paral-

lel signal vector is transformed into a time domain sequence
denoted by x [s](n), for n = −NC P , . . . , N − 1 with NC P being
a length of CP. Subsequently, the transmitted baseband contin-
uous signal from the source, x̃ [s](t), can be written as

x̃ [s](t) =
N−1∑

n=−L

x [s](n)q(t − nTs), 0 ≤ t ≤ T + TC P (1)
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where Ts = T/N with T denoting an OFDM symbol dura-
tion, q(t) is the pulse shaping filter, TC P is the duration of
the CP, and x [s](−n) = x [s](N − n), for n = −NC P , . . . ,−1,
is the added CP symbol.

1) Analog relay processing: At the destination, the base-
band received signal, y[s](t), is given by

y[s](t) = αe jθ [s-d](t)e jφ[s-d](t)g(t) � z(t) + w(t)

= αe jθ [s-d](t)e jφ[s-d](t) [g(t) � h(t) � x̃ [s](t)

+g(t) � v(t)
]+ w(t), (2)

where z(t) = h(t) � x̃ [s](t) + v(t) and α is the constant and
scalar amplification factor at the relay, h(t) and g(t) are the
frequency-selective fading channels from source to relay and
the relay to destination, respectively, and v(t) and w(t) are
the additive noises at the relay and at the destination, respec-
tively. Using a similar approach to point-to-point systems
[18], [39], [40], θ [s-d](t) is the PN corresponding to source-
relay-destination link, while φ[s-d](t) � 2π� f [s-d]t is the CFO
caused by the unmatched source and destination carrier
frequencies.

After sampling at a sampling rate of 1/Ts and removing the
CP, the received signal at the destination is determined as

y[s](nTs) = αe jθ [s-d](nTs )e j2π� f [s-d]nTs [g(nTs) � h(nTs)︸ ︷︷ ︸
�c(nTs )

∗ x̃ [s](nTs) + g(nTs) � v(nTs)] + w(nTs),

n = 0, 1, . . . , N − 1 (3)

where circular convolution appears in (3) due to the added CP
at the source node. Note that to avoid ICI, the length of CP,
i.e., NC P = TC P/Ts , should be not less than L = Lh + Lg − 1
with Lh and Lg being the number of channel taps of h(t) and
g(t), respectively. Eq. (3) can be written in vector form as2

y[s] = α�θ [s-d]�φ[s-d]

[
Cx[s] + Gv

]+ w, (4)

where
• y[s] � [y[s](0), y[s](1), . . . , y[s](N − 1)]T ,

• �θ [s-d] � Diag
[
e jθ [s-d](0), e jθ [s-d](1), . . . , e jθ [s-d](N−1)

]
,

where θ [s-d](n) = θ [s-d](n − 1) + �[s-d](n) with �[s-d](n)

being a real Gaussian variable and elaborated later in
Section II,

• �φ[s-d] � Diag
[
1, e j2πφ[s-d]/N , . . . , e j2πφ[s-d](N−1)/N

]
,

φ[s-d] � � f [s-d]T is the normalized CFO,
• C � FH �c̃F, �c̃ � Diag(c̃) with c̃ �√

NF[cT , 0T
N−L ,1]T and c � [c(0), c(1), . . . , c(L −

1)]T ,
• v � [v(−Lg + 1), . . . , v(0), . . . , v(N − 1)]T and w �

[w(0), w(1), . . . , w(N − 1)]T are the sampled additive
noise at the relay and destination nodes, respectively, and

G =

⎡
⎢⎢⎢⎣

g(Lg − 1) g(Lg − 2) . . . 0
0 g(Lg − 1) . . . 0
...

...
. . .

...

0 0 . . . g(0)

⎤
⎥⎥⎥⎦ (5)

2For notational convenience, we discard the term Ts in (4).

is an N × (N + Lg − 1) matrix. The additive
noise at the relay and destination are distributed as
v ∼ CN(0, σ 2

RIN+NC P ) and w ∼ CN(0, σ 2
DIN ), respec-

tively. Finally, although C is an N × N circulant matrix,
G is a regular N × (N + Lg − 1) matrix, since no CP is
added at the relay node.

2) Digital relay processing: In this setup, the received sig-
nal at the relay after removing CP is given by

z(t) = e jθ [s-r](t)e jφ[s-r](t)h(t) � x̃ [s](t) + v(t), (6)

where θ [s-r](t) is the PN corresponding to the source-relay link,
and φ[s-r](t) � 2π� f [s-r]t is the CFO. After sampling at a sam-
pling rate of 1/Ts and removing the CP, the received signal at
the relay is given by

z(n) = e jθ [s-r](n)e j2π�φ[s-r]n/N h(n) ∗ x̃ [s](n) + v(n) (7)

where φ[s-r] � � f [s-r]T is the normalized CFO in the source-
to-relay link. Eq. (7) can be written in vector form as

z = �θ [s-r]�φ[s-r] Hx[s] + v, (8)

where
• z � [z(0), z(1), . . . , z(N − 1)]T ,

• �θ [s-r] � Diag
[
e jθ [s-r](0), e jθ [s-r](1), . . . , e jθ [s-r](N−1)

]
with

θ [s-r](n) = θ [s-r](n − 1) + �[s-r](n) and �[s-r](n) being a
real Gaussian random variable,

• �φ[s-r] � Diag
[
1, e j2πφ[s-r]/N , . . . , e j2πφ[s-r](N−1)/N

]
,

• H � FH �h̃F, �h̃ � Diag(h̃) with h̃ �
√

NF[cT ,

0T
N−Lh ,1]T ,

• v � [v(0), . . . , v(N − 1)]T is the sampled additive noise
at the relay.

Note that in (8), since the matrix �θ [s-r]�φ[s-r] is unitary, vec-

tor �−1
θ [s-r]�

−1
φ[s-r] v has the same statistic property as the noise

vector v. Hence, without loss of generality, we rewrite (8) as

z = �θ [s-r]�φ[s-r]
(
Hx[s] + v

)
. (9)

Then, after adding a new CP to z and scaling it by α, z is deliv-
ered to the destination. The discrete vector-form received signal
at the destination can be written as

y[s] = α�θ [r-d]�φ[r-d] Ḡz + w

= α�θ [r-d]�φ[r-d] Ḡ�θ [s-r]�φ[s-r]
(
Hx[s] + v

)+ w (10)

where
• �θ [r-d] � Diag

[
e jθ [r-d](0), e jθ [r-d](1), . . . , e jθ [r-d](N−1)

]
with

θ [r-d](n) denoting the nth phase noise sample and
θ [r-d](n) = θ [r-d](n − 1) + �[r-d](n) with �[r-d](n) being
a real Gaussian random variable,

• �φ[r-d] � Diag
[
1, e j2πφ[r-d]/N , . . . , e j2πφ[r-d](N−1)/N

]
,

φ[r-d] � � f [s-d]T is the normalized CFO corresponding
to the relay-to-destination link,

• Ḡ is a circulant channel matrix given by Ḡ �
FH �g̃F with �g = Diag(g̃), g̃ �

√
NF[gT , 0T

N−Lg,1]T ,

g � [g(0), g(1), . . . , g(Lg − 1)]T , and
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• w is the sampled additive noise at the destination as
defined in (4).

When the channel coherence bandwidth is large, using the same
approximation outlined in [31], [32], and [41, page 113], (10)
can be approximated as

y[s]
≈ α�θ [r-d]�φ[r-d]�θ [s-r]�φ[s-r] Ḡ

(
Hx[s] + v

)+ w

= α�θ [s-d]�φ[s-d]

(
ḠHx[s] + Ḡv

)+ w, (11)

where �θ [s-d] � Diag
[
e jθ [s-d](0), e jθ [s-d](1), . . . , e jθ [s-d](N−1)

]
with θ [s-d](n) = θ [s-r](n) + θ [r-d](n), and �φ[s-d] �
Diag

[
1, e j2πφ[s-d]/N , . . . , e j2πφ[s-d](N−1)/N

]
with φ[s-d] =

φ[s-r] + φ[r-d]. Comparing (4) and (11), we can see that the
received signals at the destination for analog relay processing
and digital relay processing have similar forms. The only
difference is that the relay-to-destination channel, g(n), is
linearly convolved with x̃ [s](n) and v(n) for the analog relay
processing case, while it is circularly convoluted with x̃ [s](n)

and v(n) for the digital relay processing scenario. Note that
the presence of the circular convolution in the digital relay
procession signal model does not significantly change the
structure of channel matrices C and G in (4). Accordingly, all
the steps in the proposed estimation algorithm and performance
analysis for analog relay processing can be also applied to the
digital relay processing case. In fact, the four-step iterative
estimator proposed in Section III has a similar form for both
analog and digital relay processings. The proposed signal
models for analog and digital relay processions in (4) and
(11), respectively, are valid for narrowband systems. Under
the assumption of wideband signal transmission, phase noise
at the transmitter and receiver may not be combined in to
a single term and need to be treated separately. This will
result in further analyses that can determine the impact of the
quality of oscillators at the source, relay, and destination on the
overall performance of the relay network. Furthermore, future
investigations can determine which one of these oscillators
and their quality will act as a major bottleneck on system
performance.

3) Relay power constraint and scaling factor α: For both
analog and digital relay operations, the power scaling, α, should
be selected such that the transmitted power from the relay in
passband is less then or equal to total available power at the
relay, P [r]

T , i.e., the transmitted signal from the relay in (2) or
(6) should satisfy

E(z(t)z∗(t)) ≤ P [r]
T . (12)

In our scheme, we assume that the scaling factor α at the relay
in (2) is approximately determined in a long-term fashion.

Let us first consider the case where the CP is removed. In
this case, the baseband received signal vector at the relay in the
frequency domain, z, is given by

z � h̃ � s[s] + v ∈ C
N×1, (13)

where h̃ � [h̃1, h̃2, . . . , h̃N ]T with h̃k =∑Lh−1
n=0

exp − j2πkn
N h(n), for k = 0, . . . , N − 1. In addition, it is

assumed that h̃k ∼ CN(0,
∑Ln−1

n=0 σ 2
h (n)) with σ 2

h (n) denoting

the variance of h(n). Hence, with E(s[s]s[s]H ) = P [s]
T I,

the received signal power of z, Pz, of z is given by
Pz = Eh,s(‖z‖2

2) = N P [s]
[T](
∑Ln−1

n=0 σ 2
h (n)) + Nσ 2

R . By consid-
ering the added CP, the total power of the received signal at the
relay node can be approximated as P̄z = Pz

NC P+N
N . Thus, the

relay scaling factor, α, can be determined as α =
√

P [r]
T /P̄z.

C. Training Signal Transmission from Relay to Destination

Recall that the second OFDM training symbol is transmitted
from the relay to separately estimate the relay-to-destination
channel. Following similar steps as above, the vector of
received training signal at the destination node from the relay,
y[r] � [y[r](0), y[r](1), . . . , y[r](N − 1)]T , is given by

y[r] = �θ [r-d]�φ[r-d] Ḡx[r] + w, (14)

where
• x[r] � [x [r](0), x [r](1), . . . , x [r](N − 1)]T = FH s[r], s[r]

is the frequency domain relay training signal,

• �θ [r-d] � Diag
[
e jθ [r-d](0), e jθ [r-d](1), . . . , e jθ [r-d](N−1)

]
,

θ [r-d](n) is the n-th PN sample corresponding to relay-
destination link, and θ [r-d](n) = θ [r-d](n − 1) + �[r-d](n)

with �[r-d](n) being a real Gaussian variable and
elaborated later in Section II-D

• �φ[r-d] � Diag
[
1, e j2πφ[r-d]/N , . . . , e j2πφ[r-d](N−1)/N

]
,

• φ[r-d] is the normalized CFO generated by the mismatch
between the relay and destination carrier frequencies,

D. Statistical Model of Phase Noise

Similar to [18] and based on the properties of PN in practical
oscillators, PN is modeled by a Wiener process, i.e.,

θ [i](n) = θ [i](n − 1) + �[i](n), i = [s-d], [r-d] (15)

where �[i](n) is a real Gaussian variable following �[i](n) ∼

N(0, σ 2
�[i]). Here σ 2

�[i] = 2πβ[i]Ts with β[i] denoting the two-
sided 3-dB bandwidth of the Lorentzian spectrum of the oscilla-
tor [42], [43]. As in [18], [19], it is assumed that θ [i](−1) = 0
since the residual PN at the start of the frame is estimated as
part of the channel parameters. From (15), it can be concluded
that the PN vector, θ [i] � [θ [i](0), θ [i](1), . . . , θ [i](N − 1)]T ,
follows a Gaussian distribution, i.e., θ [i]

∼ N(0,�[i]), where
the covariance matrix �[i] is given by

�[i] = σ 2
�[i]

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1 1
1 2 2 . . . 2 2
1 2 3 3 . . . 3
...

...
...

...
. . .

...

1 2 3 . . . N − 1 N

⎤
⎥⎥⎥⎥⎥⎦ . (16)

In obtaining the covariance matrix in (16), similar to prior
results in this field [19], it is assumed that the PN variances
are small enough such that θ [i](n) does not reach its maxi-
mum value of π . This assumption is justifiable since practical
oscillators have a very small PN variance as shown in [25].
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Fig. 3. Illustration of the eigenvalues of �[i] at N = 64 and σ 2
�[i] = 10−4.

Based on the signal model in (4) and (14), it can be observed
that a large number of channel, CFO, and PN parameters
need to be jointly estimated, which increases the computa-
tional complexity of the receiver at the destination. Thus, to
reduce estimation overhead, we take advantage of the corre-
lation amongst the PN parameters to reduce the number of
unknown parameters that need to be estimated. The eigenvalues
of the covariance matrix, �[i] are illustrated in Fig. 3. From this
figure it can be deduced that most eigenvalues of the matrix �[i]

are close to zero. Thus, the PN vector, θ [i], can be represented as

θ [i] = �[i]η[i], i = [s-d], [r-d] (17)

where η[i]
∼ N(0, IM ) ∈ C

M×1 is the shortened unknown PN
vector containing M ≤ N PN parameters, while �[i] ∈ C

N×M

is the transformation matrix that allows for obtaining η[i]

from θ [i]. Moreover, the singular value decomposition of
�[i] is given by �[i] = U[i]D[i]U[i]T , where U[i] is the N ×
N eigenvector matrix of �[i] and D[i] = Diag(ν[i]). Here,
ν[i] � [νi,0, νi,1, . . . , νi,N−1]T is the vector of the eigenval-
ues of �[i] arranged in decreasing order. Subsequently, the
matrix �[i] in (17) can be selected as �[i] = Ũ[i]D̃[i], where
Ũ[i] = U[i](:, 0 : M − 1) and D̃[i] = Diag(ν̃[i]) with ν̃[i] �[√

νi,0,
√

νi,1, . . . ,
√

νi,M−1
]T . In the subsequent sections, η[i],

for i = [s-d], [r-d] is estimated instead of θ [i]. A suitable choice
of M that allows for accurate PN tracking is presented in
Section VI.

III. PROPOSED JOINT CHANNEL, CFO AND PHASE NOISE

ESTIMATION

In this section, we aim to estimate the channel, CFO and
phase noise during the training phase. It is worth noting that
the estimated channel and CFO can be used for the following
data detection. However, as the phase noise is time-varying, it
has to be re-estimated during the data detection phase.

From (4) and (14), it is found that the received signals can
also be transformed into the frequency domain to conduct the
estimation. However, due to the presence of phase noise and
CFO, the inter-carrier interference (ICI) is introduced which
makes the estimation harder in the frequency domain. Hence,
in this work, we try to conduct the joint estimation in the time

domain where the number of the unknown parameters is less.
To proceed, we reformulate (4) as

y[s] = α�θ [s-d]�φ[s-d]

(
FH �s[s] F[L]c + Gv

)
+ w, (18)

where s[s] denotes the training symbol transmitted from source
such that E

(
s[s]s[s]H

) = P [s]
T IN , P [s]

T is the transmit power from
the source, �s[s] � Diag(s[s]), and F[L] �

√
NF(:, 0 : L − 1).

Similarly, the received signal y[r] in (14) can be rewritten as

y[r] = �θ [r-d]�φ[r-d] FH �s[r] F[Lg]g + w, (19)

where �s[r] � Diag(s[r]) denotes the training symbol trans-
mitted from relay such that E(s[r]s[r]H) = P [r]

T IN , P [r]
T is the

transmit power from the relay, and F[Lg] �
√

NF(:, 0 : Lg −
1). As in [18], it is assumed that s[s] and s[r] are known
constant-modulus training symbols. It is worth noting that the
constant-modulus symbols are only used for the training phase,
while the symbols for the data transmission can be of any
modulation format.

From the detection point of view, it may appear that one
only needs to estimate the CFO, φ[s-d], and the combined
source-relay-destination channel, c, in the presence of PN,
θ [s-d]. However, as shown in (18), the relay-to-destination
channel, g, affects the statistic of the additive noise at the
destination node. Hence, it needs to be known to develop a
joint PN estimation and data detection algorithm based on the
MAP criterion. Consequently, here, the parameters of inter-
est are: the CFO, φ[s-d], the channel from source to relay,
h � [h(0), h(1), . . . , h(Lh − 1)]T and the relay to destination
channel, g. Moreover, in addition to the parameters of interest,
there are also unknown nuisance parameters, e.g., the CFO and
PN from relay to destination, φ[r-d] and θ [r-d], respectively, that
also need to be jointly estimated. Using the approach in [18]
and the received training signal from the relay node, y[r], the
MAP estimates of the CFO from relay to destination, φ[r-d], can
be obtained as

φ̂[r-d] = arg min
φ[r-d]

−1T
N �(�φ[r-d] AAH �H

φ[r-d])
T

×
[
�(�φ[r-d] AAH �H

φ[r-d]) + σ 2 P [r]
T

2
[�[r-d]]−1

]−1

× �(�φ[r-d] AAH �H
φ[r-d])1N + 1T

N �φ[r-d] AAH �H
φ[r-d] 1N ,

(20)

where A � Y[r]HFH �s[r] V, Y[r] � Diag(y[r]), and V � F(:
, Lg : N − 1). Using the estimated CFO from relay to destina-
tion, φ̂[r-d], the PN vector θ [r-d] is estimated as

θ̂
[r-d] = �[r-d]

[
�[r-d]T �

(
�̂φ[r-d] AAH �̂

H
φ[r-d]

)
�[r-d]

+σ 2 P [r]
T

2
IM

]−1

�[r-d]T �
(
�̂φ[r-d] AAH �̂

H
φ[r-d]

)
1N ,

(21)
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where [�̂φ[r-d] ]m,m = exp
(

j2π(m−1)φ̂[r-d]

N

)
. Unlike the approach

in [18], in (21), the shortened PN vector η[r-d] is estimated first
which reduces the complexity of the estimator by requiring
the calculation of a considerably smaller matrix inverse. Based

on the estimated φ̂[r-d] and θ̂
[r-d]

, the remaining parameters of
interest can be estimated via y[s] and y[r].

From (18) and (19), it can be observed that the joint estima-
tion of channel response, CFO, and PN is a hybrid estimation
problem consisting of both deterministic parameters, φ[s-d], h,
g, and random parameters, η[s-d]. The posterior distribution of
the parameters of interests given the received signals, y[s] and
y[r], can be written as

p
(
φ[s-d], η[s-d], h, g|y[s], y[r]

)
=p

(
y[s], y[r]|φ[s-d], η[s-d], h, g

)
× p

(
η[s-d]

)
/p
(
y[s], y[r]) .

(22)

Maximizing the posterior distribution in (22) is equiv-
alent to minimizing the negative log-likelihood function
(LLF) L(φ[s-d], η[s-d], h, g) = − log

(
p(y[s], y[r]|φ[s-d], η[s-d],

h, g)) − log(p(η[s-d])). Our objective is to find the joint esti-
mates of φ[s-d], η[s-d], h, and g by optimizing the following
unconstrained function

{φ̂[s-d], η̂[s-d], ĥ, ĝ} ∝ arg min
φ[s-d],η[s-d],h,g

L(φ[s-d], η[s-d], h, g)

(23)

where L(φ[s-d], η[s-d], h, g) = log det(�) + (y − μ)H �−1(y −
μ) + 1

2η[s-d]T η[s-d], y �
[
y[s]T , y[r]T

]T
, μ � [(α�θ [s-d] �φ[s-d]

FH �s[s] F[L]c)T , (�θ [r-d]�φ[r-d] FH �s[r] F[Lg]g)T ]T, � � Blkdiag(
�[r],�[d]

)
, �[r] = α2σ 2

R�θ [s-d]�φ[s-d] GGH �H
φ[s-d]�

H
θ [s-d] +

σ 2
DIN , and �[d] = σ 2

DIN . Although the CFO, φ[s-d], and PN
vector, θ [s-d], are only contained in the received signal, y[s],
the backward substitution method proposed in [18] cannot
be exploited here to solve (23) due to the unknown noise
covariance matrix �[r]. Such a problem is mathematically
intractable and, in the followings subsection, we seek subop-
timal solutions in minimizing (23) by decoupling (23) into
several subproblems that can be each solved separately in an
iterative approach.

Remark 1: For the full-duplex relaying case, if self-
interference cannot be completely canceled at the relay, the
received signal at the destination node can be rewritten as

y[s](t) = αe jθ [s-d](t)e jφ[s-d](t) [g(t) � h(t) � x̃ [s](t)

+g(t) � (v(t) + q(t))] + w(t), (24)

where q(t) is the unknown self-interference, which usually
depends on the channel from relay transmitter antenna to the
receiver antenna, the transmitted signal from the source and the
noise introduced by the relay circuit [21], [22]. With (24), (4)
becomes

y[s] = α�θ [s-d]�φ[s-d]

[
Cx[s] + Gv̄

]+ w, (25)

where v̄ = v + q with q � [q(−Lg + 1), . . . , q(0), . . . ,

q(N − 1)]T . Basically, introducing the self-interference q
changes the covariance matrix �[r], i.e., the original covariance
matrix �[r] = α2σ 2

R�θ [s-d]�φ[s-d] GGH �H
φ[s-d]�

H
θ [s-d] + σ 2

DIN is
changed to

�[r] = α2�θ [s-d]�φ[s-d] GQGH �H
φ[s-d]�

H
θ [s-d] + σ 2

DIN (26)

where Q = σ 2
RI + E(qqH ). In this case, the new covariance

matrix �[r] given in (26) should be used instead. Considering
that we have assumed that the channel from relay transmitter
antenna to the receive antenna changes very slowly, generally
the statistics of q can be estimated and updated in a long-term
fashion. That is, the covariance matrix Q is assumed to be
known during the estimation process. In this case, our proposed
estimator is still applicable to scenario that the self-interference
is present at the relay.

It is worth noting that in (24) we have assumed that the self-
interference link is free of phase noise. Considering the impact
of phase noise in the self-interference link is an interesting topic
of research and worth of future endeavor.

A. Phase Noise Estimation

In the first subproblem, we intend to obtain an estimate of the
PN vector η[s-d] at the (k + 1)-th iteration, [η̂[s-d]][k+1], via the

estimates of [φ[s-d]], h, and g from the k-th iteration, [φ̂
[s-d]

][k],
ĥ[k] and ĝ[k], respectively, according to

[η̂[s-d]][k+1] ∝ arg min
η[s-d]

Lη[s-d] (27)

where Lη[s-d] = log det(�[r]) + (y[s] − μ[s-d])H [�[r]]−1(y[s] −
μ[s-d]) + 1

2η[s-d]T η[s-d] with μ[s-d] � α�θ [s-d]�̂
[k]
φ[s-d] FH �s[s]

F[L]ĉ[k], [�̂
[k]
φ[s-d] ]m,m = exp(

j2π(m−1)[φ̂[s-d]][k]

N ), ĉ[k] � ĥ[k] �

ĝ[k], �[r] = α2σ 2
R�θ [s-d] �̂

[k]
φ[s-d] Ĝ[k]Ĝ[k]H �̂

[k]H
φ[s-d]�

H
θ [s-d] + σ 2

DIN ,

and Ĝ[k] is constructed from ĝ[k] based on (5). As shown in
Appendix A, a closed-form solution for the PN estimate at the
(k + 1)-th iteration, [η[s-d]][k+1], can be found as

[η̂[s-d]][k+1] =
[
�
(

BH
[
[�̂

[r]
][k]
]−1

B
)

+ 1

2
IM

]−1

× �
(

BH
[
[�̂

[r]
][k]
]−1

ȳ[s]
)

, (28)

where [�̂
[r]

][k] is the estimate of the noise covariance matrix
at the k-th iteration. Using (28), the un-shortened PN estimates

at the (k + 1)-th iteration, [θ̂
[s-d]

][k+1], can be determined as

[θ̂
[s-d]

][k+1] = �[s-d][η̂[s-d]][k+1] (see Section II-D). Finally, the

noise covariance matrix, [�̂
[r]

][k], is updated via [θ̂
[s-d]

][k+1].

B. Relay to Destination Channel Estimation

In the second subproblem, the channel response g is updated
by applying the estimated CFO, source-to-relay channel, and
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PN vector, [φ̂[s-d]][k], ĥ[k] and [θ̂
[s-d]

][k+1], respectively. To
proceed, the combined channel c is first rewritten as

c = G̃h = H̃g, (29)

where G̃ ∈ C
L×Lh is denoted as

G̃ =

⎡
⎢⎢⎢⎢⎢⎣

g(0) 0 . . . 0 0
g(1) g(0) . . . 0 0

...
...

...
...

...

0 0 . . . g(0) 0
0 0 . . . g(1) g(0)

⎤
⎥⎥⎥⎥⎥⎦ , (30)

and H̃ ∈ C
L×Lg has a similar form as G̃. Subsequently, the opti-

mization problem for updating the relay-to-destination channel,
g, is given by

ĝ[k+1] ∝ arg min
g

Lg

∝ arg min
g

log det(�) + (y − Cg)H �−1(y − Cg),

(31)

where C �
[(

α�̂
[k+1]
θ [s-d] �̂

[k]
φ[s-d] FH �s[s] F[L]

ˆ̃H[k]
)T

, (�̂θ [r-d]�̂φ[r-d]

FH �s[r] F[Lg])
T
]T

with ˆ̃H[k] being formed by using the esti-

mate of the source-to-relay channel in the k-th iteration
ĥ[k] according to (29), and � � Blkdiag

(
�[r], σ 2

DIN
)

with

�[r] = α2σ 2
R�̂

[k+1]
θ [s-d] �̂

[k]
φ[s-d] GGH �̂

[k]H
φ[s-d]�̂

[k+1]H
θ [s-d] + σ 2

DIN . Since
the covariance matrix � is dependent on the channel response
g as shown in (23), it is impossible to find a closed-form
solution for g based on (31). Thus, we propose to use the

channel covariance matrix at the k-th (previous iteration), �̂
[k]

,
to obtain an estimate of g at the (k + 1)-th iteration. Using this
approach and by equating the gradient of Lg in (31) to zero, a
closed-form solution for the relay-to-destination channel at the
(k + 1)-th iteration, ĝ[k+1], can be derived as

ĝ[k+1] =
(

CH
[
�̂

[k]
]−1

C
)−1

CH [�̂
[k]

]−1y. (32)

Subsequently, using ĝ[k+1], the noise covariance [�̂
[r]

][k] is
updated.

C. Source to Relay Channel Estimation

In the third subproblem, we intend to update the estimate of
the source to relay channel based on the estimates [φ[s-d]][k],
[θ [s-d]][k+1], and g[k+1] via the following optimization problem

ĥ[k+1] ∝ arg min
h

Lh

∝ arg min
g

(y[s] − Dh)H
[
[�̂

[r]
][k]
]−1

(y[s] − Dh),

(33)

where D � α�̂
[k+1]
θ [s-d] �̂

[k]
φ[s-d] FH �s[s] F[L]

ˆ̃G[k+1]. In (33), ˆ̃G[k+1] is

formed as indicated in (30) by using ĝ[k+1]. Similar to the relay

to destination channel, g, the closed-form solution of h in (33)
can be obtained as

ĥ[k+1] =
(

DH
[
[�̂

[r]
][k]
]−1

D
)−1

DH
[
[�̂

[r]
][k]
]−1

y[s].

(34)

D. CFO Estimation

In order to find an estimate of the source-destination CFO
at the (k + 1)-th iteration, [φ̂[s-d]][k+1], similar to the steps in

(27), we approximate the covariance matrix, �[r] with [�̂
[r]

][k]

and solve the unconstrained problem

[φ̂[s-d]][k+1] ∝ arg min
φ[s-d]

Lφ[s-d]

∝ arg min
φ[s-d]

(y[s] − μφ[s-d])
H
[
[�̂

[r]
][k]
]−1

× (y[s] − μφ[s-d]), (35)

where μφ[s-d] � α�φ[s-d]�̂
[k+1]
θ [s-d] FH �s[s] F[L]ĉ[k+1]. To make the

problem in (35) more tractable and find a closed-form solution,
a Taylor series approximation similar to that in (27) is applied

here. Accordingly, e
j2πmφ[s-d]

N can be approximated as

e
j2πmφ[s-d]

N ≈ e
j2πm[φ̂[s-d]][k]

N +
(
φ[s-d] − [φ̂[s-d]][k]

) j2πm

N

× e
j2πm[φ̂[s-d]][k]

N , (36)

where [φ̂[s-d]][k] is the estimated CFO at the k-th iteration.
Using (36), Lφ[s-d] in (35) can be approximated as

Lφ[s-d] ≈
(

y[s] − [�̂
[k]
φ[s-d] + (φ[s-d] − [φ̂[s-d]][k])�̃

[k]
φ[s-d] ]d[s-d]

)H

×
[
[�̂

[r]
][k]
]−1 (

y[s] − [�̂
[k]
φ[s-d] +

(
φ[s-d] − [φ̂[s-d]][k]

)
×[�̃

[k]
φ[s-d] ]d[s-d]

)
, (37)

where d[s-d] � α�̂
[k+1]
θ [s-d] FH �s[s] F[L]ĉ[k+1] and �̃

[k]
φ[s-d] is a diag-

onal matrix where its m-th diagonal element is given by

[�̃φ[s-d] ]m,m = j2π(m−1)
N e

j2π [φ̂[s-d]][k](m−1)
N . By setting

∂L
φ[s-d]

∂φ[s-d] =
0 and solving for φ[s-d], a closed-form solution for the CFO
estimate at the (k + 1)-th iteration, [φ[s-d]]k+1, can be found as

[φ̂[s-d]][k+1] =

[φ̂[s-d]][k]+
�
(

(y[s] − �̂
[k]
φ[s-d] d[s-d])H

[
[�̂

[r]
][k]
]−1

�̃
[k]
φ[s-d] d[s-d]

)
d[s-d]H �̃

[k]H
φ[s-d]

[
[�̂

[r]
][k]
]−1

�̃
[k]
φ[s-d] d[s-d]

.

(38)

Finally, the noise covariance matrices �[r], and �̂
[k]

are updated

using [φ[s-d]][k+1] as [�̂
[r]

][k+1] and �̂
[k+1]

.
The overall iterative joint estimation algorithm can be sum-

marized as follows:
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Algorithm 1.

• Solve φ̂[r-d] and θ̂
[r-d]

using (20) and (21) and initialize φ[s-d],
g, h, �[r].

• Repeat
– Update [θ̂

[s-d]
][k+1] with [φ̂[s-d]][k], ĥ[k] and ĝ[k] being

fixed by using (28) and then update [�̂
[r]

][k];

– Update ĝ[k+1] with [φ̂[s-d]][k], ĥ[k] and [θ̂
[s-d]

][k+1]

being fixed by using (32) and then update [�̂
[r]

][k];

– Update ĥ[k+1] with [φ̂[s-d]][k], ĝ[k+1] and [θ̂
[s-d]

][k+1]

being fixed by using (34);
– Update [φ̂[s-d]][k+1] with ĥ[k+1], ĝ[k+1] and

[θ̂
[s-d]

][k+1] being fixed by using (38) and then update

[�̂
[r]

][k] as [�̂
[r]

][k+1];
• Until e(n + 1) − e(n) ≤ ε where e(n) denotes the obtained

value of objective function in (23) after the n-th iteration and
ε is a pre-set convergence accuracy, we set ε = 10−5.

E. Initialization of the Proposed Iterative Algorithm

In Algorithm 1, initial estimates of the CFO, relay-to-

destination channel, source-to-relay channel, and �̂
[r]

, which

are denoted by [φ̂[s-d]][0], ĝ[0], ĥ[0] and [�̂
[r]

][0], respectively,
are required. Thus, we present the initialization steps for the
proposed iterative estimator. Simulations in Section VI show
that the proposed estimator converges to the true values of the
parameters of interest for this choice of initialization.

Since the relay-to-destination CFO and PN parameters, φ̂[r-d]

and θ̂
[r-d]

, respectively, are estimated via (20) and (21), respec-
tively, the initial relay-to-destination channel estimates, ĝ[0],
can be obtained from the received signal y[r] via [18]

ĝ[0] = 1

N P [r]
T

FH
[Lg]�

H
s[r] F�̂

H
θ [r-d]�̂

H
φ[r-d] y[r]. (39)

Next, we seek to obtain the initial estimates of the source-to-
destination CFO, [φ̂[s-d]][0], and source-to-relay channel, ĥ[0].
By ignoring the PN terms, (18) can be approximated as

y[s] ≈ α�φ[s-d] FH �s[s] F[L]
ˆ̃G[0]h + α�φ[s-d] Ĝ[0]v + w,

where ˆ̃G[0] and Ĝ[0] are formed via ĝ[0] according to (30) and
(5), respectively. Subsequently, using the ML criterion the ini-
tial estimates of the CFO, [φ̂[s-d]][0], and channel, ĥ[0], can be
obtained by minimizing

{ĥ[0], [φ̂[s-d]][0]} = min
h,φ[s-d]

(y[s] − α�φ[s-d] FH �s[s] F[L]
ˆ̃G[0]h)H

× [�[r]]−1
(y[s] − α�φ[s-d] FH �s[s] F[L]

ˆ̃G[0]

× h) + log det(�[r]),

where �[r] = α2σ 2
R�φ[s-d] Ĝ[0]Ĝ[0]H �H

φ[s-d] + σ 2
DIN . Accord-

ingly, [φ̂[s-d]][0] and ĥ[0] can be determined as [44]

ĥ[0] =
(
α ˆ̃G[0]H FH

[L]�
H
s[s] F�H

φ[s-d]

[
�[r]]−1

�φ[s-d] FH �s[s] F[L]

× ˆ̃G[0]
)−1 ˆ̃G[0]H FH

[L]�
H
s[s] F�H

φ[s-d]

[
�[r]]−1

y[s], (40)

[φ̂[s-d]][0] = min
φ[s-d]

(y[s] − α�φ[s-d] FH �s[s] F[L]
ˆ̃G[0]ĥ[0])H

× [�[r]]−1
(y[s] − α�φ[s-d] FH �s[s] F[L]

ˆ̃G[0]ĥ[0]),

(41)

where the minimization in (41) is carried out through a one-
dimensional exhaustive search. As the exhaustive search is only
required for the initial setup, since for subsequent OFDM pack-
ets, the previous CFO estimates can be applied to initialize the
proposed iterative estimator. Also, our simulation results show
that an exhaustive search with a coarse step size of 10−2 is
sufficient for the initialization process. As for the additive noise

covariance matrix, [�̂
[r]

][0], using the Taylor approximation in
Section III-A, we have

[�̂
[r]

][0] = α2σ 2
R�θ [s-d]�̂φ[s-d] Ĝ[0]Ĝ[0]H �̂

H
φ[s-d]�

H
θ [s-d] + σ 2

DIN

≈ 
 + 
 �
(
θ [s-d]θ [s-d]H

)
+ σ 2

DIN

≈ 
 + 
 � �[s-d] + σ 2
DIN , (42)

where 
 � α2σ 2
R�̂φ[s-d] Ĝ[0]Ĝ[0]H �̂

H
φ[s-d] . In (42), since θ [s-d]

is not known, we use the expectation E(θ [s-d]θ [s-d]H ) = �[s-d]

instead of the term θ [s-d]θ [s-d]H . This allows for a closed-
form expression for obtaining the source-to-relay channel
estimates.

Remark 2: Similar to point-to-point systems [19], [39], [40],
while jointly estimating the channel, CFO, and PN parame-
ters in OFDM relay systems, a residual ambiguity may exist
amongst these parameters. In what follows, we demonstrate the
impact of this ambiguity on evaluating the performance of the
proposed estimators.

The negative LLF in (23) can be rewritten as

{φ̂[s-d], θ̂
[s-d]

, φ̂[r-d], θ̂
[r-d]

, ĥ, ĝ}
∝ arg min log det(�) + (y − μ)H �−1(y − μ)

+ 1

2
θ [s-d]T [�[s-d]]−1θ [s-d] + 1

2
θ [r-d]T [�[r-d]]−1θ [r-d]. (43)

Eq. (43) is similar to (23) with the exception that φ[r-d] and θ [r-d]

are also treated as parameters of interest and η[i] is replaced
with θ [i]. At very high SNR, i.e., σ 2

R → 0 and σ 2
D → 0, (43)

can be further simplified as

{φ̂[s-d], θ̂
[s-d]

, φ̂[r-d], θ̂
[sr-d]

, ĥ, ĝ}
∝ arg min log det(�) + (y − μ)H �−1(y − μ). (44)

From (44) it can be concluded that the metric for estimation
of parameters of interest is solely dependent on the received
signal instead of the prior information at high SNR [44].
Moreover, it can be straightforwardly shown that the received
training symbols, e.g., y[r], are not altered under a common
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phase rotation, ϕg , between the channel response, ĝ, and PN

parameters θ̂
[r-d]

, i.e.,

ĝ → exp(− jϕg)g, θ̂
[r-d] → θ [r-d] + ϕg1N . (45)

Thus, the common phase rotation, ϕg , can be considered as a
phase ambiguity amongst the channel and PN parameters that
cannot be estimated. Using a similar approach, it can also be
shown that there exists a phase ambiguity between the estimate
of the source-to-relay channel, ĥ, and the estimate of the source-

to-destination PN parameter, θ̂
[s-d]

given by

ĥ → exp(− jϕh)h, θ̂
[s-d] → θ [s-d] + (ϕh + ϕg)1N , (46)

where ϕh is the phase ambiguity associated with channel h.
In addition to the ambiguity between channel and PN, a phase
ambiguity may also exist between the PN and CFO as:

φ̂[s-d] → φ[s-d] − ε[s-d], φ̂[r-d] → φ[r-d] − ε[r-d],

θ̂
[s-d] → θ [s-d] + ε[s-d], θ̂

[r-d] → θ [r-d] + ε[r-d], (47)

where [ε[s-d]]m = 2π(m−1)ε[s-d]

N and [ε[r-d]]m = 2π(m−1)ε[r-d]

N .
These ambiguities make it difficult to assess the estimation
accuracy of the proposed iterative estimator. Thus, here, a new
approach for determining the MSE of the estimated parameters
is proposed. The MSE of the channel responses ĥ and ĝ, can be
computed as3

MSEg = Eg

(
‖ĝ − g‖2

2

)
, MSEh = Eh

(
‖ĥ − h‖2

2

)
, (48)

where ĝ � exp(− j � ĝ(0))ĝ, ĥ � exp(− j � ĥ(0))ĥ,

g � exp(− j � g(0))g and h � exp(− j � h(0))h. Using this
approach, the phase ambiguity between the PN and channels,
does not affect the MSE of channel estimation. Similarly, to
avoid the ambiguity in estimating PN and CFO, for the CFO
and PN, the overall MSE is calculated as

MSEφ[s-d],θ [s-d] = Eθ [s-d](m),φ[s-d]

(
‖δ − δ̂‖2

2

)
, (49)

where δ = δ − δ01, δ̂ = δ̂ − δ̂01, δ = [δ0, δ1, . . . , δN−1]T with

δm = θ [s-d](m) + 2π(m−1)φ[s-d]

N , and δ̂ = [δ̂0, δ̂1, . . . , δ̂N−1]T

with δ̂m = θ̂ [s-d](m) + 2π(m−1)φ̂[s-d]

N .

F. Complexity Analysis

In this subsection, we analyze the computational complex-
ity of the proposed MAP based joint estimation algorithm,
which is defined as the total number of complex multiplications
plus number of additions required by Algorithm 1 [45]. We
denote the computational complexity by C = CM + CA, where
CM denotes the number of multiplications and CA denotes the
number of additions. The number of iterations required by the
proposed algorithm is denoted by N (refer to the simulation
results shown in Fig. 6 to see the required iteration number).
Subsequently, CM and CA can be determined as

3Note that for a deterministic value, the expectation of the square error is
taken over multiple Monte-Carlo simulations.

CM = N
[
C (28)

M + C (32)
M + C (34)

M + C (38)
M

]
+ C I

M ,

CA = N
[
C (28)

A + C (32)
A + C (34)

A + C (38)
A

]
+ C I

A, (50)

where C (n)
M and C (n)

A denote the required numbers of multi-
plications and additions for equation (n), respectively, and the
specific number of C (n)

M and C (n)
A are given in (B.1); C I

M and C I
A

denote the required numbers of multiplications and additions
for algorithm initialization, and are expressed as

C I
M = C I (20)

M + C I (21)
M + C I (39)

M + C I (40)
M + C I (41)

M ,

C I
A = C I (20)

A + C I (21)
A + C I (39)

A + C I (40)
A + C I (41)

A , (51)

where we use C I (n)
M and C I (n)

A to denote the required numbers
of multiplications and additions for equation (n) during initial-
ization, respectively, and the specific number of C I (n)

M and C I (n)
A

are given in (B.2).
In comparison, it is worth noting that directly solving the

original MAP problem in (23) is impossible, since we need
to exhaustively search the solution of φ[s-d], θ [s-d], h, and g.
In (23), these parameters are coupled with each other. Also,
the elements of h and g are complex value without bounded
range. Thus, the complexity of directly solving the original
MAP problem is infinite.

IV. THE HYBRID CRAMÉR-RAO LOWER BOUND

In this section, the HCRLB for joint estimation of channel,
CFO, and PN in OFDM relay networks is derived.

As stated in Remark 2, due to the ambiguities between the
estimation of channel responses, CFO, and PN, (18) and (19)
are first rewritten as

y[s] = α�θ [s-d]�φ[s-d]

(
FH �s[s] F[L]c + Gv

)
+ w,

y[r-d] = �θ [r-d]�φ[r-d] FH �s[r] F[Lg]g + w, (52)

where c � h � g with h and g defined in (48), [�s[s] ]m,m �
s[s]

m−1 exp ( j � c(0)), [�s[r] ]m,m � s[r]
m−1 exp ( j � g(0)) are known

diagonal training signal matrices that are rotated by the phases
of the first elements of the channels, c and g, respectively, and
matrix G is constructed using g similar to (5). Accordingly, the
HCRLB for the estimation problem is given by [46]

Ey,θ [s-d],θ [r-d]|φ[s-d],φ[r-d],g,h

[
(λ − λ̂)(λ − λ̂)T

]
� B−1,

where λ �
[
φ[s-d], θ [s-d]T , φ[r-d], θ [r-d]T , g

0
,�(g̃)T ,�(g̃)T ,

h0,�(h̃)T ,�(h̃)T
]T

denotes the vector of parameters of
interest, g̃ � g(1 : Lg − 1), h̃ � h(1 : Lh − 1), and B is the
Bayesian information matrix (BIM) that is given by

B = Eθ [s-d],θ [r-d] [FIM(y;λ)] + Eθ [s-d],θ [r-d]

[
−�λ

λ log p(θ [s-d])
]

+ Eθ [s-d],θ [r-d]

[
−�λ

λ log p(θ [r-d])
]
. (53)

In (53), FIM(y;λ) = Ey
[−�λ

λ log p(y;λ)
]

denotes the
Fisher’s information matrix (FIM). In the following subsection
the BIM in (53) is derived in detail.
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A. Derivation of Eθ [s-d],θ [r-d] [FIM(y;λ)]

In order to derive Eθ [s-d],θ [r-d] [FIM(y;λ)], we first derive the
FIM for the parameters of interest λ.

Theorem 1: The Q × Q Fisher’s information matrix
FIM(y;λ) with Q = 2(N + Lg + Lh) for the joint estimation
problem is given by

FIM(y;λ) =
⎡
⎢⎣

FIM1,1 + ϒ1,1 . . . FIM1,Q + ϒ1,Q
...

. . .
...

FIMQ,1 + ϒQ,1 . . . FIMQ,Q + ϒQ,Q

⎤
⎥⎦ .

(54)

In (54), FIMi, j , for i, j = 1, 2, . . . , Q, is determined as

FIMi, j = 2�
(
ρH

i �−1ρ j

)
, (55)

where � = Blkdiag(�[r], σ 2
DIN ) with �[r] = α2σ 2

R�θ [s-d]

�φ[s-d] GGH �H
φ[s-d]�

H
θ [s-d] + σ 2

DIN , and ρi is given in (C.1) and
(C.2) in Appendix C. Moreover, in (54), ϒi, j is given by (56),
shown at the bottom of the page, where Qi � Blkdiag (Wi ,

0N×N ) with Wi being given in (C.3) in Appendix C.

Proof: See Appendix D. �
Although the FIM can be obtained in closed-form, a closed-

form expression for Eθ [s-d],θ [r-d] [FIM(y;λ)] cannot be obtained
due to the presence of a complex multidimensional integration.
Hence, here, Eθ [s-d],θ [r-d] [FIM(y;λ)] is numerically evaluated.

B. Derivation of Eθ [s-d],θ [r-d]

[
−�λ

λ log p(θ [s-d])
]

and

Eθ [s-d],θ [r-d]

[
−�λ

λ log p(θ [r-d])
]

Since p
(
θ [s-d]

)
and p

(
θ [r-d]

)
are independent of φ[s-d],

φ[r-d], g, and h, we can straightforwardly obtain

Eθ [s-d],θ [r-d]

[
−�λ

λ log p(θ [s-d])
]

= Blkdiag
(

0, [�[s-d]]−1, 0, 0N×N , 0(2Lg−1)×(2Lg−1),

0(2Lh−1)×(2Lh−1)

)
,

and

Eθ [s-d],θ [r-d]

[
−�λ

λ log p(θ [r-d])
]

= Blkdiag
(

0, 0N×N , 0, [�[r-d]]−1, 0(2Lg−1)×(2Lg−1),

0(2Lh−1)×(2Lh−1)

)
.

Finally, the BIM in (53) can be calculated using the results in
Sections IV-A and IV-B.

Remark 3: Since we consider to jointly estimate three chan-
nel parameters, PN, CFO, and the channels at the destination

ϒi, j =

⎧⎪⎪⎨
⎪⎪⎩

ϒi, j = Tr
[
�−1Qi�

−1Q j

]
i = 1, 2, . . . , N + 1

j = 2N + 3, 2N + 4, . . . , 2N + 2Lg + 1

ϒi, j = 0 Otherwise

, (56)

node, the considered estimation problem in this paper is sig-
nificantly more complex than the one considered in [47], our
analysis has shown that the derivation of the asymptotic CRB
is very challenging to derive, which is beyond the scope of this
work and will be considered in our future work.

C. Derivation of the Transformed HCRLB

As shown in Remark 2, due to the ambiguities in the esti-
mation of parameters of interest, the MSE of the CFO and
PN is computed jointly as shown in (49). Consequently, the
parameters of interests, λ needs to be transformed to λmod =[
δT, φ[r-d], θ [r-d]T, g

0
,�(g̃)T,�(g̃)T, h0,�(h̃)T,�(h̃)T

]T
. Since

δm = θ [s-d](m) + 2π(m−1)φ[s-d]

N , this transformation can be writ-
ten in matrix form as

λmod = �λ,

where � � �2�1, �1 � Blkdiag(0, �̃1, 1, IN×N , I(2Lg−1)×
(2Lg−1), I(2Lh−1)×(2Lh−1)), �2 � Blkdiag(�̃2, 1, IN×N ,

I(2Lg−1)×(2Lg−1), I(2Lh−1)×(2Lh−1)), and

�̃1 �

⎡
⎢⎢⎢⎣

0 0 0 . . . 0
−1 1 0 . . . 0
...

...
...

. . .
...

−1 0 0 0 1

⎤
⎥⎥⎥⎦ ∈ R

N×N ,

�̃2 �

⎡
⎢⎢⎢⎣

0 1 0 0 . . . 0
2π
N 0 1 0 . . . 0
...

...
...

...
. . .

...
2π(N−1)

N 0 0 0 . . . 1

⎤
⎥⎥⎥⎦ ∈ R

N×(N+1).

Thus, the HCRLB for the transformed parameters of interest
λmod is given by HCRLBmod = �B−1�T [44].

V. DATA DETECTION IN PRESENCE OF PHASE NOISE

In this section, a receiver structure for data detection at
the destination in the presence of PN is proposed. Since the
PN parameters vary over an OFDM symbol, they need to be
accurately tracked over the length of each symbol. Hence, we
propose the transmission of comb-type data symbols from the
source node, i.e., each transmitted symbol consists of both pilot
and data subcarriers (see Fig. 4). As discussed in Section II-
D, in each OFDM data symbol, it is sufficient to estimate the
shortened PN vector of length M . Thus, the maximum number
of subcarriers utilized for data transmission is N − M . Based
on that, if the coherence time of the OFDM channel is Lc sym-
bols, the overhead of pilots in both the estimation phase and the
data transmission phase is 2N+(Lc−2)M

Lc N .
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Fig. 4. Illustration of the comb-type data symbol.

The received signal at the destination during the data trans-
mission interval is given by

y[s] = α�θ [s-d]�φ[s-d]

(
F�c̃s[s] + Gv

)+ w

= TTs[s]
T + TDs[s]

D + α�θ [s-d]�φ[s-d] Gv + w, (57)

where s[s] denotes the comb-type signal transmitted during the
data transmission interval with E(s[s]s[s]H ) = P [s]

T IN , s[s]
T and

s[s]
D denote the pilot and data vector contained in s[s], respec-

tively, and TT and TD are the associated sub-matrices of the
combined channel, α�θ [s-d]�φ[s-d] F�c̃, corresponding to s[s]

T and

s[s]
D , respectively. Since in (57), the unknown PN vector θ [s-d]

and data vector s[s]
D are coupled with each other, similar to the

estimation part, an iterative method is applied here. By using the
MAP criterion as in (22), the joint estimation of PN parameters
and data can be formulated as

{θ̂ [s-d]
, s[s]

D } = arg min
θ [s-d],s[s]

D

log det(�[r])

+ (y[s] − μ
)H [

�[r]]−1 (
y[s] − μ

)
+ 1

2
η[s-d]T η[s-d], (58)

where μ � α�θ [s-d]�φ̂[s-d] F� ˆ̃cs[s] with �φ̂[s-d] and
� ˆ̃c being determined based on the estimated CFO

and channels, φ̂
[s-d]

and ĉ, respectively, and �[r] =
α2σ 2

R�θ [s-d]�φ̂[s-d] ĜĜH �H
φ̂[s-d]�

H
θ [s-d] + σ 2

DIN is the noise
covariance matrix that is calculated via the estimated chan-
nels, ĝ, and CFO, φ̂[s-d]. First, the data symbols at the k-th
iteration, [s[s]

D ][k], are used to estimate the PN at the (k + 1)-th
iteration, [θ [s-d]][k+1]. To obtain a closed-form solution, as in
Section III-A, (57) is approximated by

y[s] ≈ α�φ̂[s-d] F� ˆ̃c[s[s]][k] + Diag
(

jα�φ̂[s-d] F� ˆ̃c[s[s]][k]
)

× �[s-d]η[s-d] + α�̂
[k]
θ [s-d]�φ̂[s-d] Ĝv + w,

where η[s-d] denotes the shorten PN vector. By equating the

gradient of (58) to zero, [θ̂
[s-d]

][k+1] can be determined as

[θ̂
[s-d]

][k+1] = �[s-d]
(

�
(

MH
[
[�̂

[r]
][k]
]−1

M
)

+ 1

2
IM

)−1

�
(

MH ×
[
[�̂

[r]
][k]
]−1

(y[s] − α�φ̂[s-d] F� ˆ̃c[s[s]][k])

)
,

(59)

where M � Diag
(

jα�φ̂[s-d] F� ˆ̃c[s[s-d]][k]
)

�[s] and [�̂
[r]

][k] =
α2σ 2

R�̂
[k]
θ [s-d]�φ̂[s-d] ĜĜH �H

φ̂[s-d]�̂
[k]H
θ [s-d] + σ 2

DIN . Secondly, using

[θ̂
[s-d]

][k+1] and the noise covariance matrix at the (k + 1)-th

Algorithm 2.

• Initialize s[s]
D and �[r]

• Repeat
– Update [θ [s-d]][k+1] with the estimated [s[s]

D ][k] by using

(59) and then update [�̂
[r]

][k] as [�̂
[r]

][k+1];
– Update [s[s]

D ][k+1] with the estimated [θ [s-d]][k+1] by using
(60);

• Until q(n + 1) − q(n) ≤ ε where q(n) denotes the obtained
value of objective function in (58) after the n-th iteration and
ε is a pre-set convergence accuracy.

iteration, [�̂
[r]

][k+1], an estimate of the transmitted symbols at
the (k + 1)-th iteration can be obtained as

[s[s]
D ][k+1] =

(
T̂[k+1]H

D

[
[�̂

[r]
][k+1]

]−1
T̂[k+1]

D

)−1

T̂[k+1]H
D

×
[
[�̂

[r]
][k+1]

]−1
(y[s] − T̂[k+1]

T s[s]
T ). (60)

In (60), although T̂[k+1]
T and T̂[k+1]

D are defined similar to TT

and TD in (57), they are obtained via the estimates [θ̂
[s-d]

][k+1],
φ̂[s-d], and ĉ. The overall iterative detector is given below.

In Algorithm 2, initial estimates of s[s]
D and �[r] are obtained

similar to that of the training interval.
Remark 4: As indicated here, the ambiguities associated

with calculating the MSE for channel response, CFO, and PN
parameters do not affect the data transmission interval. Let us
denote the ambiguities of the channels and CFO in the train-
ing phase as ĝ → exp(− jϕg)g, ĉ → exp(− j (ϕh + ϕg))c and
φ̂[s-d] → φ[s-d] − ε[s-d]. These ambiguities can be combined
during the data transmission phase in the overall estimate of the

PN parameters θ [s-d] in (57), which can be written as θ̂
[s-d] →

θ [s-d] + (ϕg + ϕh)1 + ε[s-d] (ε[s-d] is defined in (47)). It can be
clearly observed that these ambiguities do not affect the over-
all channel response, α�θ [s-d]�φ[s-d] F�c̃, and the received signal
in (57).

Remark 5: In Algorithm 2, we apply a suboptimal linear
detection approach by first conducting the equalization. The
complexity of the linear detection scheme includes estimating
θ [s-d] in (59) and estimating s[s]

D in (60). Assume that the num-
bers of subcarriers used for training and data transmission in
each OFDM symbol are M and N − M , respectively. Denote
the required numbers of multiplications and additions for equa-
tion (n) by C (n)

M and C (n)
A , respectively, the complexity of the

linear detection is given by

C = N(C (58)
M + C (59)

M + C (58)
A + C (59)

A ) (61)

where N denotes the number of iterations required by the
proposed linear detection and

C (58)
M = 2N 3 + N 2 M + N M2 + 2N M + M2

C (59)
M = N 3 + (N − M)3 + (N − M)N 2 + N (N − M)2

+ N (N − M) + (N − M)2
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Fig. 5. The MSE of phase noise estimation with different M .

C (58)
A = N + N (N − 1) + 2N M(N − 1) + M + M(N − 1)

+ M(M − 1) + N (M − 1),

C (59)
A = N + N (M − 1) + 2N (N − 1)(N − M)

+ (N − M)(N − 1) + (N − M)(N − M − 1). (62)

It is worth noting that the maximum-likelihood (ML) detec-
tor may be used to further improve the detection performance.
However, in ML detection, we need to exhaustively search
θ [s-d] and s[s]

D in (58). Consider that the elements of θ [s-d] are
complex value without a bounded range, its high computa-
tional complexity may not be affordable in practical systems
in our case.

VI. SIMULATION RESULTS

In this section, extensive simulations are carried out to eval-
uate the performance of the proposed algorithms. Without loss
of generality, it is assumed that the noise powers at relay and
destination nodes are the same, i.e., σ 2

R = σ 2
D = 1. In all the

simulations, the subcarriers are modulated in quadrature phase
shift keying (QPSK) format for both training and data transmis-
sion phases. Moreover, the following simulation parameters are
considered:

A. General Channel Setup

It is assumed that the multi-path channels exhibit unit-
variance Rayleigh fading characteristics. The multipath fading
channels from relay-to-destination and source-to-relay, g and h,
respectively, are assumed to consist of 6 taps, i.e., Lg = Lh =
6. N = 64 subcarriers are used in each OFDM symbol. The
normalized CFOs, φ[s-d] and φ[r-d], are uniformly drawn from
[−0.4, 0.4] and [−0.2, 0.2], respectively, and σ 2

�[s-d] = σ 2
�[r-d] =

σ 2
�. Without loss of generality, in the remainder of this section,

we assume α = 1 by letting P [r]
T = P̄z. Moreover, it is assumed

that P [s]
T = P [r]

T = PT = SNR.
Fig. 5 depicts the MSE of PN estimation, when estimat-

ing the shortened phase vector η[s-d] for different values of M
(see Section II-D). For ease of comparison and to isolate the
effect of CFO and channel estimation, it is assumed that the
channel response, c, and the CFO, φ[s-d], are perfectly known.
Fig. 5 shows that when the phase noise variance is large, the

Fig. 6. The convergence of the proposed joint estimation algorithm at different
SNR (σ 2

�[s-d] = 10−4rad2).

choice of M makes a difference in estimation performance even
when the SNR is small. Moreover, when the SNR is large, the
choice of M can make a difference even when the phase noise
variance is small. In fact, when the phase noise variance or
SNR are large, the small eigenvalues still contribute greatly to
the estimation accuracy of the phase noise parameters. Hence,
even though many eigenvalues in matrix � are close to zero,
choosing a lager M can still improve the performance of phase
noise estimation. However, the choice of M introduces a trade-
off between estimation performance and complexity. From the
plots in Fig. 5, it can be concluded that when the PN inno-
vation variance σ 2

�[s-d] is small, i.e., σ 2
�[s-d] = 10−5 rad2, PN

parameters can be accurately estimated using M = 16 com-
pared to M = 64. Such an approach greatly reduces the PN
estimation overhead. For scenarios with higher innovation vari-
ances, i.e., σ 2

�[s-d] = 10−4 rad2 and σ 2
�[s-d] = 10−3 rad2, it can be

deduced that a larger value of M is needed to ensure accurate
PN estimation, e.g., M = 32. However, even for these larger
PN variances, using the proposed scheme, the number of PN
parameters that need to be tracked is reduced by one half.
Accordingly, in the remainder of this section, M = 32 is used.

In Fig. 6, the convergence of the proposed joint estimation
algorithm is plotted for different SNRs. It can be observed that
on average less than 50 iterations are needed for the proposed
algorithm to converge to the true estimates for a wide range of
SNR values. More importantly, the results in Fig. 6 show that
as the SNR increases the proposed algorithm converges more
quickly, e.g., for SNR = 30 dB less than 10 iterations are needed
for the proposed estimator to converge.

Figs. 7 and 8 illustrate the estimation MSE of relay-to-
destination channel, g (defined in Remark 2), for PN variances,

σ 2
� = 10−4rad2 and σ 2

� = 10−3rad2, respectively, while the
estimation MSE of the source-to-relay channel, h (defined in
Remark 2), is presented in Figs. 9 and 10. As a compari-
son, the channel estimation performance while ignoring the
effect of PN on the received signal is also presented in these
figures. Finally, the proposed estimation algorithms perfor-
mance is benchmarked using the derived HCRLB in Section IV.
Figs. 7–10 indicate that by including the PN parameters in
the joint estimation problem, channel estimation performance
in relay networks can be significantly enhanced. At moderate
SNR, Figs. 7–10 also show that the proposed algorithm has a
constant performance gap with respect to the derived HCRLB
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Fig. 7. The MSE of g estimation at σ 2
� = 10−4rad2.

Fig. 8. The MSE of g estimation at σ 2
� = 10−3rad2.

Fig. 9. The MSE of h estimation at σ 2
� = 10−4rad2.

bound for both PN innovation variances of σ 2
� = 10−4rad2 and

σ 2
� = 10−3rad2. This is due to the inherent structure of the

HCRLB, which is not necessarily a very tight bound as stated
in [48]. Nevertheless, the performance of the proposed estima-
tor is close to the derived HCRLB for moderate SNR. Finally,
the results in Figs. 7–10 indicate that for large PN innovation
variances, e.g., σ 2

�[s-d] = 10−3rad2, the channel estimation per-
formance suffers from an MSE error-floor at high SNR. This
error-floor is caused by the time-varying PN parameters that
cannot be perfectly estimated. We also observe that at low SNR,
the performance of the proposed algorithm is close to the tradi-
tional estimation by ignoring the PN. This is because at low
SNR, the overall estimation performance of the estimator is
dominated by the additive noise at the destination node. This
is different from the case at high SNR in which the algorithm’s
estimation performance is dominated by the PN.

Fig. 10. The MSE of h estimation at σ 2
� = 10−3rad2.

Fig. 11. The MSE of CFO plus PN estimation at σ 2
� = 10−3rad2 and σ 2

� =
10−4rad2.

Fig. 12. The BER performance for the proposed joint data detection algorithm
at σ 2

� = 10−4rad2.

Fig. 11 illustrates the MSE for estimation of combined CFO
and PN, δ for different PN variances. Similar to the results for
channel estimation, the overall estimation performance suffers
from an error floor for large PN variances, e.g., σ 2

� = 10−3rad2.
This phenomenon can be similarly justified due to the imper-
fect estimation of PN parameters. Moreover, there is a 5 dB
gap between the CFO and PN estimation MSE and the derived
HCRLB at medium SNRs.

Figs. 12 and 13 illustrate the end-to-end BER of an uncoded
OFDM and a coded OFDM4 relay networks when applying the
combination of the proposed iterative estimator and detector
at σ 2

� = 10−4rad2. It is observed that significant performance

4Here we apply the convolutional coding with a rate of 1
2 with trellis

structure given by (3, [6, 7]).
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Fig. 13. The coded-BER performance for the proposed joint data detection
algorithm at σ 2

� = 10−4rad2.

Fig. 14. The MSE of h estimation at σ 2
� = 10−2rad2.

gains can be achieved by using the proposed joint data detection
and PN estimation algorithm compared to a scheme that ignores
the impact of PN. However, compared to the case with perfect
channel, CFO, and PN, the proposed data detection algorithm
still suffers from an error-floor at high SNR regime. This can be
again attributed to imperfect PN estimation, where at high SNR,
the overall BER of the OFDM relay system is dominated by PN
and not the additive noise. This result indicates the importance
of considering the impact of PN when determining the link
budget, throughput, and coverage of wireless relay networks.

B. 3GPP Channel Setup

Following the 3GPP-LTE system setting [49], the multipath
channel g and h consist of Lg = Lh = 5 channel taps and
follow the exponentially decaying power-delay profile with a
decay constant of 0.5136 [50]. In addition, we consider a 3GPP-
LTE system with 256 subcarriers. The sampling frequency is
fs = 1.92 MHz and the carrier frequency is fc = 2 GHz. The
choice of the carrier frequency is to motivate the use of the
3GPP-LTE channel model. However, the proposed algorithm
is applicable to higher carrier frequencies in the millimeter-
wave band. The CP length of each OFDM symbol is set to
10 samples, i.e., NC P = 10. The unknown normalized CFO is
assumed to be uniformly distributed over a range of [−0.5, 0.5],
which equivalently means that the CFO is uniformly distributed
over a range of [−3.75, 3.75] MHz. Moreover, it is assumed
that P [s]

T = SNR and P [r]
T = 2 × SNR.

Fig. 15. The MSE of g estimation at σ 2
� = 10−2rad2.

Fig. 16. The performance comparison between the proposed estimation and
[32] at σ 2

� = 10−3rad2.

Figs. 14 and 15 illustrate the estimation MSE of the source-
to-relay channel h and the estimation MSE of the relay-
to-destination channel g, respectively, with PN variances of

σ 2
�[s-d] = σ 2

�[r-d] = σ 2
� = 10−2rad2.5 We observe that for the

3GPP-LTE setting with higher PN variances, the performance
gain of the proposed estimation over the one ignoring the phase
noise is more significant. However, we see from Figs. 14 and 15
that the performance gap between the derived HCRLB and the
obtained MSE becomes larger with a higher phase noise vari-
ance. In Fig. 16, we compare the proposed estimation with the
one in [32]. It is worth noting that [32] aims to estimate the cas-
caded channel parameters for the source-to-destination link, in
which the channel estimation is similar to that of point-to-point
systems. Hence, for fairness, we compare the estimation MSE
of the relay-to-destination link by using our proposed estima-
tor and the that of [32]. We observe from Fig. 16 that for low
and moderate SNRs, the MSE performance of the proposed
approach and that of [32] are similar. However, our proposed
estimator outperforms [32] at high SNR values, which maybe of
practical interest for backhaul microwave and millimeter-wave
applications with stringent performance requirements.

5In practice, this is a very high PN variance. As shown in [51], [52], the
phase noise innovation variance is small, e.g., using the measurement results
in [52], [Fig. 16], and [52, Eq. (10)] for a free-running oscillator operating at
2.8 GHz with Ts = 10−6 the phase noise rate is calculated to be σ 2

� = 10−4.
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VII. CONCLUSIONS

In this paper, joint channel, CFO, and PN estimation and
data detection in OFDM relay networks is analyzed. Due to
its time-varying nature, new algorithms for tracking the PN
parameters in both the training and data transmission intervals
are proposed. During the training interval, a new joint CFO,
channel, and PN estimation algorithm that iteratively estimates
these impairments is derived. To reduce estimation overhead,
the proposed algorithm applies the correlation amongst the PN
parameters to reduce the dimensionality of the estimation prob-
lem. Simulations show that the proposed estimator significantly
enhances channel estimation performance in presence of PN,
converges quickly, and performs close to the derived HCRLB
at medium SNRs. Moreover, an iterative joint PN estimation
and data detection receiver based on the MAP criterion at the
destination node is proposed. The combination of the proposed
estimation and data detection algorithms is shown to result in
5–10 dB performance gains over schemes that ignore the deteri-
orating effect of PN. Future research interests include extending
the proposed estimation and detection scheme to OFDMA net-
works and single-hop multi-relay scenarios. Considering that
in an OFDMA network, each user can only use a portion of
the available subcarriers. To obtain an accurate estimates of
phase noise, CFO, and channel parameters, multiple OFDM
training symbols may be required. For the single-hop multi-
relay scenario, as each relay node has an independent oscillator,
more phase noise and CFO errors may be introduced to the net-
work, which makes the estimation and detection process more
challenging. For full-duplex relaying networks, a more detailed
analysis of the impact of self interference on the performance
of the estimator and the overall system is needed. Moreover,
enhancing phase noise estimation and deriving a tight HCRLB
for very strong phase noise variances should also be subject of
future research.

APPENDIX A
DERIVATION OF (28)

In this section, an expression for the optimization in (27) is
derived. It is straightforward to determine that the optimiza-
tion in (27) is a nonlinear and non-convex problem. Thus, the
solution of η[s-d] in (27) should be in general obtained through
exhaustive search. To simplify the problem and obtain a closed-
form solution, we first approximate the covariance matrix

�[r] as [�̂
[r]

][k] = α2σ 2
R�̂

[k]
θ [s-d]�̂

[k]
φ[s-d] Ĝ[k]Ĝ[k]H �̂

[k]H
φ[s-d]�̂

[k]H
θ [s-d] +

σ 2
DIN , where [�̂

[k]
θ [s-d] ]m,m = e j[θ̂ [s-d](m)][k]

is obtained from the
previous iteration. Moreover, since the PN innovation vari-
ance of practical oscillators is usually small, the elements in
�θ [s-d] can be approximated by a Taylor series expansion as

e jθ [s-d](n) ≈ 1 + jθ [s-d](n). This small angle approximation has
also been used in [18], [25], [39] for PN estimation. Hence,
the PN matrix, �θ [s-d] , can be approximated as �θ [s-d] ≈ IN +
jDiag(θ [s-d]) and Lη[s-d] in (27) can be rewritten as

Lη[s-d] ≈ (ȳ[s] − Bη[s-d])H
[
[�̂

[r]
][k]
]−1

(ȳ[s] − Bη[s-d])

+ 1

2
η[s-d]T η[s-d]

≈ ȳ[s]H
[
[�̂

[r]
][k]
]−1

ȳ[s] − 2�
(

ȳ[s]H
[
[�̂

[r]
][k]
]−1

B
)

× η[s-d] + η[s-d]T �
(

BH
[
[�̂

[r]
][k]
]−1

B
)

η[s-d]

+ 1

2
η[s-d]T η[s-d], (A.1)

where ȳ[s] � y[s] − α�̂
[k]
φ[s-d] FH �s[s] F[L]ĉ[k] and B �

jDiag(α�̂
[k]
φ[s-d] FH �s[s] F[L]ĉ[k])�[s-d]. Next, by equating

the gradient of (A.1) to zero, i.e.,

∂Lη[s-d]

∂η[s-d]
= −2�

(
BH
[
[�̂

[r]
][k]
]−1

ȳ[s]
)

+ 2�
(

BH
[
[�̂

[r]
][k]
]−1

B
)

η[s-d] + η[s-d]

= 0M×1,

then we obtain (28).

APPENDIX B
COMPLEXITY ANALYSIS OF ALGORITHM 1

In (50), C (n)
M and C (n)

A are determined as

C (28)
M = N 3 + 2N 2 M + M3 + N M + M2

+ M N + N︸ ︷︷ ︸
update [θ̂

[s-d]
][k+1] and [�̂

[r]
][k]

,

C (32)
M = N L Lg + 3N Lg + 2N 2Lg + N︸ ︷︷ ︸

update C in (32)

+(2N )3

+ N 2Lg + N L2
g + L3

g + 2N Lg,

C (34)
M = N L Lh + 2N Lh + N 2Lg + N︸ ︷︷ ︸

update D in (34)

+N Lh

+ N 3 + N 2 + N ,

C (38)
M = N + 3N L + N 2L︸ ︷︷ ︸

update d[s-d] in (38)

+N 3 + N 2 + 3N ,

C (28)
A = M(N − 1) + 2M(M − 1) + M

+ N M(N − 1) + N M(N − 1),

C (32)
A = 4N Lg(2N − 1) + 2N (2N − 1) + Lg(2N − 1),

C (34)
A = 2N Lh(N − 1) + N (N − 1) + Lh(N − 1),

C (38)
A = 1 + 2N (N − 1)2(N − 1) + N . (B.1)

Now we determine C I
M and C I

A. Note that the initialization of

Algorithm 1 requires us to compute φ̂[r-d], θ̂
[r-d]

, ĝ[0], ĥ[0] and
[φ̂[s-d]][0] in (20), (21), (39), (40) and (41), respectively. Hence,
C I (n)

M and C I (n)
A can be determined as

C I (20)
M = Ne(3N 2 + N ),

C I (20)
A = Ne

(
N + N 2(N − 1) + 2N (N − 1) + 2(N − 1)

)
,

(B.2)
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where Ne is the number determining the precision in exhaus-
tively searching φ[r-d] in (20), and

C I (21)
M = 4N 3 + 2N 2 + M3,

C I (21)
A = N 2(N − 1) + 2N M(N − 1) + M + 2N (N − 1)

+ M(N − 1) + M(M − 1) + N (M − 1)

+ Lg(N − 1),

C I (39)
M = 3N 2 + N 3,

C I (39)
A = N (N − 1) + Lg(N − 1),

C I (40)
M = 6N 3 + 2N 2,

C I (40)
A = L(Lh − 1) + 2N (L − 1) + N + N (N − 1)

+ (N − 1),

and

C I (41)
M = Ne(2N 3 + 4N 2 + N ),

C I (41)
A = Ne (L(Lh − 1) + 2N (L − 1) + N + N (N − 1)

+(N − 1)) ,

where Ne is the number determining the precision in exhaus-
tively searching as defined in (B.2).

APPENDIX C
DEFINITIONS OF ρi AND Wi

For ρi , we have

ρi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
(α��θ [s-d]�φ[s-d] FH �s[s] F[L]c)T , 0T

N×1

]T
, i = 1[

aT
i−2Diag

(
α�φ[s-d] FH �s[s] F[L]c

)
, 0T

N×1

]T
,

i = 2, 3, . . . , N + 1[
0T

N×1, (��θ [r-d]�φ[r-d] FH �s[r] F[Lg]g)T
]T

,

i = N + 2[
0T

N×1, bT
i−N−3Diag

(
�φ[r-d] FH �s[r] F[Lg]g

)]T
,

i = N + 3, N + 3, . . . , 2N + 2

E(:, 1), i = 2N + 3

E(:, i − 2N − 2),

i = 2N + 4, 2N + 5, . . . , 2N + Lh + 2

jE(:, i − 2N − Lh − 1),

i = 2N + Lh + 3, . . . , 2N + 2Lh + 1

K(:, 1), i = 2N + 2Lh + 2

.

(C.1)

and

ρi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K(:, i − 2N − 2Lh − 1),

i = 2N + 2Lh + 3, . . . , 2N + 2Lh + Lg + 1

jK(:, i − 2N − 2Lh − 2Lg),

i = 2N + 2Lh + Lg + 2, . . . , Q

,

(C.2)

where � is a diagonal matrix with [�]m,m = j2π(m−1)
N ,

am = [01,m−1, j exp( jθ [s-d](m)), 01,N−m]T , bm = [01×(m−1),

j exp( jθ [r-d](m)),01×(N−m)]T,E=
[
α�φ[s-d]�θ [s-d] FH �s[s] F[L]H̃
�φ[r-d]�θ [r-d] FH �s[r] F[Lg]

]
with H̃ being constructed via h as in (30), K �[
(α�φ[s-d]�θ [s-d] FH �s[s] F[L]G̃)T , 0T

N×1

]T
with G̃ being

constructed using g as in (29).
For Wi , we have

Wi =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
α2σ 2

R�θ [s-d] GGH �H
θ [s-d]

)
�
(
�ϑϑ H + ϑϑ H �H

)
,

i = 1(
α2σ 2

R�θ [s-d] GGH �H
θ [s-d]

)
�
(

ai−2θ
[s-d]H + θ [s-d]aH

i−2

)
,

i = 2, . . . , N + 1

α2σ 2
R�θ [s-d]�φ[s-d]

(
D0GH + GDH

0

)
�H

φ[s-d]�
H
θ [s-d] ,

i = 2N + 3

α2σ 2
R�θ [s-d]�φ[s-d]

(
Di−2N−3GH + GDH

i−2N−3

)
× �H

φ[s-d]�
H
θ [s-d] , i = 2N + 4, . . . , 2N + Lg + 2

jα2σ 2
R�θ [s-d]�φ[s-d]

(
Di−Lg−2N−2GH − GDH

i−2N−Lg−2

)
× �H

φ[s-d]�
H
θ [s-d] , i = 2N + Lg + 3 . . . 2N + 2Lg + 1

,

(C.3)

where ϑ �
[

1, e
j2πφ[s-d]

N , . . . , e
j2π(N−1)φ[s-d]

N

]
and Dm �[

0N×(Lg−m−1), IN , 0N×m
]
, ∀m.

APPENDIX D
DERIVATION OF FIM

In this section, the FIM for joint estimation of channels,
CFO, and PN parameters, i.e., FIM(y;λ), is derived. First,
note that the combined received signal vector at the des-

tination node in (52), y �
[
y[s]T , y[r]T

]T
is a multivariate

Gaussian random variable, i.e., y ∼ N(μ,�) with mean μ =[
(α�θ [s-d]�φ[s-d] FH �s[s] F[L]c)T, (�θ [r-d]�φ[r-d] FH�s[r] F[Lg]g)T

]T

and covariance � = Blkdiag(�[r], σ 2
DIN ). As a result, the

(i, j)-th element of FIM(y;λ) can be determined as [44]

[FIM(y;λ)]i, j = 2Re

[
∂μH

∂λi
�−1 ∂μ

∂λ j

]

+ Tr

[
�−1 ∂�

∂λi
�−1 ∂�

∂λ j

]
. (D.1)

To obtain (D.1), the following derivatives are evaluated as

∂μ

∂φ[s-d]
=
[
(α��θ [s-d]�φ[s-d] FH �s[s] F[L]c)T , 0T

N×1

]T
,

∂μ

∂φ[r-d]
=
[
0T

N×1, (��θ [r-d]�φ[r-d] FH �s[r] F[Lg]g)T
]T

,
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∂μ

∂θ [s-d](m)
=
[
aT

mDiag
(
α�φ[s-d] FH �s[s] F[L]c

)
, 0T

N×1

]T
,

∂μ

∂θ [r-d](m)
=
[
0T

N×1, bT
mDiag

(
�φ[r-d] FH �s[r] F[Lg]g

)]T
,

(D.2)

where am and bm are defined below (55). Moreover, for chan-

nel responses g and h, for m = 1, 2, . . . , Lg , we have
∂μ

∂(g(0))
=

E(:, 1) and

∂μ

∂�(g(m))
= E(:, m),

∂μ

∂�(g(m))
= jE(:, m), (D.3)

and for m = 1, 2, . . . , Lh , we have
∂μ

∂(h(0))
= K(:, 1) and

∂μ

∂�(h(m))
= K(:, m),

∂μ

∂�(h(m))
= jK(:, m), (D.4)

where E and K are defined as in (C.1) and (C.2), respec-
tively. Since φ[r-d], θ [r-d], h are irrelevant to the noise covariance
matrix �, it is straightforward to determine that ∂�

∂φ[r-d] =
∂�

∂θ [r-d](m)
= ∂�

∂h(0)
= ∂�

∂�(h(m))
= ∂�

∂�(h(m))
= 0, ∀m. Moreover,

for the CFO and PN parameters, φ[s-d] and θ [s-d], we can

obtain that ∂�

∂φ[s-d] = Blkdiag
(

∂�[r]

∂φ[s-d] , 0N×N

)
, where ∂�[r]

∂φ[s-d] =(
α2σ 2

R�θ [s-d] GGH �H
θ [s-d]

)
� (�ϑϑ H + ϑϑ H �H ), and

∂�[r]

∂θ [s-d](m)
=
(
α2σ 2

R�θ [s-d] GGH �H
θ [s-d]

)
�
(

amθ [s-d]H + θ [s-d]aH
m

)
,∀m (D.5)

with ϑ �
[

1, e
j2πφ[s-d]

N , . . . , e
j2π(N−1)φ[s-d]

N

]
. For channel

response g, based on the structure of G as shown in (5), we
have

∂�[r]

∂g(0)
= α2σ 2

R�θ [s-d]�φ[s-d]

(
D0GH + GDH

0

)
× �H

φ[s-d]�
H
θ [s-d] ,

∂�[r]

∂�(g(m))
= α2σ 2

R�θ [s-d]�φ[s-d]

(
DmGH + GDH

m

)
× �H

φ[s-d]�
H
θ [s-d] , m = 1, 2, . . . , Lg − 1,

∂�[r]

∂�(g(m))
= jα2σ 2

R�θ [s-d]�φ[s-d]

(
DmGH − GDH

m

)
× �H

φ[s-d]�
H
θ [s-d] , m = 1, 2, . . . , Lg − 1, (D.6)

where Dm �
[
0N×(Lg−m−1), IN , 0N×m

]
. Subsequently, the

derivatives of the covariance matrix with respect to the
relay and imaginary parts of the relay-to-destination channel

parameters are given by ∂�
∂g(0)

= Blkdiag
(

∂�[r]

∂g(0)
, 0N×N

)
and

∂�
∂�(g(m))

= Blkdiag
(

∂�[r]

∂�(g(m))
, 0N×N

)
, respectively. By comb-

ing (D.2)–(D.6) together, the results in Theorem 1 are derived.
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