
2684 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 5, MAY 2015

Channel Estimation and Optimal Training Design
for Correlated MIMO Two-Way Relay

Systems in Colored Environment
Rui Wang, Member, IEEE, Meixia Tao, Senior Member, IEEE,

Hani Mehrpouyan, Member, IEEE, and Yingbo Hua, Fellow, IEEE

Abstract—In this paper, while considering the impact of the an-
tenna correlation and the interference from neighboring users, we
analyze channel estimation and training sequence design for multi-
input multi-output (MIMO) two-way relay systems. To this end,
we propose to decompose the bidirectional transmission links into
two phases, i.e., the multiple access (MAC) phase and the broad-
cast (BC) phase. By considering the Kronecker-structured channel
model, we derive the optimal linear minimum mean-square-error
(LMMSE) channel estimators. The corresponding training designs
for the MAC phase and the BC phase are then formulated and
solved to improve channel estimation accuracy. For the general
scenario of the training sequence design for both phases, two
iterative training design algorithms are proposed that are verified
to produce training sequences achieving near optimal channel es-
timation performance. Furthermore, for specific practical scenar-
ios, where the covariance matrices of the channel or disturbances
are of particular structures, the optimal training sequence design
guidelines are obtained. The minimum required training lengths
for channel estimation in both the MAC phase and the BC phase
are also analyzed. Comprehensive simulations are carried out to
demonstrate the effectiveness of the proposed training designs.

Index Terms—MIMO, two-way relaying, channel estimation,
linear minimum mean-square-error, convex optimization.

I. INTRODUCTION

R ELAY assisted cooperative communication has been
regarded as one of the most promising techniques in

combating long distance channel fading in complex wireless
communication systems. One popular example is one-way re-
laying, which has been well studied in the past decade [2], [3].
Although one-way relaying shows great potential in reducing
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power consumption, enhancing reliability, and extending cov-
erage, it suffers from low spectral efficiency due to the half-
duplex nature of the network. To overcome this disadvantage,
by using the idea of network coding, two-way relaying (TWR)
has been proposed and has received great attention recently. In
fact, TWR can maintain the advantages of traditional relaying
while doubling spectral efficiency.

The improvement in spectral efficiency in TWR is achieved
by applying self-interference cancelation at each source node
and extracting the desired information from the received
network-coded messages. In this case, the accuracy of the self-
interference cancelation process significantly affects the perfor-
mance of TWR systems. Moreover, when using the popular
amplify-and-forward (AF) relaying strategy, the accuracy of
self-interference cancelation process heavily depends on the
precision of the channel estimation. Thus, obtaining highly
accurate channel state information (CSI) becomes more impor-
tant in TWR systems compared to traditional one-way relaying
systems. In fact, devising new channel estimation schemes
for TWR systems has received great attention recently. For
example, in [4], the authors propose to estimate the cascaded
channel of TWR systems under the AF relaying strategy. By
using multiple phase shift keying (M-PSK) training symbols,
blind and partially-blind channel estimators are investigated in
[5], [6]. Different from [4]–[6], where flat fading channels are
assumed, the authors in [7] investigate time varying channel
estimation via a new complex-exponential basis expansion
model. Moreover, in [8], [9], the channel estimation for TWR
is extended to the scenario of orthogonal frequency division
multiplexing (OFDM) systems.

It is worth noting that the works summarized above are
concerned with single-antenna TWR systems. As expected,
the multi-antenna or multi-input multi-output (MIMO) tech-
nique can be introduced into TWR systems to further improve
transmission reliability and bandwidth efficiency. One efficient
way to realize such performance improvement is to exploit the
estimated CSI for the application of source and relay precoding
[10], [11]. Therefore, in MIMO TWR systems, in addition
to affecting the performance of self-interference cancelation,
inaccurate channel estimation also imposes a negative effect on
the precoder design.

Fig. 1 depicts a MIMO TWR setup. Let us denote the process
of data transmission from the source nodes to the relay and the
relay to the source nodes as multiple access (MAC) phase and
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Fig. 1. An illustration of MIMO two-way relay system. (a) 1-st time slot
(MAC phase); (b) 2-nd time slot (BC phase).

broadcast (BC) phase, respectively. In [12], the authors propose
a MIMO channel estimator that uses the self-interference as a
training sequence to estimate the channel matrices correspond-
ing to the BC phase. In [13], the performances of different
channel estimators, including individual and cascaded channel
estimators, are compared based on the least squares (LS) crite-
rion. In [14], an LS estimator is used to obtain the cascaded
channel matrices corresponding to the BC and MAC phases
using a single carrier cyclic prefix. Note that in the contributions
of [12]–[14], the channel statistics of random channel matrices,
whether cascaded channels or individual channels, are assumed
to be unknown. Based on the estimation theory, if channel
statistics are known, the channel estimation can be conducted
under the Bayesian framework and the estimation accuracy
can be further enhanced. Hence, by taking these statistics into
account, we seek to improve upon the channel estimators in
[12]–[14].

Very recently, the authors in [15], [16] independently in-
vestigate the minimum mean-square-error (MMSE) channel
estimation for TWR systems based on a correlated Gaussian
MIMO channel model. In particular, in [15], the cascaded
channel matrices for AF TWR systems are estimated and the
training sequences at the two source nodes are optimized to
minimize the total channel estimation MSE. Different from
[15], the authors in [16] aim to estimate the individual channel
matrices for each link. To reach this goal, two different esti-
mation schemes, i.e., a superimposed channel training scheme
and a two-stage channel estimation scheme, are proposed. In
addition, the training sequences at the two source nodes, as well
as, at the relay node are jointly optimized to improve channel
estimation accuracy.

In this paper, similar to [1], [12]–[16], while assuming that
the channel statistics are known, we analyze and devise channel
estimators for correlated MIMO TWR systems. Specifically,
we consider the Kronecker-structured channel model, such that
the individual channel matrices can be estimated based on the
Bayesian framework. However, unlike [15], [16], we also take
into account the interference from the nearby users. Thus, in
this model, the disturbance at each of the source nodes or at
the relay node consists of both noise and interference. Note that
the considered colored estimation environment may be more
practical for applications in today’s more densely deployed
wireless networks. Although channel estimation in point-to-
point MIMO systems in colored environments has been studied
in [17], [18], to the best of our knowledge, this topic has not
been addressed in the TWR scenario.

To enhance TWR performance, we seek to estimate the
individual channel matrices corresponding to the source-to-
relay link and the relay-to-source link, see Fig. 1. To this end,
a new two-phase estimation scheme is proposed, where the
bidirectional transmission of a TWR system is decomposed into
the MAC phase and the BC phase. For the MAC and BC phases,
the channel estimations are performed at the relay node and
at the two source nodes, respectively. The proposed estimation
scheme is different from the ones in [15], [16], where the
channel estimation is assumed to only be conducted at the
source nodes. As such, our proposed estimation scheme can
more efficiently support precoding at the relay since it requires
significantly less feedback overhead [10], [19], [20]. Based
on the proposed estimation scheme, we derive the optimal
linear MMSE (LMMSE) estimator for each phase. Next, the
corresponding training design problems are formulated with the
aim of minimizing the total MSE of channel estimation process
for each phase. The training design problem considered here
is different from that of [15], [16], since we take into account
the effect of colored disturbances caused by interference at
the relay node and at the source nodes. Moreover, the training
design scenarios for point-to-point systems in [17], [18] are
different from the scenario under consideration in this paper,
since our proposed training sequence design is optimized to
simultaneously enhance channel estimation accuracy over both
links in the BC phase and in the MAC phase. Although, for
the general scenario, it is difficult to derive the optimal training
sequence structures as in [15]–[18], we propose two iterative
design algorithms to solve the training design problems. These
algorithms are verified to converge quickly to the near optimal
solution and to not be sensitive to the initialization process.
For some special cases, where the covariance matrices of the
channels or disturbances have specific forms, two specific ap-
proaches are applied to obtain the optimal training sequences:
1) the original problem is converted into a standard convex
optimization problem; 2) the optimal structures of the training
sequences are first derived and then used to reduce the original
non-convex problem into a simple power allocation problem.
Finally, to reduce training overhead, the minimum required
training lengths for channel estimation in both the MAC and
BC phases are analyzed. Extensive simulations are carried out
to support the findings of the paper.

The rest of the paper is organized as follows. In Section II,
we present the system model. The LMMSE estimators for
both the MAC and BC phases are derived in Section III. The
training designs for the MAC and BC phases are analyzed in
Section IV and V, respectively. Simulation results are provided
in Section VI. We conclude the paper in Section VII.

Notations: E(·) denotes the expectation operator. ⊗ denotes
the Kronecker operator. vec(·) signifies the matrix vectorization
operator. Superscripts AT , A∗, and AH denote the transpose,
conjugate, and conjugate transpose of matrix A, respectively.
Tr(A), A−1, det(A), and Rank(A) stand for the trace, inverse,
determinant, and rank of A, respectively. λ(A) denotes a vector
containing eigenvalues of A. Blkdiag(A1,A2, · · · ,AN) denotes
a block diagonal matrix constructed by matrices Ai, for ∀i.
Diag(a) denotes a diagonal matrix with a being its diagonal
entries. A(n : m, :) and A(:,n : m) denote the sub-matrices
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constructed by n to m rows and n to m columns of A, respec-
tively. ‖A‖2

F denotes the Frobenius norm of A. ℜ(z) denotes the
real part of a complex variable z. The distribution of a circular
symmetric complex Gaussian vector with mean vector x and
covariance matrix Σ is denoted by C N (x,Σ). Cx×y denotes the
space of complex x× y matrices. SN and S

N
+ denote the set of

symmetric N ×N matrices and the set of positive semidefinite
N ×N matrices, respectively. x � y denotes that the vector y
majorizes the vector x.

II. SYSTEM MODEL

Consider a TWR system, where sources S1 and S2 exchange
messages with one another through a relay R. S1, R, and S2

are assumed to be equipped with N1, M, and N2 antennas,
respectively. Channel matrices from S1 and S2 to R are denoted
by H1 and H2, respectively, and channel matrices from R to S1

and S2 are denoted by G1 and G2, respectively.
Signal transmission within the TWR system is achieved in

two time slots. In the first phase, referred to as the MAC phase,
the source node Si, for i= 1,2, transmit their signals to the relay
node R, while in the second phase, referred to as the BC phase,
the relay node R forwards its combined received signal to the
two source nodes S1 and S2. The proposed channel estimator
aims to obtain the individual channels of the two hops, i.e.,
{H1,H2,G1,G2}, which is different from the cases studied
in [4], [15] to estimate the cascaded channel. This approach
facilitates the precoding design and/or the power allocation at
the relay node, which can further improve the overall system
performance [10], [11], [19], and [20].

Following the transmission in Fig. 1, we assume that H1 and
H2 are estimated in the MAC phase via the training signals
sent from the two sources, and G1 and G2 are estimated in
the BC phase via the training signal transmitted from the
relay. Moreover, the channels follow quasi-static fadings, i.e.,
the channel matrices {H1,H2,G1,G2} are random but stay
constant during the whole duration of transmission.

The received training signals at the relay node in the MAC
phase can be expressed as

yR(t) = H1s1(t)+H2s2(t)+nR(t), (1)

where si(t) denotes the training signal at Si and nR(t) repre-
sents the correlated disturbance at R. nR(t) includes the total
background noise as well as the interference from adjacent
communication links, and is modeled as a stochastic process
with respect to the time variable t [17], [18], [21]. To estimate
the channel matrices at the relay, the sources typically need to
send a sequence of known training signals. Assuming training
sequences have a length of LS, the received signal in (1) can be
written in a matrix from as

YR = H1S1 +H2S2 +NR, (2)

where YR
Δ
= [yR(1),yR(2), · · · ,yR(LS)], Si

Δ
= [s1(1),s1(2), · · · ,

s1(LS)] and NR
Δ
= [nR(1),nR(2), · · · ,nR(LS)]. Suppose that the

source node Si has a maximum power of τi during the channel

estimation phase, the training sequence Si should fulfill the
following power constraint

Tr(SiSH
i )≤ τi, i = 1,2. (3)

Now we give the distributions of the channel matrices Hi,
for i = 1,2, and the disturbance NR in (2). We assume that
the channel matrices Hi, for i = 1,2, follow the Kronecker-
structured model [15]–[18], [21] and are expressed as

Hi = Cr,HWHiC
T
t,Hi

, i = 1,2 (4)

where indexes ‘t’ and ‘r’ denote the ‘transmitter’ and ‘receiver’,
respectively; WHi , for i = 1,2, are assumed to be unknown
matrices, where their entries are modeled by C N (0,1); Cr,H

denotes the receive correlation matrix of both H1 and H2;1 and
Ct,Hi denotes the transmit correlation matrix of Hi. In (4), the
correlation amongst the channel parameters can be caused by
insufficient antenna spacing as verified by the measurements
in [22], [23]. Based on the channel model in (4), we have
vec(Hi)∼ C N (0,ZHi) with

ZHi = Zt,Hi ⊗Zr,H , i = 1,2, (5)

where Zt,Hi = Ct,HiC
H
t,Hi

and Zr,H = Cr,HCH
r,H . Here, Zt,Hi , for

i = 1,2, denote the covariance matrices at the transmitter side,
and Zr,H denotes the covariance matrix at the receiver side. We
assume that the correlation matrices Cr,H and Ct,Hi , for i = 1,2,
are known in prior. This also implies that the channel covariance
matrices Zr,H and ZHi , for i = 1,2, are known and are in turn
used for the training design in the MAC phase.

Regarding the disturbance NR, we denote nR = vec(NR) and
assume that nR is a random vector with mean 0 and E(nRnH

R ) =
KR. Moreover, KR is structured and modeled by [17], [18]

KR = Kq,R ⊗Kr,R, (6)

where Kq,R ∈ C
LS×LS denotes the temporal covariance matrix;

Kr,R ∈ C
M×M denotes the receive spatial covariance matrix.

Moreover, the covariances of disturbance Kq,R and Kr,R are also
known in prior. This further implies that KR is known. Kq,R and
Kr,R shall be utilized for the training design in what follows.

In the BC phase, the received training signals at the source
nodes are given by

yi(t) = GisR(t)+ni(t), i = 1,2 (7)

where sR(t) denotes the training signal at the relay node and
ni(t) represents the correlated disturbance at the source node Si.
By rewriting (7) into the matrix form, we have

Yi = GiSR +Ni, i = 1,2, (8)

where Yi
Δ
= [yi(1),yi(2), · · · ,yi(LR)], SR

Δ
= [sR(1),sR(2), · · · ,

sR(LR)] and Ni
Δ
= [ni(1),ni(2), · · · ,ni(LR) with LR being the

1Here, H1 and H2 share a common receive correlation matrix as they
terminate at the relay node.
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training sequence length at the relay. The following condition
must be met to satisfy the power constraint at the relay node

Tr(SRSH
R )≤ τR. (9)

In (9), τR denotes the maximum power at the relay node during
the training phase.

Similar to the MAC phase, the channel matrices in the BC
phase also follow the Kronecker-structured model, i.e.,

Gi = Cr,GiWGi C
T
t,G, i = 1,2, (10)

where WGi , for i = 1,2, are unknown matrices in which the
entries are modeled by C N (0,1); Ct,G denotes the transmit
correlation matrix of both G1 and G2;2 and Cr,Gi denotes
the receive correlation matrix of Gi. We also assume that the
correlation matrices Ct,G and Cr,Gi , for i = 1,2, are known in
prior and will be used for the training sequence design in the
BC phase. Based on (10), we then have vec(Gi)∼ C N (0,ZGi)
with

ZGi = Zt,G ⊗Zr,Gi , i = 1,2, (11)

where Zt,G = Ct,GCH
t,G and Zr,Gi = Cr,GiC

H
r,Gi

.
As in (6), we denote ni = vec(Ni), for i = 1,2, and assume

that ni is a random vector with mean 0 and E(ninH
i ) = Ki with

Ki having a structure of

Ki = Kq,i ⊗Kr,i ∈ S
NiLR×NiLR , i = 1,2, (12)

where Kq,i ∈ C
LR×LR , for i = 1,2, denote the temporal covari-

ance matrices and Kr,i ∈C
Ni×Ni , for i= 1,2, denote the received

spatial covariance matrices. Also, we assume that the statistics
of Kq,i and Kr,i, for i = 1,2, are known in prior.

Other assumptions made throughout this paper are listed
as follows. We assume that Kr,1, Kr,2, and Kr,R share the
same eigenvectors with Zr,G1 , Zr,G2 and Zr,H , respectively. This
assumption models the following scenarios as summarized in
[18], [21]: 1) Additive noise-limited scenario, KR = µRIMLS =
ILS ⊗ µRIM and Ki = µiINiLR = ILR ⊗ µiINi , for i = 1,2, which
implies Kr,R = µRIM and Kr,i = µiINi with µR and µi being the
variances of the additive noises at the relay and the sources
Si, respectively; 2) Interference-limited scenario, KR = QR ⊗
Zr,H , Ki = QGi ⊗ Zr,Gi with QR and QGi , i = 1,2, denoting
the temporal covariances from nearby interfering users, which
implies Kr,R = Zr,H and Kr,i = Zr,Gi , for i = 1,2; 3) Addi-
tive noise and temporally uncorrelated interference scenario,
KR = µRIMLS +νRILS ⊗Zr,H = ILS ⊗(µRIM +νRZr,H) and Ki =
µiINiLR + νiILR ⊗Zr,Gi = ILR ⊗ (µiINi + νiZr,Gi), which implies
Kr,R = µRIM + νRZr,H and Kr,i = µiINi + νiZr,Gi , for i = 1,2,
with νR and νi being the powers of the interfering users at the
relay and at the source Si, respectively, µR and µi being the
variances of the additive noises at the relay and at the source Si,
respectively; 4) Additive noise and spatially uncorrelated inter-
ference scenario, KR = µRIMLS +QR⊗IM = (µRILS +QR)⊗IM ,
Ki = µiINiLR +QGi ⊗ INi = (µiILR +QGi)⊗ INi , which implies
Kr,R = IM and Kr,i = INi , for i = 1,2.

2Here, G1 and G2 share a common transmit correlation matrix as they begin
at the relay node.

For ease of the following training designs, we give the
following definitions. The eigenvalue decomposition (EVD) of
Zt,Hi , Zr,H , Zt,G, and Zr,Gi are given by

Za,b = Ua,bΣa,bUH
a,b, (13)

where a ∈ {r, t}, b ∈ {H,H1,H2,G,G1,G2}, Ua,b denotes the
unitary eigenvector matrix and Σa,b is a diagonal matrix with
[Σa,b]n,n = σa,b,n being the n-th eigenvalue of Za,b. Accordingly,
the singular value decomposition (SVD) of Ca,b is denoted by

Ca,b = Ua,bΣ1/2
a,b ŨH

a,b with Ũa,b representing a unitary matrix.
The EVD of Kq,i and Kr,i is denoted by

Ka,b = Va,bΔa,bVH
a,b, a ∈ {r, t},b ∈ {1,2,R}, (14)

where Va,b denotes the unitary eigenvector matrix, Δa,b is a
diagonal matrix with [Δa,b]n,n = δa,b,n being the n-th eigenvalue
of Ka,b. As mentioned before, it is assumed that Vr,1 = Ur,G1 ,
Vr,2 = Ur,G2 and Vr,R = Ur,H .

III. CHANNEL ESTIMATION FOR

TWO-WAY RELAY SYSTEMS

Following the proposed estimation scheme in Section II, we
next obtain the channel estimates based on (2) and (8). For the
estimation during the MAC phase, we rewrite (2) as

YR =Cr,HWH1 CT
t,H1

S1 +Cr,HWH2CT
t,H2

S2 +NR

=Cr,HWHCT
t,HS+NR, (15)

where WH
Δ
= [WH1 ,WH2 ], Ct,H

Δ
= Blkdiag(Ct,H1 ,Ct,H2), and

S Δ
= [ST

1 ,S
T
2 ]

T . Vectorizing YR in (15) and applying the identity

vec(ABC) = (CT ⊗A)vec(B), (16)

we can rewrite (15) into

yR =
(
ST Ct,H ⊗Cr,H

)
wH +nR, (17)

where yR
Δ
= vec(YR) and wH

Δ
= vec(WH). The estimation of wH

based on the LMMSE criterion can be obtained as ŵH = TRyR.
The estimation matrix TR has the following form [24]

TR = ℜwhyR ℜ−1
yRyR

. (18)

where ℜwhyR

Δ
=E(wHyH

R )=CH
t,HS∗⊗CH

r,H , ℜyRyR

Δ
=E(yRyH

R ) =

(ST Ct,H ⊗ Cr,H)(ST Ct,H ⊗ Cr,H)
H + KR = ST Ct,HCH

t,HS∗ ⊗
Cr,HCH

r,H +KR. With H Δ
= [H1,H2], we define h Δ

= vec(H) =
(Ct,H ⊗Cr,H)wH where Cr,H and Ct,H are defined in (4) and
(15), respectively.

Then, the resulting estimation error, or mean-square-error
(MSE), eR can be derived as

eR =E
(
‖h− ĥ‖2

2

)
=E

(
Tr

[
C0,H(wH − ŵH)(wH − ŵH)

H])
=E

(
Tr

[
C0,H(wH −TRyR)(wH −TRyR)

H])
, (19)
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where C0,H
Δ
= CH

t,HCt,H ⊗CH
r,HCr,H . Substituting TR into (19)

and using the rule (I+AB)−1 = I−A(I+BA)−1B, we obtain
the following more compact form for eR

eR = Tr
[
C0,H

(
I+

(
ST Ct,H ⊗Cr,H

)H
K−1

R

×
(
ST Ct,H ⊗Cr,H

))−1
]
. (20)

During the BC phase, the channel estimation should be based
on the received signal in (8). By vectorizing Yi in (8), we have

yi =
(
ST

RCt,G ⊗Cr,Gi

)
wGi +ni, i = 1,2 (21)

where yi
Δ
= vec(Yi) and wGi

Δ
= vec(WGi). Similar to steps

above, the estimation MSE of gi with gi
Δ
= vec(Gi) can be

obtained as

ei =E
(
‖gi − ĝi‖2

2

)
=E

(
Tr

[
C0,Gi(wGi − ŵGi)(wGi − ŵGi)

H])
=E

(
Tr

[
C0,Gi(wH −Tiyi)(wH −Tiyi)

H])
, (22)

where C0,Gi

Δ
= CH

t,GCt,G ⊗CH
r,Gi

Cr,Gi and

Ti = ℜwGi yiℜ
−1
yiyi

, i = 1,2. (23)

In (23), ℜwGi yi = E(wGiyiH) = CH
t,GS∗

R ⊗ CH
r,Gi

, ℜyiyi =

E(yiyH
i ) = (ST

i Ct,G ⊗ Cr,Gi)(S
T
RCt,G ⊗ Cr,Gi)

H + Ki =
ST

RCt,GCH
t,GS∗

R ⊗Cr,GiC
H
r,Gi

+Ki. By substituting Ti into (22),
we obtain

ei = Tr
[
C0,Gi

(
I+

(
ST

RCt,G ⊗Cr,Gi

)H
K−1

i

×
(
ST

RCt,G ⊗Cr,Gi

))−1
]
. (24)

IV. TRAINING SEQUENCE DESIGN FOR MAC PHASE

In this section, the design of the training sequences for the
MAC phase is analyzed. Namely, we shall optimize the training
sequences S1 and S2 subject to two source power constraints
to minimize the total estimation MSE, i.e., eR in (19). The
corresponding training sequence optimization problem can be
formulated as

min
S1,S2

eR in (19)

s.t. Tr(SiSH
i )≤ τi, i = 1,2. (25)

Before solving (25), we first introduce the following lemma
that deals with the minimum length of S, LS.

Lemma 1: For an arbitrary Kq,R, for the total MSE to tend
to zero as the power at each of source tends to infinity, the
minimum length of the source training sequence must be LS =
N1+N2. Otherwise, when LS < N1+N2, the total MSE is lower
bounded by ∑M

n=1 σr,H,n ∑N1+N2
m=LS+1 σt,H,m, where σt,H,n is the

n-th element of λ(Zr,H) with Zt,H =Blkdiag(Zt,H1 ,Zt,H2) as the
power at each of source tends to infinity.

For Kq,R = qI and with finite power at the source nodes, the
minimum length of the training sequences transmitted from the
source nodes must be r ≤ N1 +N2. It is important to note that
r denotes the rank of the optimal solution of S ∈ C

(N1+N2)×LS ,
where LS is an arbitrary integer satisfying LS ≥N1+N2 in (25).3

Proof: See Appendix A.
Next, we seek to solve the non-convex optimization problem

in (25) with respect to S1 and S2. Although the objective
function in (25) has a similar form to that of point-to-point
systems, there are two power constraints in (25) that make the
problem of solving this non-convex optimization problem more
difficult than that of point-to-point systems in [17] and [18].
To proceed, we first note that eR in (20) can be obtained by
substituting (18) into (19). Thus, to make the problem tractable,
we propose an iterative algorithm, which decouples the primal
problem into two sub-problems such that we can solve each
of them in an alternating manner. Let us rewrite (20) into the
following form

eR =E
(
Tr

[
C0,H(wH −TRyR)(wH −TRyR)

H])
=Tr

[
C0,H −

(
ST Ct,H ⊗Cr,H

)H
TH

R CH
0,H −C0,HTR

×(ST Ct,H ⊗Cr,H
)
+C0,HTR

(
ST Ct,H ⊗Cr,H

)
×

(
ST Ct,H ⊗Cr,H

)H
TH

R +C0,HTRKRTH
R

]
. (26)

Then, the optimization problem in (25) is equivalent to

min
TR,S1,S2

eR in (26)

s.t. Tr(SiSH
i )≤ τi, i = 1,2. (27)

In the first subproblem, we intend to optimize the LMMSE
estimator matrix TR for a given S1 and S2. Since TR is not
related to the the power constraint, the problem simplifies to
an unconstrained optimization problem given by

min
TR

eR in (26). (28)

Given that (28) is convex with respect to TR, the optimal TR can
be obtained as given in (18).

In the second subproblem, the training sequences S1 and S2

need to be optimized for a given TR by solving the following
optimization problem

min
S1,S2

eR in (26)

s.t.q Tr(SiSH
i )≤ τi, i = 1,2. (29)

We next show that the optimization problem in (29) can be
transformed into a convex quadratically constrained quadratic

3We note that for an arbitrary Kq,R without a form of qI, it is difficult to
derive the minimum length of the training sequence with finite source powers
as it highly depends on the structure of Kq,R.



WANG et al.: CORRELATED MIMO TWO-WAY RELAY SYSTEMS IN COLORED ENVIRONMENT 2689

programable (QCQP) problem [25]. To achieve this goal, we
first reformulate the last term in (26) as

Tr
[
C0,HTR

(
ST Ct,H ⊗Cr,H

)(
ST Ct,H ⊗Cr,H

)H
TH

R

]
(a)
= Tr

[
TH

R C0,HTR(ST ⊗ IM)

×(Ct,HCH
t,H ⊗Cr,HCH

r,H)(S
∗ ⊗ IM)

]
(b)
= vec(S⊗ IM)H (

TH
R C0,HTR ⊗CT

tr

)
vec(S⊗ IM)

(c)
= sHEH (

TH
R C0,HTR ⊗CT

tr

)
Es, (30)

where Ctr
Δ
=Ct,HCH

t,H⊗Cr,HCH
r,H , s Δ

=vec(S), E Δ
=Blkdiag(Ẽ(1),

Ẽ(2), · · · , Ẽ(LS)), Ẽ(i) = Ẽ, Ẽ Δ
= [Ē(1); Ē(2); · · · ; Ē(M)], Ē(i)

Δ
=

Blkdiag( ei,ei, · · · ,ei︸ ︷︷ ︸
N1+N2 elements

), and ei
Δ
= [0,0, · · · , 1︸︷︷︸

i−th element

, · · · ,0]T .

In (30), Eq. (a) is obtained by using the circular property
Tr{AB}= Tr{BA} and the matrix identity

(A⊗B)(C⊗D) = AC⊗BD, (31)

Eq. (b) is obtained by using the identity Tr(ABCD) =
vec(D)T (A⊗CT )vec(BT ) and (A⊗B)H = AH ⊗BH , and Eq.
(c) is obtained by using vec(S⊗ IM) = Es. Similarly, the term
Tr[C0,HTR(ST Ct,H ⊗Cr,H)] can be expressed as

Tr
[
C0,HTR(ST Ct,H ⊗Cr,H)

]
= Tr

[
(S⊗ IM)T (Ct,H ⊗Cr,H)C0,HTR

]
= vec(S⊗ IM)T vec(CT )

= vec(CT )
T Es, (32)

where CT
Δ
= (Ct,H ⊗Cr,H)C0,HTR. To obtain (32), we use

Tr(AT B) = vec(A)T vec(B). (33)

The source power constraint in (29) can be rewritten as

Tr(SiSH
i ) = Tr(EiSSH), (34)

where E1
Δ
=Blkdiag(IN1,0N2×N2) and E2

Δ
=Blkdiag(0N1×N1 ,IN2).

Based on the property that Tr(ABCD) = vec(DT )T (CT ⊗
A)vec(B), (34) can be further modified as

Tr(SiSH
i ) = sH(I⊗Ei)s. (35)

According to (30), (32), and (35), the optimization problem in
(29) can be transformed into

min
s

sHEH (
TH

R C0,HTR ⊗CT
tr

)
Es−2ℜ(vec(CT )

T Es)

s.t. sH(I⊗Ei)s ≤ τi, i = 1,2. (36)

Since both EH(TH
R TR ⊗CT

tr)E and I⊗Ei are positive semidefi-
nite matrices, we conclude that the optimization problem in (36)
is a convex QCQP problem, which can be easily solved by ap-

plying the available software package. In summary, we outline
the proposed iterative training design algorithm as follows:

Algorithm 1

• Initialize S1, S2

• Repeat

— Update the LMMSE estimator matrix TR using (18)
for fixed S1 and S2;

— For a fixed TR, solve the convex QCQP problem in
(36) to get the optimal S1 and S2;

• Until The difference between the MSE from one itera-
tion to another is smaller than a certain predetermined
threshold.

Theorem 1: The proposed iterative precoding design in
Algorithm 1 is convergent and the limit point of the iteration
is a stationary point of (27).

Proof: We first prove that Algorithm 1 is convergent. To
this end, we show that the sequence of the updates of the
value of the objective function in (27) is convergent. Let us
denote the value of the objective function in (27) by MSE

and define S Δ
= [ST

1 ,S
T
2 ]

T as in (15). We also denote T(n)
R and

S(n) as the n-th updates of TR and S, respectively. MSE(2n−1)

is used to represent the value of the (2n − 1)-th update of

MSE when TR = T(n)
R and S = S(n−1). Similarly, MSE(2n)

indicates the value of the 2n-th update of MSE when TR = T(n)
R

and S = S(n). Consider that the solutions of TR and S from
subproblems (28) and (29), respectively, are optimal. For each
update of TR or S, the value of MSE always decreases, i.e.,
MSE(n) ≤ MSE(n−1). This further indicates that the sequence
{MSE(n)}∞

n=1 decreases monotonically. Moreover, as the value
of MSE is lower bounded (at least by zero), it can be concluded
that the sequence {MSE(n)}∞

n=1 is convergent based on the
monotone convergence theorem in [26], i.e., for an arbitrary
ε, we can always find an N such that |MSE(n)−MSE(m)| ≤ ε
when n > m ≥ N.

Now we prove the convergence of the sequences {T(n)
R }∞

n=1
and {S(n)}∞

n=1. We first prove the convergence of {S(n)}∞
n=1

by showing limn→∞ S(n) − S(n−1) = X(n) = 0 using a
contradiction. Assume X(n) �= 0 with n → ∞, we then have
|MSE(2n−1)−MSE(2n)|= |Tr[(X(n)T Ct,H ⊗Cr,H)

HT(n)H
R CH

0,H +

C0,HT(n)
R (X(n)T Ct,H ⊗ Cr,H) + C0,HT(n)

R (S(n)T Zt,HS(n)∗ ⊗
Zr,H)T

(n)H
R − C0,HT(n)

R (S(n−1)T Zt,HS(n−1)∗ ⊗ Zr,H)T
(n)H
R ]|,

which can not approach zero even as n → ∞. This contradicts
the result that the sequence {MSE(n)}∞

n=1 is convergent. This
implies that the sequence {S(n)}∞

n=1 is convergent. Repeating
the same argument, we can also prove the convergence of

the sequence {T(n)
R }∞

n=1. As a convergent sequence always
has a unique limit point, we, thus, obtain that the sequences

{T(n)
R }∞

n=1 and {S(n)}∞
n=1 always have limit points, which are

denoted by T̄R and S̄ = [S̄T
1 , S̄

T
2 ]

T , respectively.
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We now prove that the limit point is a stationary point of
(27). To proceed, we denote Ȳ = {T̄R, S̄1, S̄2}. Since at the
limit point Ȳ, T̄R is the local minimizer of subproblem (28),
which implies that T̄R satisfies the following Karush-Kuhn-
Tucker (KKT) condition [25]

∂eR(S̄1, S̄2)

∂TR
|TR=T̄R

= 0, (37)

where eR(S̄1, S̄2) denotes the function eR with S1 and S2 being
evaluated at S̄1 and S̄2, respectively. Similarly, S̄i, for i = 1,2,
is the local minimizer of subproblem (29), which satisfies the
following KKT conditions

∂eR(T̄R)

∂Si
|Si=S̄i

=0,

λi
(
Tr(S̄iS̄H

i )− τi
)
=0, i = 1,2 (38)

where λi is the Lagrangian multiplier associated with the source
power constraints. By summing up the KKT conditions given
in (37) and (38), it can be concluded that the limit point Ȳ
satisfies the KKT conditions of the primal problem in (27),
which further means that Ȳ is a stationary point of (27).

To this point, it is shown that the joint source training design
can be solved via Algorithm 1. In the following, we illustrate
that for some special cases, the optimal solution of (25) can be
obtained in closed-form.

A. When Kr,R = Zr,H

We first consider the case with Kr,R = Zr,H . This case is
applicable in the scenario where the disturbance is dominated
by the interference from neighboring users as shown in [21].
Accordingly, the LMMSE estimator given in (18) can be rewrit-
ten as

TR =
[
CH

t,HS∗ ⊗CH
r,H

]
×

[
ST Ct,HCH

t,HS∗ ⊗Cr,HCH
r,H +KR

]−1

(a)
=

[
CH

t,HS∗ ⊗CH
r,H

]
×

[(
ST Ct,HCH

t,HS∗+Kq,R
)−1 ⊗Z−1

r,H

]
=TR,1 ⊗C−1

r,H , (39)

where TR,1 = CH
t,HS∗(ST Ct,HCH

t,HS∗ +Kq,R)
−1 and in obtain-

ing Eq. (a), we have used the fact KR = Kq,R ⊗ Kr,R =
Kq,R ⊗ Zr,H . The new form of TR in (39) further leads
to TH

R C0,HTR = (TR,1 ⊗C−1
r,H)

H(CH
t,HCt,H ⊗CH

r,HCr,H)(TR,1 ⊗
C−1

r,H) = TH
R,1CH

t,HCt,HTR,1 ⊗ IM , and

Tr
[
C0,HTR

(
ST Ct,H ⊗Cr,H

)(
ST Ct,H ⊗Cr,H

)H
TH

R

]
= Tr

[(
ST Ct,HCH

t,HS∗ ⊗Cr,HCH
r,H

)
×

(
TH

R,1CH
t,HCt,HTR,1 ⊗ IM

)]
(a)
= Tr(Zr,H)Tr

[
ST Ct,HCH

t,HS∗TH
R,1CH

t,HCt,HTR,1
]

(b)
= Tr(Zr,H)

2

∑
i=1

Tr
(
ST

i Zt,HiS
∗
i TH

R,1CH
t,HCt,HTR,1

)
. (40)

In (40), Eq. (a) is obtained with Tr(A ⊗ B) = Tr(A)Tr(B),
and Eq. (b) is derived based on the fact that Ct,H is a
block diagonal matrix as shown in (15). In addition, the term
Tr[C0,HTR(ST Ct,H ⊗Cr,H)] can be reexpressed as

Tr
[
C0,HTR(ST Ct,H ⊗Cr,H)

]
= Tr

[
(ST Ct,HCH

t,HCt,HTR,1)⊗Cr,HCH
r,H

]
= Tr(Zr,H)

2

∑
i=1

Tr
(
ST

i Zt,HiCt,HiTR,1,i
)
, (41)

where TR,1,1
Δ
= TR,1(1 : N1, :) and TR,1,2

Δ
= TR,1(N1 + 1 : N1 +

N2, :). Based on (40) and (41), (29) is equivalent to the follow-
ing optimization problem

min
S1,S2

2

∑
i=1

{
Tr

(
ST

i Zt,HiS
∗
i TH

R,1CH
t,HCt,HTR,1

)
−Tr

(
ST

i Zt,HiCt,HiTR,1,i
)

−Tr
(
TH

R,1,iC
H
t,Hi

ZH
t,Hi

S∗
i

)}
s.t. Tr(SiSH

i )≤ τi, i = 1,2. (42)

Although the optimization in (42) is convex and can be con-
verted to a convex QCQP problem similar to (36). A closer
investigation shows that the optimization problem in (42) can
be more easily solved compared to (29). This follows from the
fact that the training matrices S1 and S2 are fully decoupled in
the objective function. As shown below, this specific condition
of the optimization in (42) allows us to find a closed-form
solution for this problem via the KKT conditions. Such a
approach significantly reduces the complexity of solving this
optimization problem compared to using the QCQP approach.

The Lagrangian function of (42) is first derived as

L =
2

∑
i=1

{
Tr

(
ST

i Zt,HiS
∗
i TH

R,1CH
t,HCt,HTR,1

)
−Tr

(
ST

i Zt,HiCt,HiTR,1,i
)
−Tr

(
TH

R,1,iC
H
t,Hi

ZH
t,Hi

S∗
i

)}
+

2

∑
i=1

λi
[
Tr(SiSH

i )− τi
]
,

where λi is the Lagrangian multiplier associated with the power
constraint at the source Si. The KKT conditions for (42) can be
derived as follows [25]

∂L
∂Si

∗ =
(
TH

R,1CH
t,HCt,HTR,1ST

i Zt,Hi

)T

−
(
TH

R,1,iC
H
t,Hi

ZH
t,Hi

)T
+λiSi = 0, (43a)

λi
[
Tr(SiSH

i )− τi
]
= 0, (43b)

Tr(SiSH
i )≤ τi, i = 1,2. (43c)

Based on the KKT conditions shown in (43a) and by using (16),

the optimal si
Δ
= vec(Si) can be obtained as

si = [Xs,1 ⊗Xs,2,i +λiI]
−1 xs,3,i, (44)



WANG et al.: CORRELATED MIMO TWO-WAY RELAY SYSTEMS IN COLORED ENVIRONMENT 2691

where Xs,1
Δ
= TH

R,1CH
t,HCt,HTR,1, Xs,2,i

Δ
= ZT

t,Hi
, and xs,3,i

Δ
=

vec((TH
R,1,iC

H
t,Hi

ZH
t,Hi

)T ). The optimal λi in (44) can be zero or
should be chosen to activate the power constraint in (43c). For
the case where λi �= 0, the following lemma is introduced.

Lemma 2: The function g(λi) = Tr{SiSH
i }= Tr{sisH

i }, with
si defined above (44), monotonically decreases with respect to

λi and the optimal λi is upper bounded by
√

σs,3,i
τi

− σs,min,i.

Here, σs,min,i denotes the smallest eigenvalue of Xs,1⊗Xs,2,i and
σs,3,i = ‖xs,3,i‖2

2.
Proof: See Appendix B. �

By applying Lemma 2, the optimal λi that meets the con-
dition Tr{SiSH

i } = τi can be readily obtained via the bisection
search algorithm.

B. When Kq,R = qIM

This scenario corresponds to the practical case, where the
disturbance consists of both the additive white Gaussian noise
and the temporally uncorrelated interference. Similar to the
derivations in Appendix A, the total MSE can be derived as

eR =Tr

[
C0,H

(
IM(N1+N2) +

(
ST Ct,H ⊗Cr,H

)H
K−1

R

×
(
ST Ct,H ⊗Cr,H

))−1
]

=Tr

[
C0,H

(
IM(N1+N2) +

1
q

CH
t,HS∗ST Ct,H

⊗ CH
r,HK−1

r,R Cr,H

)−1
]

=
M

∑
n=1

σr,H,nTr

[(
Z−1

t,H +αnS∗ST
)−1

]
,

where αn =
σr,H,n
qδr,R,n

. Subsequently, the optimization problem in
(25) can be rewritten as

min
S1,S2

M

∑
n=1

σr,H,nTr

[(
Z−1

t,H +αnS∗ST
)−1

]

s.t. Tr(EiS∗ST )≤ τi, i = 1,2 (45)

where Ei is defined in (34). Although the optimization problem
in (45) is non-convex with respect to Si, it is noted that one
may optimize (45) with respect to the positive semidefinite
matrix S∗ST instead of the training sequence Si. This approach
is preferable since in (45), the objective function and the
constraint both depend on S∗ST and not Si. Hence, by defining

QS
Δ
= S∗ST , the following equivalent problem can be obtained

min
QS�0

M

∑
n=1

σr,H,nTr

[(
Z−1

t,H +αnQS

)−1
]

s.t. Tr(EiQS)≤ τi, i = 1,2. (46)

Note that although the mapping from S to QS is a many-to-one
mapping, the optimal value of the objective function in (46)
is equal to the one in (45). Based on this fact, if we find the

optimal solution of (46), which is denoted as Q̃S, we can always
obtain an S̃S with Q̃S = S̃∗S̃T , which is also the optimal solution
of (45).

Theorem 2: The optimization problem in (46) is convex with
respect to the positive semidefinite matrix QS.

Proof: See Appendix C. �
Next, we further show that the optimization problem in (46)

can be solved by transforming it into a semidefinite program-
ming (SDP) problem. By introducing the variables Xn for n =
1,2, · · · ,M, the problem in (46) can be rewritten in an equivalent
form as

min
QS�0,Xn

M

∑
n=1

σr,H,nTr(Xn)

s.t. Tr(EiQS)≤ τi, i = 1,2(
Z−1

t,H +αnQS

)−1

 Xn,∀n (47)

By using the Schur complement, (47) can be further trans-
formed into the following SDP problem

min
QS�0,Xn

M

∑
n=1

σr,R,nTr(Xn)

s.t. Tr(EiQS)≤ τi, i = 1,2[
Z−1

t,H +αnQS IN1+N2

IN1+N2 Xn

]
� 0, ∀n (48)

By solving the SDP problem in (48), the optimal solution to the
optimization problem in (46) can be obtained. However, this
numerical method of solving this optimization problem has a
relatively high computational complexity. As such, to obtain the
optimal structure of Si and gain a better understanding of the
optimization in (45), the following theorem is introduced.

Theorem 3: With LS ≥ N1 + N2, the optimal training se-
quence Si in (45) must satisfy the condition S∗

1ST
2 = 0. In

addition, the optimal Si has a form of Si = U∗
t,Hi

ΣsiV
H
si

. The
condition S∗

1ST
2 = 0 can be achieved by choosing Vs1 and Vs2

such that VH
s1

Vs2 = 0. Moreover, Σsi is a diagonal matrix where
[Σsi ]m,m = σsi,m, and Σsi , for i = 1,2, are obtained by solving the
following water-filling problem

M

∑
n=1

αnσr,H,nσ2
t,Hi,m

(1+αnσt,Hi,mσ2
si,m)

2 = λi. (49)

In (49), the optimal λi is nonnegative and should be selected to
satisfy ∑Ni

m=1 σ2
si,m = τi.

Proof: See Appendix D. �
Remark 1: The optimal λi in (49) can be found via

the bisection search algorithm and the optimal λi is
bounded by (0,minm ∑M

n=1 αnσr,H,nσ2
t,Hi,m

). The upper limit
of this bound is obtained via the following relation-

ship λi = ∑M
n=1

αnσr,H,nσ2
t,Hi ,m

(1+αnσt,Hi ,mσ2
si ,m

)2 ≤ ∑M
n=1 αnσr,H,nσ2

t,Hi,m
≤

minm ∑M
n=1 αnσr,H,nσ2

t,Hi,m.
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V. TRAINING SEQUENCE DESIGN FOR BC PHASE

In this section, we intend to optimize the training sequence
SR by minimizing the total estimation MSE at the two source
ends subject to the relay power constraint. According to the
MSE derived in (24), the corresponding problem can be for-
mulated as

min
SR

2

∑
i=1

Tr
[
C0,Gi

(
I+

(
ST

RCt,G ⊗Cr,Gi

)H

×K−1
i

(
ST

RCt,G ⊗Cr,Gi

))−1
]

s.t. Tr(SRSH
R )≤ τR. (50)

It is also worth noting that the training designs for point-to-
point systems in [17], [18] are not applicable to the scenario
under consideration here, since the training sequence at the
relay, SR, needs to be optimized to enhance channel estimation
over both links that connect the relay to the sources nodes.
Prior to solving (50), let us first present the minimum training
sequence length required for channel estimation in the BC
phase.

Lemma 3: For arbitrary Kq,i, i = 1,2, for the MSE at the
relay to tend to zero as the relay power tends to infinity, the
minimum length of the relay training sequence must be LR =
M. Otherwise, when LR < M, the total MSE is always lower
bounded by ∑M

m=LR+1 σt,G,m(∑N1
n=1 σr,G1,n + ∑N2

n=1 σr,G2,n), with
σt,G,m being the m-th largest eigenvalue of Zt,G as the relay
power tends to infinity.

For Kq,i = qiI, i = 1,2 and with finite power at the
relay, the minimum length of the training sequence transmitted
from the relay must be r ≤ M. It is important to note that
r denotes the optimal solution of SR ∈ C

M×LR , where LR is an
arbitrary integer satisfying LR ≥ M in (50).

Proof: Since the proof is similar to the proof of Lemma 1,
it is omitted for brevity. �

In general, the optimization in (50) is non-convex. Hence,
as in Algorithm 1, we first propose an iterative approach to
optimize the design of the training sequence at the relay. To
this end, the MSE, i.e., ei, given in (24) is rewritten as

ei =E
(
Tr

[
C0,Gi(wGi −Tiyi)(wGi −Tiyi)

H])
=Tr

[
C0,Gi −

(
ST

i Ct,G ⊗Cr,Gi

)H
TH

i CH
0,Gi

−C0,GiTi
(
ST

i Ct,G ⊗Cr,Gi

)
+C0,GiTi

×
(
ST

i Ct,G ⊗Cr,Gi

)(
ST

i Ct,G ⊗Cr,Gi

)H
TH

i

+C0,GiTiKiTH
i

]
. (51)

Since (22) and (24) are in equivalent form, the optimization
problem in (50) can be rewritten as

min
T1,T2,SR

e1 + e2

s.t. Tr(SRSH
R )≤ τR. (52)

In the first subproblem, for a given SR, the optimal LMMSE
estimators T1 and T2 at the two source ends are obtained as
given in (23). Thus, we focus on solving the second subprob-
lem, where the relay training sequence is optimized for a fixed

LMMSE estimator. Similar to (30) and (32), the MSE in (51) is
reexpressed as

ei =sH
R EH

i

(
TH

i C0,GiTi ⊗CT
tr,Gi

)
EisR

−vec(CT,Gi)
T EisR −vec(C∗

T,Gi
)T Eis∗R

+Tr(C0,GiTiKiTH
i )+Tr(C0,Gi),

where sR
Δ
= vec(SR), Ctr,Gi

Δ
= Ct,GCH

t,G ⊗ Cr,GiC
H
r,Gi

, and

CT,Gi

Δ
= (Ct,G⊗Cr,Gi)C0,GiTi. In this case, Ei is an NiLR×MLR

matrix that is constructed as in (30). Accordingly, (52) can be
rewritten as

min
SR

sH
R ARsR −aT

RsR −aH
R s∗R

s.t. sH
R sR ≤ τR, (53)

where AR
Δ
= ∑2

i=1 EH
i (T

H
i C0,GiTi ⊗ CT

tr,Gi
)Ei and aR

Δ
=

ET
1 vec(CT,G1) + ET

2 vec(CT,G2). Note that different from the
source training design, (53) has only one power constraint.
Thus, its solution can be obtained via the KKT conditions
given by

ARsR −a∗R +λsR =0,
λ(sH

R sR − τR) =0,

sH
R sR − τR ≤0, (54)

where λ is the Lagrangian multiplier associated with the relay
power constraint. The solution of (53) is obtained as

sR = (AR +λI)−1a∗R. (55)

In (55), if the solution sR with λ = 0 violates the KKT
conditions given in (54), λ should be chosen to meet sH

R sR = τR.
Consequently, we introduce the following lemma.

Lemma 4: The function g(λ) = sH
R sR, with sR defined in

(55), monotonically decreases with respect to λ. Moreover, the

optimal λ is upper-bounded by
√

σa,R
τR

−σR,min with σa,R = aT
Ra∗R

and σR,min denoting the smallest eigenvalue of AR.
Proof: Since the proof is similar to that of Lemma 2, it is

omitted for brevity.
Using the above steps, the overall relay training design

algorithm can be summarized as follows:

Algorithm 2

• Initialize SR

• Repeat

— Update the LMMSE estimator matrix Ti, for i= 1,2,
using (23) for a fixed SR;

— Update the training signal SR using (55) for a fixed
Ti, for i = 1,2;

• Until The difference between the MSE from one itera-
tion to another is smaller than a certain predetermined
threshold.
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Note that the convergence property proven for Algorithm 1
also applies to Algorithm 2. Although for the general case the
solution of SR can only be obtained via an iterative approach,
it is shown that for some special cases, the optimal training
sequence SR can be found in closed-form.

A. When Kq,i = qiI

In this subsection, we consider that the temporal covariance
matrix, Kq,i, is a scalar multiple of the identity matrix. This
scenario corresponds to the practical case, where the distur-
bance consists of both the additive white Gaussian noise and
the temporally uncorrelated interference. Using similar steps as
in Appendix A, we rewrite the MSE in (24) as

ei =
Ni

∑
n=1

σr,Gi,nTr

[(
Z−1

t,G +βi,nS∗
RK−1

q,i ST
R

)−1
]
,

=
Ni

∑
n=1

σr,Gi,nTr

[(
Z−1

t,G + β̃i,nS∗
RST

R

)−1
]

where βi,n =
σr,Gi ,n

δr,i,n
with δr,i,n being the n-th eigenvalue of Kr,i

as defined in (14), and β̃i,n = βi,n/qi, for i = 1,2. Then, (50) can
be further simplified as

min
SR

N1

∑
n=1

σr,G1,nTr

[(
Z−1

t,G + β̃1,nS∗
RST

R

)−1
]

+
N2

∑
n=1

σr,G2,nTr

[(
Z−1

t,G + β̃2,nS∗
RST

R

)−1
]

s.t. Tr(SRSH
R )≤ τR, (56)

The optimal solution of (56) is given in the following lemma.
Lemma 5: The optimal SR in (56) is of the form

SR = U∗
t,GΣs,RVT

s,R, (57)

where Σs,R is a positive real diagonal matrix with [Σs,R]n,n =
σs,R,n, Ut,G is the eigenvector matrix of Zt,G, and Vs,R is an
arbitrary unitary matrix. The eigenvalues of Zt,G corresponding
to the eigenvector matrix Ut,G are arranged in the same order as
the diagonal elements of Σs,R. The optimal Σs,R can be obtained
from

λ =
N1

∑
n=1

σr,G1,nβ̃1,nσ2
t,G,m

(1+ β̃1,nσt,G,mσs,R,m)2

+
N1

∑
n=1

σr,G2,nβ̃2,nσ2
t,G,m

(1+ β̃2,nσt,G,mσs,R,m)2
, (58)

where λ ∈ (0,maxm{∑N1
n=1(σr,G1,nβ̃1,nσ2

t,G,m +

σr,G2,nβ̃2,nσ2
t,G,m)}) can be found via the bisection search

to meet the relay’s power constraint.
Proof: The expression of MSE, i.e., ei, for i = 1,2, in (56)

contains a term Tr[(Z−1
t,G + β̃i,nS∗

RST
R)

−1]. If the eigenvalues of
Zt,G and S∗

RST
R are arranged in the same order, we have [27]

λ(Z−1
t,G)+λ(β̃i,nS∗

RST
R) � λ(Z−1

t,G + β̃i,nS∗
RST

R). (59)

Denote by S∗
RST

R = Us,RΣ2
s,RUH

s,R the EVD of S∗
RST

R . Since
function Tr(A−1) is a schur convex function with respect to the
eigenvalues of A[18], based on (59), we see that the minimum
value can be reached if Us,R = Ut,G and the eigenvalues of Zt,G,
i.e., σt,G,1,σt,G,2, · · · ,σt,G,M , are arranged in the same order with
diagonal elements of Σs,R, i.e., σs,R,1,σs,R,2, · · · ,σs,R,M . With
the structure of training sequence given in (57), the original
optimization problem in (56) is reduced to the following power
allocation problem

min
σs,R,n,∀n

N1

∑
n=1

M

∑
m=1

σr,G1,nσt,G,m

1+ β̃1,nσt,G,mσs,R,m

+
N2

∑
n=1

M

∑
m=1

σr,G2,nσt,G,m

1+β2,nσt,G,mσs,R,m

s.t.
M

∑
m=1

σs,R,m ≤ τR (60)

The Lagrangian function of (60) can be written as
L = ∑N1

n=1 ∑M
m=1

σr,G1,n
σt,G,m

1+β̃1,nσt,G,mσs,R,m
+∑N2

n=1 ∑M
m=1

σr,G2,n
σt,G,m

1+β2,nσt,G,mσs,R,m
+

λ(∑M
m=1 σs,R,m − τR), where λ is Lagrangian multiplier

associated with the power constraint given in (60). Based on
the KKT conditions, we obtain (58). Then, by setting σs,R,m = 0
for ∀m, we obtain the range of λ as shown in Lemma 2.

B. When Zt,G = aI

This case corresponds to a scenario, where the relay antennas
are far enough from one to another such that they are spatially
uncorrelated. In this case, the corresponding training design
problem can be formulated as

min
SR

N1

∑
n=1

σ̃r,G1,nTr

[(
I+ β̄1,nS∗

RK−1
q,1ST

R

)−1
]

+
N2

∑
n=1

σ̃r,G2,nTr

[(
I+ β̄2,nS∗

RK−1
q,2ST

R

)−1
]

s.t. Tr(S∗
RST

R)≤ τR, (61)

where σ̃r,Gi,n = aσr,Gi,n, and β̄i,n = aβi,n for i = 1,2. In general,
the optimization problem in (61) is non-convex with respect
to SR. However, when the relay power is large enough, we
approximately use the minimum training sequence length in the
case of an infinite relay power derived in Lemma 3, i.e., LR =M.
Then, (61) is equivalent to the following problem

min
SR

N1

∑
n=1

σ̃r,G1,nTr

[(
I+ β̄1,nST

RS∗
RK−1

q,1

)−1
]

+
N2

∑
n=1

σ̃r,G2,nTr

[(
I+ β̄2,nST

RS∗
RK−1

q,2

)−1
]

s.t. Tr(ST
RS∗

R)≤ τR. (62)

In obtaining (62) from (61), we have used the identity Tr([I+
AB]−1) = Tr([I+BA]−1)+m−n, where A and B are m×n and
n×m matrices, respectively, [28]. Similar to Section IV-B, it is
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observed that in (62), we can directly optimize the matrix ST
RS∗

R
instead of SR by solving the following optimization

min
QR�0

N1

∑
n=1

σ̃r,G1,nTr

[(
I+ β̄1,nK−1/2

q,1 QRK−1/2
q,1

)−1
]

+
N2

∑
n=1

σ̃r,G2,nTr

[(
I+ β̄2,nK−1/2

q,2 QRK−1/2
q,2

)−1
]

s.t. Tr(QR)≤ τR, (63)

where QR
Δ
= ST

RS∗
R. By using similar steps as that in Theorem 2,

it can be shown that (63) is convex and it can be readily solved
via the following SDP problem

min
QR�0,Xn,Yn

M

∑
n=1

σ̃r,G1,nTr(Xn)+ σ̃r,G2,nTr(Yn)

s.t. Tr(QR)≤ τR[
I+ β̄1,nK−1/2

q,1 QRK−1/2
q,1 I

I Xn

]
� 0,∀n

[
I+ β̄2,nK−1/2

q,2 QRK−1/2
q,2 I

I Yn

]
� 0,∀n.

VI. SIMULATION RESULTS

In this section, we present simulation results to verify
the performance of the proposed training design algo-
rithms. The total normalized MSE (NMSE), defined as ei-
ther 1

M(N1+N2)
∑2

i=1 E{‖Hi − Ĥi‖2
F} or 1

M(N1+N2)
∑2

i=1 E{‖Gi −
Ĝi‖2

F}, is utilized to illustrate the performance of the proposed
algorithms. In all simulations, the channel covariance matrices
are assumed to have the following structures

[Zt,b]n,m =zt,bJ0(dt,b|n−m|),b ∈ {H1,H2,G},
[Zr,b]n,m =zr,bJ0(dr,b|n−m|),b ∈ {H,G1,G2},

where J0(·) is the zeroth-order Bessel function of the first
kind, dt,b and dr,b are proportional to the carrier frequency
and the antenna separation vectors at the transmitter and the
receiver, respectively [17]. Moreover, the scalars zt,b and zr,b are
normalization factors such that Tr(Zt,Hi) = Ni, Tr(Zr,H) = M,
Tr(Zt,G) = M and Tr(Zr,Gi) = Ni. The temporal covariance
matrix of the disturbance is assumed to be modeled via a first
order autoregressive (AR) filter, i.e., AR(1), that is denoted

by [Kq,b]n,m = Iq,bkq,bη|n−m|
q,b for b ∈ {1,2,R} [17]. Here, the

scalar kq,b is a normalization factor similar to the ones used
in Zt,b and Zr,b. Moreover, Iq,b indicates the strength of the
interference from the nearby users. Following the approach in
[18], it is assumed that the received spatial covariance matrix of
the disturbance, Kr,b, shares the same eigenvalue vectors with
Zr,b but with different eigenvalues. For simplicity, the length
of the source and relay training sequences are assumed to be
LS = N1 +N2 and LR = M, respectively. The sum power at the
two sources are assumed to be τ1 + τ2 = 2P. If not specified
otherwise, we assume that N1 = N2 = M = 3. Furthermore, the
system parameters for the MAC phase are set to: dt,H1 = 1.5,

Fig. 2. Convergence behaviors of the proposed iterative designs. (a) MAC
phase; (b) BC phase.

dt,H2 = 1.8, dr,G = 1.3, ηq,R = 0.9 and Iq,R = 1, while for the
BC phase, we choose dt,G = 1.9, dr,G1 = 1.95, dr,G2 = 0.3,
ηq,1 = 0.9, ηq,2 =−0.9 and Iq,1 = Iq,2 = 1.

In Fig. 2, the convergence behaviors of Algorithms 1 and 2
for different SNRs are shown in subfigures (a) and (b), respec-
tively. It is illustrated that in general, the proposed iterative
algorithms converge very quickly and at most 60 iterations
are required for them to converge. These results also indicate
that as the SNR increases more iterations are needed for the
proposed algorithms to converge. In Figs. (3a) and (3b), the
convergence of the proposed algorithms are verified for differ-
ent sets of initializations. In this setup, “Random-1” indicates
that a random initial point is selected, “Random-N” implies
that N random initial points are tested but the one with the
best performance is selected, and “Identity” indicates that S =
Blkdiag(aIN1 ,bIN2) and SR = cIM , where a, b, and c are used
to satisfy the source and relay power constraints. The results
in Figs. (3a) and (3b) indicate that for various SNR values, the
proposed iterative training design algorithms are not sensitive
to the selected initial point. Furthermore, it is observed that
the initialization process denoted by “Identity” performs well
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Fig. 3. Optimality for the proposed iterative designs with different initiations.
(a) MAC phase. (b) BC phase.

as an initial point and can approach the initialization scenario
denoted by “Random-10”. Hence, in the following, if not state
otherwise, the “Identity” initial point is used.

In Fig. 4, we compare the total NMSE of the proposed
iterative training design algorithm with that of [18], which is
intended for point-to-point systems. To make this comparison
possible, for the training sequence design in the MAC phase,
it is assumed that two source nodes transmit their training
sequences in two orthogonal time intervals, i.e., s1(t) with t ∈
[1,2, · · · ,N1] and s2(t) with t ∈ [N1 +1,N1 +2, · · · ,N1 +N2]. In
the BC phase, the training sequence, SR is designed according
to the channel from the relay to the source S1. The plots in
Figs. (4a) and (4b) illustrate that compared to the approach
in [18], the proposed training design can significantly improve
the accuracy of channel estimation in TWR systems. This gain
is even more pronounced when the two source nodes operate
at different transmit power levels during the MAC phase and
when the strengths of the disturbances at the two source ends
are asymmetric, i.e., Iq,1 �= Iq,2 during the BC phase. This can
be mainly attributed to the fact that the proposed training design

Fig. 4. Performance comparison with the existing design. (a) MAC phase.
(b) BC phase.

algorithm, i.e., Algorithm 1, takes into account the temporal
correlation of the disturbance at the relay node in the MAC
phase, while ensuring that the training sequences transmitted
from the relay node simultaneously match the channels corre-
sponding to relay-to-source links during the BC phase.

In Fig. 5, the performance of the proposed training sequence
design algorithms and channel estimators in the MAC phase for
Kq,R = qIM is demonstrated. Three training sequence design
approaches are taken into consideration: 1) The iterative design
based on Algorithm 1; 2) The SDP design based on (48);
and 3) The SVD design based on Theorem 1. As shown in
Theorem 3, in this case, the optimization problem for finding the
optimal training sequences is convex. Hence, it is well-known
that both the SDP and the SVD design schemes can achieve
optimal channel estimation performance. This outcome is also
verified by the results in Fig. 5. However, it is interesting to note
that the proposed iterative algorithm denoted by Algorithm 1
can also achieve optimal performance, which further verifies
its effectiveness for designing the training sequences in the
MAC phase.
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Fig. 5. Total NMSE of channel estimation during the MAC phase with
Kq,R = qIM .

Fig. 6. Total NMSE of channel estimation during the BC phase with Kq,1 =
q1IN1 and Kq,2 = q2IN2 .

Figs. 6 and 7 present the channel estimation performance for
the special cases presented in Sections V-A and V-B during the
BC phase. More specifically, in Fig. 6, the plot with the legend
“SVD design” refers to the results in Lemma 5. The results in
Fig. 6 show that the proposed iterative design algorithm closely
matches the optimal performance obtained in the proposed
“SVD design” method. Moreover, the optimality of Algorithm 2
is further verified via the results in Fig. 7. In this setup we
consider the special case presented in Section V-B. Note that
since the proposed “SDP design” in Section V-B is optimal, we
conclude that the iterative design in Fig. 7 can approach the
optimal solution in this special case.

VII. CONCLUSION

In this paper, the problem of channel estimation in MIMO
TWR systems was analyzed. Unlike prior work in this field,
the impact of the interference from neighboring devices and

Fig. 7. Total NMSE of channel estimation during the BC phase with
Ct,G =

√
aIM .

the effect of antenna correlations on the design of training
sequences and channel estimation performance were taken into
consideration. To obtain the channel parameters corresponding
to each individual link, we have proposed to carry out the
channel estimation process in two phases: the BC phase and
the MAC phase. Next, the optimal LMMSE channel estimators
for both phases were derived and the corresponding training
sequence design problems for both phases were formulated.
Subsequently, to ensure accurate channel estimation in TWR
systems, the minimum required length of the training sequences
were also analyzed. Since the resulting optimization problems
were non-convex in their general form, specific transformations
were used to obtain near optimal iterative algorithms for the
design of the training sequences. Further analysis showed that
the optimal structures of the training sequences can be ob-
tained in closed-form when the channel or the noise temporal
covariance matrices have special structures. Simulation results
show that the proposed training sequence design algorithms
can significantly enhance channel estimation performance
in TWR systems.

APPENDIX A
PROOF OF LEMMA 1

To prove Lemma 1, we first rewrite (20) into the following
form

eR =Tr

[(
Z−1

r,H ⊗Z−1
t,H +K−1

r,R ⊗S∗K−1
q,RST

)−1
]

=
M

∑
n=1

σr,H,nTr

[(
Z−1

t,H +βR,nS∗K−1
q,RST

)−1
]
, (A.1)

where βR,n
Δ
=

σr,H,n
δr,R,n

. To obtain (A.1), we have used the

rules (A ⊗ B)−1 = A−1 ⊗ B−1 and (31). Since S∗K−1
q,RST ∈

C
(N1+N2)×(N1+N2), to achieve an arbitrary small total MSE with

infinite source powers, we must design a training sequence
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S achieving a full rank S∗K−1
q,RST , which implies that the

minimum length of Si must satisfy Ls ≥ N1 +N2. Otherwise,
based on the fact Rank(AB) ≤ min{Rank(A),Rank(B)}, we
must have Rank(S∗K−1

q,RST ) ≤ LS < N1 +N2. Let us consider

the case where S∗K−1
q,RST has a maximum rank of Ls (which will

lead to the MSE lower bound as shown below). In this case, the
MSE in (A.1) can be lower bounded by

eR ≥
M

∑
n=1

σr,H,n

×
(

Ls

∑
m=1

1

σ−1
t,H,m +βR,nλSK,m

+
N1+N2

∑
m=LS+1

σt,H,m

)
, (A.2)

where λSK,m is the m-th element of λ(S∗K−1
q,RST ). Moreover, the

eigenvlaues in {σt,H,m} and {λSK,m} are assumed to be arranged
in a decreasing order, respectively. To obtain (A.2), we have use
the fact that the function Tr(A−1) is a schur convex function
with respect to the eigenvalues of A and the following result
from [27] λ(−1

r,H)+λ(S∗K−1
q,RST ) � λ(Z−1

r,H +S∗K−1
q,RST ). When

the source power tends to infinity, the term ∑Ls
m=1

1
σ−1

t,H,m+βR,mλSK,m

in (A.2) approaches zero. Thus, eR in (A.2) is lower bounded by
∑M

n=1 σr,H,n ∑N1+N2
m=LS+1 σt,H,m.

If Kq,R = qI, the total MSE in (A.1) can be written as

eR =
M

∑
n=1

σr,H,nTr

[(
Z−1

t,H + β̃R,nS∗ST
)−1

]
, (A.3)

where β̃R,n
Δ
= βR,n/q. With a finite power at the source, it is

assumed that the optimal solution of S1 and S2 in (25) results
in the optimal S, denoted by S̄, to have a rank of r ≤ N1 +N2.
By using the SVD decomposition, the optimal S̄ can be decom-
posed to S̄ = USΣSVH

S , where US and VS are matrices of size
(N1+N2)×r and LS×r, respectively, with UH

S US = Ir, VH
S VS =

Ir; ΣS is an r×r diagonal singular-value matrix. The optimal S1

and S2 can be denoted as S̄1 = US,1ΣSVH
S and S̄2 = US,2ΣSVH

S ,

where US,1
Δ
= US(1 : N1, :) and US,2

Δ
= US(N1 + 1 : N1 +N2, :).

Subsequently, a new S̃ given by S̃ = USΣS, can be obtained
that achieves an equal total MSE as that of S̄, however, with
a shorter training sequence length of LS = r. Furthermore, the
new S̃1 = US,1ΣS and S̃2 = US,2ΣS require the same power at
the sources nodes compared to S̄1 and S̄2. This completes the
proof of Lemma 1.

APPENDIX B
PROOF OF LEMMA 2

By taking the gradient of g(λi), we can easily verify that
g(λi) decreases with λi}. Next, we mainly focus on deriving
the upper bound of λi. The source power constraint can be re-
written as

Tr(sisi)
H =Tr

[
(Xs,1 ⊗Xs,2,i +λiI)−2xs,3,ixH

s,3,i

]
≤ σs,3,i

(σs,min,i +λi)2 , (B.1)

where σs,min,i and σs,3,i are defined in Lemma 2. In (B.1),
the inequality is obtained based on the identity Tr(AB) ≤
∑i σA,iσB,i [29]. Here, σA,i and σB,i are the eigenvalues of
the n× n matrices A and B, respectively, {σA,1,σA,2, · · · ,σA,n}
and {σB,1,σB,2, · · · ,σB,n} are arranged in the same order, and
the equality is achieved when A and B are diagonal matri-
ces. Hence we have

σs,3,i

(σs,min,i+λi)2 ≥ τi, which further implies

λi ≤
√

σs,3,i
τi

−σs,min,i.

APPENDIX C
PROOF OF THEOREM 2

In (46), the feasible set established by the power constraints
is convex since the function Tr(EiQS) is linear [25]. To prove
the convexity of (46), it is sufficient to show that the objective
function is convex. Without loss of generality, we denote that
f (QS) = Tr[(Z−1

t,H +αnQS)
−1]. Using the fact that a function is

convex if and only if it is convex when restricted to any line that
intersects its domain [25], we can prove the convexity of f (QS)
by restricting it to an arbitrary line that intersects the domain
S

N
+, i.e., prove the convexity of g(t) = Tr[(Z−1

t,H + αn((1 −
t)QS,1 + tQ′

S,2))
−1] with respect to t where t ≥ 0, QS,1 and Q′

S,2

are two arbitrary given elements in S
N
+. Considering that g(t) =

Tr[(Z−1
t,H +αn(QS,1+t(Q′

S,2−QS,1)))
−1] with Q′

S,2−QS,1 ∈ S
N ,

it is equivalent to prove g(t) = Tr[(Z−1
t,H +αn(QS,1+tQS,2)))

−1]

with QS,2 ∈ S
N is convex with respect to t. To this end, we first

have dg(t)
dt = −Tr(αn(Z−1

t,H +αn(QS,1 + tQS,2))
−2QS,2). Based

on that, we can further reach

d2g(t)
dt2 =2α2

nTr

((
Z−1

t,H +αn(QS,1 + tQS,2)
)−2

QS,2

×
(

Z−1
t,H +αn(QS,1 + tQS,2)

)−1
QS,2

)
≥ 0. (C.1)

To obtain (C.1), we use the fact that (Z−1
t,H + αn(QS,1 +

tQS,2))
−2 and QS,2(Z−1

t,H +αn(QS,1+tQS,2))
−1QS,2 are positive

semidefinite matrices. Hence, we conclude that the function
f (QS) is convex with respect to the positive semidefinite matrix
QS, which further implies that the objective function in (46) is
convex since the sum of multiple convex functions is a still a
convex function.

APPENDIX D
PROOF OF THEOREM 3

For notation convenience, we define D0
Δ
=

Z−1
t,H1

+ αnS∗ST and let D0 = Z−1
t,H + αnS∗ST =[

Z−1
t,H1

+αnS∗
1ST

1 αnS∗
1ST

2

αnS∗
2ST

1 Z−1
t,H2

+αnS∗
2ST

2

]
Δ
=

[
D1 DH

2
D2 D3

]
.

According to the matrix inverse identity, we have

D−1
0 =

[
A0 B0

C0 D0

]
, where A0 = (D1 − DH

2 D−1
3 D2)

−1,

B0 = −D−1
1 DH

2 (D3 − D2D−1
1 DH

2 )
−1, C0 = −D−1

3 D2(D1 −
DH

2 D−1
3 D2)

−1, and D0 = (D3 − D2D−1
1 DH

2 )
−1. Subsequently,
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we obtain that Tr(D−1
0 ) = Tr[(D1 −DH

2 D−1
3 D2)

−1] +Tr[(D3 −
D2D−1

1 DH
2 )

−1]. Since DH
2 D−1

3 D2 � 0 and D2D−1
1 DH

2 � 0, the
inequalities D1 −DH

2 D−1
3 D2 
 D1 and D3 −D2D−1

1 DH
2 
 D3

hold, which further implies that

(
D1 −DH

2 D−1
3 D2

)−1 �D−1
1 ,

(
D3 −D2D−1

1 DH
2

)−1 �D−1
3 , (D.1)

where in obtaining the above, we have used the fact that the
matrices D1, D3, D1 − DH

2 D−1
3 D2 and D3 − D2D−1

1 DH
2 are

positive semidefinite. From (D.1), we have

Tr
[(

D1 −DH
2 D−1

3 D2
)−1

]
�Tr

(
D−1

1

)
,

Tr
[(

D3 −D2D−1
1 DH

2

)−1
]
�Tr

(
D−1

3

)
. (D.2)

Hence, if D2 = 0, i.e., S∗
2ST

1 = 0, the value of the objective
function in (45) can be always reduced.

Next, we show that for any S1 and S2, letting S∗
2ST

1 = 0
does not increase the need for power at the source nodes.
Since in (45), the value of the objective function and the power
constraints are only affected by S∗

1ST
1 and S∗

2ST
2 , the optimal S1

and S2, denoted by S̄1 and S̄2, can be determined as

S̄i = Ut,siΣsiV
H
si
, i = 1,2 (D.3)

where Vsi can be any matrix satisfying VH
si

Vsi = I. It is worth
noting that as LS ≥ N1 +N2, one can always find a specific Vs1

and Vs2 such that

VH
s1

Vs2 = 0, (D.4)

which further results in S∗
2ST

1 = 0. In this case, we do not change
the value of S∗

i ST
i and the power constraint, while decrease

the value of the objective function according to (D.2). This
indicates that the condition S∗

1ST
2 = 0 is sufficient and necessary

for obtaining the optimal solution of (45).
It is noticed that the orthogonal training sequences have also

been proven to be optimal for the cascaded channel estimation
in two-way relaying system in [15] and [16]. Here, we show
that similar results hold for individual channel estimation. With
the optimal condition S∗

1ST
2 = 0, the optimization problem in

(45) can be decomposed into two subproblems given by

min
Si

M

∑
n=1

σr,H,nTr

[(
Z−1

t,Hi
+αnS∗

i ST
i

)−1
]

s.t. Tr(S∗
i ST

i )≤ τi, i = 1,2 (D.5)

Based on the results derived for point-to-point MIMO systems
[18], we obtain that the unitary matrix Ut,si given in (D.3)
should be of the form Ut,si = U∗

t,Hi
, and Vs1 should satisfy

(D.4). Then, solving (D.5) just reduces to solving the a power
allocation problem with the optimal σsi,m being obtained via the
water-filling problem in (49).
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