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In this paper, we propose a new behavioral thermal modeling technique for high-performance micro-
processors at package level. Firstly, the new approach applies the subspace identification method with
the consideration of practical power maps with correlated power signals. We show that the input power
signal needs to meet an independence requirement to ensure the model predictability and propose an
iterative process to build the models with given error bounds. Secondly, we show that thermal systems
fundamentally are nonlinear and then propose a piecewise linear (PWL) scheme to deal with nonlinear
effects. The experimental results validated the proposed method on a realistic packaged integrated
system modeled by the multi-domain/physics commercial tool, COMSOL. The new piecewise linear
models can model thermal behaviors over wide temperature ranges or over different thermal boundary
convective conditions due to different fan speeds. Further, the PWL modeling technique can lead to much
smaller model order without accuracy loss, which translates to significant savings in both the simulation
time and the time required to identify the reduced models compared to the simple modeling method by
using the high order models.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Temperature has become a major concern for high performance
microprocessor and package design as more devices are integrated
on a chip [3,4]. Thermal management and related design problems
continue to be identified by the Semiconductor Industries Associa-
tion Roadmap [5] as one of the five key challenges during the next
decade to achieve the projected performance goals of the industry.
Thus, accurate and efficient thermal modeling and analysis is vital
for the thermal-aware chip and package designs to improve
performance, reliability, as well as for efficient online temperature
regulation and management [6-8].

The traditional bottom-up approaches including FEM (finite
element), FDM (finite difference), and computational flow dynamics
(CFD) based methods were widely used for thermal modeling and
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analysis in the past [9-11]. For compact modeling, many existing
approaches try to use thermal resistors and capacitors with fixed
topology networks subject to different thermal boundary conditions
[12-14]. However, the accurate RC values of elements, especially for
complex geometries and boundary conditions, are difficult to deter-
mine, and the calibration against the numerical field solvers or
analytical results [15,16] and measured data are usually required [17].

For thermal modeling at the architecture or package levels,
many works have been proposed targeting at different applica-
tions at different abstract levels in the past. An excellent survey on
recent works can be found in [18]. In general, existing approaches
can be classified into bottom-up white-box approaches, which are
based on the thermal dynamic physics and approximation tech-
niques, the top-down black-box behavioral modeling approaches
and the third modeling approaches, which are something in
between the two approaches [18].

Existing work on HotSpot [19,8] attempts to solve this problem by
generating the compact thermal model in a bottom-up manner
based on processor and package structures. However, such white-
box models may suffer from accuracy issues for complicated struc-
tures and boundary conditions, which are not properly modeled in
the starting models. For instance, complicated package design may
require exploration of packages with different structures and materi-
als and boundary conditions for their thermal performance in the
industry setting.
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Recently, top-down black-box behavioral thermal modeling
methods have been proposed. Many proposed models target at
the on-line temperature regulation applications, in which compact
thermal models can estimate or predict the thermal behaviors of a
real systems and they can be built in a dynamic way based on the
online thermal sensor reading and online power estimation tech-
niques [20-22]. Recently a distributed online thermal model was
proposed and validated on a realistic many-core system [23-25].

Another important development for the top-down black-box
thermal modeling is for building more accurate and even para-
meterized thermal models for architecture or package level
thermal-aware design and optimization. The input power signal
and output thermal temperatures for learning or training are
assumed to be measured from off-line complicated equipments
in the lab. Existing works consist of the matrix pencil method [26]
and the subspace identification method [27,1,2]. The major advan-
tage of such pure behavioral modeling methods is their flexibility
and easy to use as no physical restrictions and assumptions are
made or required for the models. They are also very accurate as the
training is based on measured data. However stability and other
model properties of thermal systems need to be enforced
explicitly.

Recently, Beneventi et al. [18] proposed a hybrid (or gray-box)
identification method, in which a pre-structured compact model
under physical constraints is built via an optimization approach.
The main advantage of such models is that many physical proper-
ties such as stability and passivity can be satisfied automatically.
But such models will be less flexible for different architectures
and structures as the thermal models or topologies are based on
specific architectures. Also, all the existing thermal behavioral
modeling methods assume that the thermal systems are linear,
which may not be the case for many practical thermal systems as
we show in this work, and they have difficulty to deal with varying
thermal boundary conditions.

In this work, we still focus on the black-box based thermal
modeling scheme based on the subspace identification method.
We consider practical measured power maps, which can be
obtained from thermal lab based on the test thermal vehicle
(testing thermal chips). We first observe that the subspace
identification method may suffer from the lack of predictability
problems in general [28,29], especially when the input power is
given as series of 2-dimensional power distributions (called power
maps) in which the input signal is highly spatially correlated.
Power map-based thermal characterization is widely used in
industry for thermal characterizations of package design as power
maps can be easily obtained (measured or computed) practically.
However, the spatially correlated power signals in the power map
make the system identification process more difficult. The reason
is that it is difficult to distinguish the contribution from specific
input when all the inputs have the same or similar transient
waveforms. Also compact behavioral thermal modeling for chan-
ging boundary conditions still remain to be a challenging problem.

In this paper, we present a new behavioral thermal modeling
technique considering more practical power maps and nonlinear
effects of thermal systems for package level design space explora-
tion of high-performance microprocessors. The new approach
consists of two major contributions or improvements over existing
approaches:

® First, we observe that the subspace identification method may
suffer predictability problem when power maps are given
where power inputs are spatially correlated. For instance, the
busy ALU will be likely to have frequent memory accesses and
many instruction fetching activities. As a result, the corre-
sponding function units will have power increases or decreases
at the same or similar times. Such correlated input signals pose

difficulty for the subspace identification method and will easily
lead to loss of predictability as it is more difficult to distinguish
the contributions from specific inputs when all the inputs have
the same or similar transient waveforms. In this paper, we
show that the input power signal needs to meet some inde-
pendence requirements to ensure model predictability (rank of
input power maps or their power signal matrix needs to meet
certain requirements). A new algorithm, ThermSubCP, can
generate independent power maps to meet the spatial rank
requirement and can also automatically select the order of the
resulting thermal models for the given error bounds.

® Second, we show that thermal systems are fundamentally non-
linear. One important example is that thermal conductivities of
silicon and package materials are temperature dependent.
Another example is the changing thermal boundary conditions
due to different fan speeds. To mitigate this problem, we apply
the piecewise linear (PWL) scheme to characterize the nonlinear
thermal behavior under those conditions. Our experiments show
that the nonlinear effects in the thermal systems are typically
mild and weak but are still significant enough to warrant the
PWL modeling. However, nonlinearity due to boundary condi-
tions can be very significant. PWL can deal with both mild and
hard nonlinearities. We observe that the PWL method can lead
to smaller models and reduced modeling costs compared to high
order model approximation. This is important as the costs of
identifying and simulating the reduced models will grow at least
quadratically, it is critical to reduce the model order to maintain
the efficiency gain from the reduced order modeling. The new
modeling algorithm, ThermSubPWL, partitions the nonlinear
ranges (due to temperature or boundary condition changes) into
a number of small ranges and performs the modeling on each
range using the previously proposed ThermSubCP method.
A linear transformation method, which avoids the existing multi-
transition requirement, is proposed to transform the identified
linear local-models to the common state basis to build the
continuous piecewise linear model. To the best knowledge of
the authors, the proposed method is the first work addressing the
nonlinear thermal modeling problem.

Experimental results validate the proposed method on a realistic
packaged integrated system modeled by the multi-domain/physics
commercial tool, COMSOL, under practical power signal inputs. The
new piecewise linear models can model thermal behavioral over
wide temperature ranges and different thermal boundary convective
conditions due to different fan speeds. Further, the PWL modeling
technique can lead to much smaller model order without accuracy
loss, which translates to significant simulation time reduction and
about 10 x less time to identify the reduced models compared to the
simple modeling method by using the high order models in our
examples.

The rest of this paper is organized as follows: Section 2
presents the thermal modeling problem we are trying to solve.
Section 3 reviews the subspace identification method. Section 4
presents the new power-map based thermal modeling technique,
and Section 5 gives the new nonlinear thermal modeling techni-
que. Finally, Section 6 presents the experimental results of both
ThermSubCP and ThermSubPWL, with Section 7 concluding the

paper.

2. Thermal modeling problem considering power maps

We first present how the power inputs are modeled in our
problem. A microprocessor chip is partitioned into p=nxm
power grids as shown in Fig. 1, where each square power grid
has a power source as an input and the measured temperatures at
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Fig. 1. Meshed chip and package.
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Fig. 2. The abstracted model system and correlated power inputs.

its adjacent 4 corners as outputs. We can abstract this power grid
model into a discrete multi-input and multi-output (MIMO)
system with p=n x m power inputs and q temperature outputs
as shown in Fig. 2. The n x m power input distribution at one time
instance is defined as a power map, which can be measured or
obtained by simulations or other methods practically.

In general, the abstracted p-input and g-output thermal system
could be represented as

x(t + 1) = F(x(t), u(t)),
() = Gx(t), u(t)), 1)

where both F(x) and G(x) are nonlinear vector functions of state
variable vector x(t) and input signal vector u(t). In our problem, the
input vectors u(t) e R are the measured power input traces and
output vectors y(t) e RY are the temperature responses.

Existing approaches typically assume that thermal system in
Fig. 1 is linear. As a result, (1) can be rewritten as the standard
linear state transition form

X(t + 1) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t), 2)

where A e R™! is a stable matrix, I is the number of states. B e R*P,
C e R and D e R9*P. With p input u(t;) and q outputs y(t;) where
i=1,2,...,s, the problem now becomes finding state matrices A, B,
C, and D, where D is typically considered as a matrix of zeros. x(t)
are the Kalman state vector and it does not have different physical
meaning.

Also, the n x m power inputs may be highly correlated as
mentioned before. In an extreme case, all the power input
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Fig. 3. Transient temperature response of the system identified with one highly
correlated power inputs.

waveforms are exactly the same and they are only different in
magnitude. Fig. 2 (top) shows a typical power input waveforms.
Their spatial difference in magnitude essentially is described by
the power map of the chips. The magnitude (power map) distribu-
tion can be defined by a function and applied in a practical setting
to an artificial testing package (called testing vehicle). Such magni-
tude distribution is called power map configuration in this paper.

Such highly correlated power inputs, however, will lead to poor
predictability when using the subspace identification method
[30,29]. Fig. 3 shows the waveforms produced by the model
identified with highly correlated power inputs (one power map
configuration), where the results from model and from original
temperature do not match well. To overcome this problem, sub-
space identification procedure using multiple power map config-
urations is proposed to identify the thermal package model [1],
and it works well when the system is linear and can be described
by (2).

The second issue we are facing is that thermal behavior of
packaged electronic systems will show weakly nonlinear effects
due to the temperature-dependent properties of the packaging
materials [31]. Fig. 4 shows the temperature dependence of
thermal conductivity of Si and Cu. Fig. 5 shows if we excite a chip
package system shown in Fig. 1 with a sinusoid power input, we
can clearly observe the harmonic components in the discrete
Fourier transform of the transient temperature response, which
evidently indicates the nonlinearity of the underlying thermal
system although the nonlinear components are mild and weak.
Such mild nonlinear behaviors, however, can still lead to signifi-
cant loss of accuracy as shown in Fig. 6 if typical low order is used.
In addition, the potential change of external cooling condition
need to be modeled as variable thermal resistance, and its
variation possibly could lead to even stronger nonlinearity, making
pure linear modeling approach more difficult.

To mitigate this problem, we propose to use linear models to
represent the thermal behavior of the packaged electronic systems
under different ranges of thermal conditions (piecewise linear
model approach). As a result, significant accuracy improvement is
achieved by using just low order models.

3. Review of subspace methods for system identification

Given input u(t) and output y(t), subspace identification
method identifies the state matrices A, B, C, and D of (2). The
subspace identification basically tries to first identify the system
states (Kalman states), then the state matrices will be obtained by
the least square based optimization method [29]. There are several
implementations such as the Ho-Kalman’ method, the MOSEP
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method and the N4SID (numerical algorithms for subspace system
identification) method [28]. In this paper, we apply the widely
used N4SID method for this system identification problem.

3.1. Method flow of N4SID

Defining the input Hankel matrix of an l-order system as

u(a) ua+1) u@a+ N-1)
. u(a + 1) u(a + 2) u(a + N) € RO-a+ 1PN, 3
u(b) ub+1) u(b+N-1)

and the output Hankel matrix Y, is defined accordingly. The state
sequence is defined according to a given number a and the

arbitrary number N as

X(@y=[x(a),x(a+ 1),...,x(@a+N-1)] e RN, 4)
Based on the previous definition, the past input, output Hankel
matrices and state sequence are defined as

Up=Uop-1, Yp=Yop-1, Xp:=X(0), (5)
and the future input, output Hankel matrices and state sequence
as

Up=Uppr-1,  Yr=Yiorer,  Xp=X(k), (6)

The past data matrix and future data matrix now are defined as

U U
Wp=={yﬂ, Wf:={yf], %)



Z. Liu et al. / INTEGRATION, the VLSI journal 47 (2014) 71-85 75

Temperature response

— Reference temp. | |
- - - Identified model

—_~ ! ",
E S R
7] e w0 I||z,: M !
o) 1 TR ' -~
& ol 2w
o
€
9 L

40} M’/ULU

30}

2100 2200 2300 2400 2500
time (sec)
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The numbers k and N, which determine the row and column size
of the input and output Hankel matrices, are determined by the
user according to the number of input samples available along the
time axis. Also, k > [ should be satisfied given that [ is the order of
the system.

Additionally, the extended observability matrix O, is defined as
follows:

C
CA
Op=| | eR9, ®)
At
where q is the number of output ports.

In N4SID algorithm, an important property which can be
proved is

Pu;(Yy, Wp) = O1Xs, 9

where Pg(A, C) represents an oblique projection of the row space
of A onto the row space of C along row space of B [28-30].

By applying Singular Value Decomposition (SVD) on the left
hand side of (9), there is

= 0} [V]T

o of|vI =U;z VI (10)

Py, (Yr, Wp)=[U; Us] [

From (9) and (10), the extended observability matrix O, and the
future state sequence X; are readily identified as

O =U,%,?, 1n

Xp=x,v]. (12)

Now the state sequence Xy = X(k) = [x(k), x(k + 1), ---, x(k + N—1)] is
identified, we can proceed to determine the system matrices A, B,
C, D. Specifically, define the following (N—1)-column matrices
(compared to the previously defined N-column matrices) as

Xipr=lxk + 1), x(k +2), ..., x(k + N=1)], (13)
Xie=[x(k), x(k + 1), ..., x(k + N=2)], (14)
Uppe=[uk), uk + 1), ..., u(k + N-2)], (15)
Yipe=ly(k), y(k + 1), ..., y(k + N=2)]. (16)

All the four matrices are known or identified already. Then, the
system matrices are solved as a least square problem directly from

Yk

Xk

= |- 17
Uk a7

-[¢ o]

3.2. Persistently exciting condition of subspace identification method

The quality of input signal is very important in subspace
methods. In order to get a good system, the input signal should
satisfy the so-called persistently exciting condition. That is, for an
l-order system and I <k, rank(Ugz_1) = 2pk for a p-port system,
assuming that the number of columns of the Hankel matrix N is
sufficiently large in the N4SID method [29,30].

Generally speaking, the input signal is qualified if a unique
system can be identified from the given input and output data.
This can be easily explained by following the FIR (finite impulse
response) example

2k—1

yo=3 qui-, (18)

where qg,qy, ..., o1 € RP*P are the system impulse responses.
Denote

Qak-1:=[92x—1- G2k—2> ---» ol (19)

and the system identification comes down to determining Q,;_;
using the input and output data. From (18), we readily get

Yor-112k-1 = Qar-1Uopr-1> (20)

where Ug_1 € RPN This is a least square problem and Qg ;
can be uniquely solved when Ugy¢_; has full row rank [32].

rank(Ugpp_1) = 2pk. (21)

4. Power map based thermal modeling method for correlated
power inputs

4.1. Spatial rank requirement

In general, the persistently exciting, or PE condition can be easily
satisfied for a MIMO dynamic system when all the transient input
signals are uncorrelated spatially. However, if those signals are
highly correlated spatially as in the case of power maps obtained
from the measurement, the PE condition may not be easily
satisfied, which leads to poor predictability of the resulting models
as shown in Fig. 3.

Consider a 2-input system as an example. We assume that all
the inputs have exactly the same time domain waveform and
denote it as f(t). The differences in magnitude are represented by
another spatial function g(x) in 1-D space (x-axis) for simplicity,
which represents the 1-D power map configuration. The i-th input
sample for such 2-input system is
g(xo)f (ti)}

g0)f(t) 22)

We further define the i-th block row in the input Hankel matrix as

u(i)= {

o gxo)f(t))  gxo)f (tis1) 8xo)f (tiyn-1) 23)
T gxf () gx)f (L) gx)f (tiyn-1) |
The input Hankel matrix can be expressed as
Uo
Uy
Uopk-1= : . (24)
U1

The persistently exciting condition is satisfied when Ug,_; has full
row rank that is rank(Ugpy_1) = 4k for this 2-input case. However,
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it is clear that the two rows in U; are linearly dependent, which
makes rank(Ugy,—1) = 2k and fails to satisfy the persistently exciting
condition.

In order to make the input Hankel matrix Ugz_; full row rank,
we need to make the i-th block row U; full row rank, assuming
Nsk. For this 2-input example case, we can achieve this by simply
introducing another power map configuration. Now we have two
configurations, g; and g. The i-th block row U; is shown in (25),
where i <m <i+ N—1. The two dimensional case can be general-
ized into higher dimensions with g; as a function of two spatial
variables x and y. By calling the row rank of i-th block row U; the
spatial rank of input signals and assuming that we have sufficient
samples (N is large enough), we have the following proposition:

| & X0)f (£, --.» &1(X0)f (tiym). &2 X0)f (tisms1)s - --» &2 (Xo)f (tizn—1)
T &1 X)f (), - 81X (Eiem), &2 X)f (Biems1)s - 2 (X )f (Eipn—1)
(25)

Ui

Proposition 1. For p-input MIMO dynamic systems with correlated
input signals, the spatial rank of input signal matrix, U;, must be equal
to p to satisfy the persistently exciting condition in the subspace
identification method.

We remark that for real microprocessor with package, if we can
feed the microprocessors with different programs and those
programs may generate different power maps to meet the PE
conditions. For thermal characterization based on testing vehicle,
we have the flexibility to generate different power maps on the
tested chip. In this case, we propose to automatically generate
multiple independent power map configurations to meet such
spatial rank requirement for input signals, in the next part, we
show how this can be achieved.

4.2. Orthogonal set of power map configurations

In this subsection, we show how to automatically generate
independent power map configurations to meet the PE require-
ment as mentioned in the previous subsection. This process is
useful since the number of inputs can be large.

Take the 1-D example again, if xe[0,L], a set of orthogonal
functions over the interval [0,L] can serve as the systematic
solution for the independent and robust configurations. The
orthogonal function set {g,8,,....gy} satisfies

/ ‘gwgmdx=] | 7 (26)
, &8 =\ g2 i=j

Note that one is free to choose any set of orthogonal functions for
automatic power map generation. In this paper, We arbitrarily
choose orthogonal power map configurations generated by the
2-D function set

&mn(X,y) = sin (mzx/Ly) sin (nzy/Ly), (27)

in which m and n are the indices starting from 1; x and y are the
position variables; Ly and L, are the size of the chip in the direction
of x and y axis respectively.

We remark that users may not have the luxury to generate the
orthogonal spatial functions as they are limited by specific func-
tional logics in practical chips or artificial power patterns in testing
chips. The user could use any power map (spatial configurations)
as long as it satisfies the input rank requirement. Nevertheless, the
proposed power map generation method can provide some gen-
eral guidelines for practical model generations.

ALGORITHM: THERMSUBCP

Input: p power map configurations (power in-
puts and output responses)

Output: thermal model with proper order to
meet the error bound

1. Start with order one and use the p model
identification configurations to generate
thermal models.

2. Use the validation configurations to gen-
erate the output of the subspace model.

3. Compute the average error for each out-
put.

4. If the error criteria is not satisfied, in-
crease the model order and goto step 1.
Otherwise, return the models obtained so
far and stop.

Fig. 7. The new ThermSubCP algorithm.

4.3. Thermal modeling algorithm with automatic order selection -
ThermSubCP

Now we are ready to introduce our linear thermal modeling
algorithm considering the highly correlated power inputs -
ThermSubCP, which stands for Thermal modeling using the Sub-
space Identification method for Correlated Power maps.

Once we generate all the independent power map configura-
tions, we need to generate two transient power sequences — one
for model identification and one for validation. For each power
map configuration, we basically divide the given transient power
input waveform into two parts in this approach. The first part will
be used for the model identification and the second part will be
used for the validation. To test the predictability of the models, we
will also add some additional power maps, which are not used in
model identification. For instance, suppose we have a 4-input
MIMO system, then we need 4 independent power maps with
transient power inputs denoted as Pi, P, P3, P4. Then we split
Py =[P11, P13] into two parts in time scale. We do the same thing
for the other 3 power inputs. Then the identification sequence will
be [P11,P21,P31,P41], while the validation sequence will be
[P12, P22, P32, P43, Pg1, Pg2], where Pgq, Py are the additional power
inputs in power maps not used for identification.

ThermSubCP method also tries to automatically select the
proper order of the models to satisfy the given error bounds by
gradually increasing the order of the models until the accuracy in
the validation phase is met. In our implementation, we use the
maximum of the mean errors over all the transient responses for
all the outputs as the error criteria. The proposed ThermSubCP
flow is presented in Fig. 7.

5. Piecewise linear thermal modeling approach -
ThermSubPWL

The second issue we try to mitigate for thermal modeling is to
deal with nonlinear effects of packaged microprocessor thermal
systems. In this section, we present the new nonlinear thermal
modeling technique, ThermSubPWL, on top of the linear modeling
techniques we have discussed.

5.1. Local models for partitioned linear ranges

As shown in Fig. 5, thermal systems for packaged micro-
processors show weakly nonlinearity, which may come from
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temperature dependent material properties, as well as different
thermal boundary conditions such as variant convective coefficients
for heat sinks cooled by fans with different speeds. Practically, we
may have to build thermal models for different temperature ranges
and boundary conditions, which is very important modeling objec-
tive for many thermal component modeling problems [17,16].
In this case, the thermal systems become naturally nonlinear as
the temperature dependent material properties will lead to variable
thermal system matrices, and the variant boundary conditions will
lead to variable thermal resistances to the ambient for the thermal
circuits.

If we still use the linear models to characterize the system, we
observed that we have to use higher order to get good approxima-
tion since the nonlinearity is mild in many cases. Of course, such
approximate models will not show any nonlinear effects, but they
will use more poles or states to emulate the effects of nonlinearity
on thermal responses of those systems. So we will end up with
much higher orders for the thermal models even for linear
approximation, which will hurt the performance of the thermal
analysis. In addition, such analysis also loses the nonlinear effects
of the original systems.

To mitigate this problem and reduce the model order and
modeling errors, we propose to partition the temperature range or
each fixed boundary conditions into a number of sub-ranges and
then we build the state space linear models for each sub-ranges by
the ThermSubCP method, and these local models are then used to
build piecewise linear thermal model for the whole thermal
system.

In the following, we build PWL model for different temperature
ranges as a driving example. Similar strategy can be apply to build
PWL model for different boundary conditions, with results shown
in the experimental result section.

We notice that one issue with such a piecewise linear thermal
modeling scheme is that temperature is location dependent across
a whole package. There may be temperature gradients among
different locations. To mitigate this problem, we use the average
temperature of any instance time to guide model switching. The
thermal gradients in a well-designed chip are typically well
managed and reduced by the online thermal management tech-
niques [33,20]. Even with some degrees of thermal gradients, the
local models should still be valid as it is a localized model and
should be valid for a temperature range as long as the average
temperature is still representative for the overall temperature of
the processor die.

In order to obtain local models for different temperature
ranges, we use stair-like power-temperature training sets to
identify these models as shown in Fig. 8. For example, the model
M; is identified during time interval [t;_1, t;,1], which corresponds
to the temperature range of [T;_1, T;,1]. Since model M; is identified
with the temperature data ranging from [T;_q,T;,¢], the correct
using of the subspace identification method guarantees that the
identified model is valid for this temperature range.

‘ ‘ Model M b

Model M |
t.
i1 ti i+l

Fig. 9. Abrupt model transition at known time instance.

In order to avoid the predictability issue and improve the
accuracy of the subspace identification method, we use indepen-
dent power map configurations as given by (27) to identify each
local model for the corresponding temperature range.

By using the stair-like input-output data, the linear models of
the subsystems in different temperature ranges could be accu-
rately identified via the ThermSubCP method.

Note that, all the pairs of the two adjacent models, like M; and
Mi;, 4, are identified with a shared portion of data, which makes
both models valid for the same temperature range, like [T;, Ti,1]
shown in Fig. 8. The reason is that the transition from one thermal
model to another thermal model is gradual, and this shared
portion can facilitate determination of model transformation
matrices as will be discussed below.

5.2. Determination of model transitions

The linear models for each subsystem could not be directly
combined to build the piecewise linear model for the thermal
system of the microprocessor package because these identified
models are not built on the same state variable basis. Hence, it is
desirable to have a common state basis for all the local models
instead of using different states for different models. This requires
linear transformation to transform all these models onto the same
basis. In [34], the transitions are assumed to be known at each
time instance. Assuming that the model transition is abrupt at the
transition time instance t; as shown in Fig. 9, it can be proved that
the state of model M, and state of model M,, are differed by a linear
transformation Tj, as

xXm, (t7) = TpaXm, (), (28)

where xy,(t;) is the state of model M, at the transition time
instance t;, and xy,(t;) is the state of model M, at the same
transition time. Hence, to determine the linear transformation
matrix Tpg, multiple transitions are required to solve the linear
equations (29) in the sense of least squares as shown in [34].

[Xm, (E1), Xm, (€2), -, 1 = Tpa[Xpm, (£1), Xp, (E2), -, ] (29)

However, in our thermal system modeling, if we have specific
temperature value for transitions between two models, we have to
excite the states of the two models such that we have many
independent states from the two models and transitions happens
between the two models with those states. This will lead to much
larger training tasks for the modeling process.

To mitigate this problem, we propose a transition region
concept in this paper. We observe that the temperature transition
from one model to another model is in general a gradual process
as indicated in the time interval from ¢; to t;;; shown in Fig. 10,
instead of an abrupt one that happens at a specific time instance.
We define a transition region as shown in Fig. 10 in which both
local models are valid (in other words, a state of model M, will
switch to a corresponding state of model M, at any given time in
this region).

As discussed before, the subspace identification method guar-
antees that any two adjacent models are valid for a portion of
shared data sets from ¢; to t;,; (even though in the simulation we
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Fig. 10. Model transition from M, to M.

specify arbitrary Ty, to determine the abrupt transition from M, to
M, as shown in Fig. 10), thus, the relationship of the states for
these two models within the range of the shared data set could be
written as

X, (6 = tiz1) = ThaXng, (& i), (30)

in which the matlab-like notation x,(t; : t;,.1) represents the
states of model M, during t; to t;,4, and xy, (t; : t;;1) represents
the states of model M), during t; to t;,; as shown in Fig. 10.

Hence, in this way, instead of requiring multiple model transi-
tions as in [34], as long as we have enough independent states in
the gradual transition region to make the state matrix xp, (t; : ti1)
full row rank, we could compute the transformation matrix Ty, by
solving (30) in a least square sense. By using T,, we could
transform model M, to the basis of model M, through (28).

Following this method, we could calculate the transformation
matrices between any two adjacent thermal models using (30),
and transform the model basis with (28). In this way, it is
straightforward to transform all the identified local linear models
to the common basis. We illustrate this by a 3-local system that
has models Mg, M} and M.. It is straightforward to transform other
model states into common model basis of M, using

Xm, (£1) = TpaXm, (1),
XM, () = Tep TpaXm, (7). 3D

In other words, we can just use the common state xy;, as the local
model states for all the local models. With the linear local model
built from different temperature ranges or different linear ranges
onto the same state basis through linear transformations, the
piecewise linear model could smoothly switch from one model to
another, which benefits the simulation accuracy.

6. Numerical results and discussions

The proposed method has been implemented in Matlab. We
show results on a practical package modeled by commercial
modeling tool COMSOL V 4.1 [35]. We first use a linear modeling
method, then we employ the proposed piecewise linear method to
reduce the model order and improve the simulation efficiency.

The packaged microprocessor design used in this study is
shown in Fig. 11, where the convective boundary on the top of
heat sink models the convective cooling from the fan placed above
the processor. The aluminum heat sink is glued to the copper
integrated heat spreader (IHS) that is attached to silicon die
through a thin layer of thermal interface material (TIM). The
materials and geometries of the major parts of the package are
shown in Table 1, and we partition the die area into 4 x 4 power
grids as shown in Fig. 12, and each grid represents a different
function block.

To model the power consumption of these function blocks, the
input power sources are placed in these power grids and we
measure the temperature at the adjacent 4 points of each square

Convective surface

Fig. 11. Microprocessor chip package.

Table 1
Material and geometry of the microprocessor package.

Parts Material Dimensions (mm)
Die Silicon 10x 10x 0.7
TIM Thermal grease 10x 10 x 0.2
IHS Copper 31x31x15
Heat sink Aluminium 64 x 64 x 6.3
Substrate FR4 37.5x375x13

[ L u

Power grid —3 py P2 P3 P4
» - - " "

Temperature P5 P6 P7 P8
point

P9 | P10 | P11 | P12
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Fig. 12. Top view of partitioned die area with power grids and temperature points
(heat sink removed).

Fig. 13. Steady state temperature distribution simulated by COMSOL 4.1. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this article.)

power grid, and thus we could have 25 observable temperature
points starting from the up left corner of grid P1 (1st temperature
point) to the down right corner of grid P16 (25th temperature point)
as shown in Fig. 12. As a result, we end up with 16-input and
25-output thermal systems. The convection coefficient is set to
450 (W/(m? K)) to model the convective air cooling effect from the
cooling fan on top of the chip package.

To build a more realistic package with right dimension and
materials, we applied COMSOL V4.1 [35] to build the package
structures with on-chip power waveforms as inputs. The time step
is set to 0.1s for the transient simulation, and the thermal
response could be obtained by COMSOL V4.1 using the finite
element method under the input power maps we generated.
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Fig. 14. Transient on-chip power waveform from industry.
Table 2

Additional input power map configurations for validation (range of position
variables: 0 <x <4 0<y<4).

Configuration Num. Spatial distribution of the input
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P_P()(cos( yy )+7ln(x+2)
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35x2\/y+ 1/ Xy
M- — 2y X
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My X+y+e 2 4 xyle X4+ 1)
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Fig. 14 shows the transient power waveform from our industry
partner (The magnitude is determined by the specific power
map.).

Fig. 13 shows the steady state temperature distribution under a
given power input on the constructed package and the chip.
The colors in Fig. 13 indicate different temperatures, the red color
represents hotter part of the package, in this case, it is at the center
of the die, and the blue part represents the cooler part of the
package like heat spreader. The temperature goes from high to
low, and the color turns from red to blue. At the edge of the die,
it is hotter than the heat sink and cooler than the die center, so it
displays orange or yellow.

6.1. Multi-configuration model identification and validation for the
package

Using the proposed method in Section 4.2, 16 orthogonal power
map configurations are generated by the 2-D orthogonal sine sets.
The system is identified with these 16 input power map config-
urations, which cover 12 800 transient time steps (about 800 time
steps per power map). But we can use less number of time steps
per power map. In the validation phase, in addition to the 16
automatically generated power map configurations, new config-
urations from M; to M, are introduced and their spatial distribu-
tions are defined in Table 2.

A 15th-order thermal model is obtained. The matched time
domain response is shown in Fig. 15(a) and frequency domain
response is shown in Fig. 16 for this 15th-order thermal model.
The baseline results are obtained by using step power input with
only one port is excited at a time and it can be viewed as the
golden of the transfer function. From those figures, we can clearly
see that the proposed method gives very accurate thermal models
compared to the golden. We could clearly see the filtering effect
of the thermal system, which actually makes good physic sense.

Comparison of Temperature Response Waveforms
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Fig. 15. Transient temperature responses and the temperature errors of the
identified model (order:15). (a) On-chip temperature responses at the 1st tem-

perature point. (b) Absolute errors of on-chip temperature responses at the 1st
temperature point.
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Fig. 16. Bode diagram of the transfer function from input u; to output y;.

The power, analogous to the electrical current in a resistor, could
be changed instantly, while the temperature changes of the
system, analogous to the voltage changes on a cap, usually takes
some time to happen due to the heat capacitance of the system.
The pole-zero analysis indicates that the system is stable, and
Fig. 17 shows that the poles of one transfer function of the 15th-
order model (‘ x’ represents poles while ‘o’ represents zero) are
within a unit cycle. We have similar observation for other transfer
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Fig. 17. Poles and zeros distribution of the 15th-order model.

Table 3

Model identification CPU times and model errors.
ThermSubCP order 35 25 15
Model ID time (min) 25.0 15.5 4.83
Max mean error (%) 117 2.58 491

functions and model of different orders. Also, Fig. 15(b) plots the
zoomed-in temperature absolute errors in the transient response,
which gives the worst errors in entire validation period. The errors
at some worst time points are relatively larger (about 15% or
6-7 °C), but over all the time steps, they are quite small. The
output error statistics of the identified systems with different
order is summarized in Table 3, where we list the maximum of the
relative mean errors among all the ports over the entire transient
simulation period (Max Mean error), and Model ID time is the time
(in minutes) required to identify the model.

It clearly shows the trade-off between the model accuracy and
the identification time for the same amount of identification data.

6.2. PWL-based nonlinear modeling and validation

In this section, we use PWL modeling approach to build a
compact thermal model of the packaged microprocessor system.
To obtain the identification data of different local models for
different temperature ranges, PRBS (Pseudo Random Binary
Sequence) signals with stair-like envelops shown in Fig. 18 are
used as inputs to characterize the system parameters; and in the
validation phase, the transient waveform in Fig. 14 is used. PRBS
signal has the white-noise like spectrum so that it can excite all
the thermal system states, and we expect that it could potentially
lead to better and more accurate identification results [25].

6.2.1. PWL-based nonlinear modeling for different temperature
ranges

As discussed before, temperature dependent material proper-
ties could lead to nonlinear behavior of the thermal system, thus
we use piecewise linear method to model the thermal behavior in
different temperature ranges. In this case, the stair-like envelop
contains 12 “steps” that corresponds to 12 different ranges of input
power intensity as shown in Fig. 19. We could arbitrarily partition
the data and attribute them to different linear models that need to
be identified with these data. At the beginning, we use “scheme-1"
shown in Fig. 19(a) to identify the linear models. In this scheme,
each model is identified based on two consecutive data sets, and
the adjacent models are built with one shared data set. In this way,

x 10°
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Fig. 18. The stair-like PRBS input signal in model identification phase.
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Fig. 19. Data partition schemes for model identification (a) scheme-1 (11 local
models), (b) scheme-2 (6 local models), and (c) scheme-3 (4 local models).

11 models will be identified in total, given the 12 data sets, and the
piecewise linear model is to be built with these 11 local models. In
order to avoid the predictability issue as discussed before, for each
range of the input power, 16 orthogonal configurations are
generated by g,,,(x,y) as defined in (27).

By choosing 4th order model, and using the subspace identi-
fication method, all the 11 linear models could be identified.
Applying the proposed method to determine the transformation
matrices, all the linear models could be transformed to the same
basis. Since the piecewise linear model built up in this way
contains multiple local models, it is reasonable to partition the
overall temperature range into the sub-ranges that the local
models correspond to. The simulation result in Fig. 20(a) confirms
that the temperature value predicted by the output of the
identified piecewise model (dash line) closely matches the refer-
ence data (solid line).

In comparison, we also use different schemes of data partition.
By using “scheme-2” and “scheme-3”", we end up building the
piecewise linear models with 6 local models and 4 local models
respectively. From the transient simulation results in Fig. 20 and
the temperature error of the transient response in Fig. 21, it clearly
demonstrated the performance improvement as more linear local
models are used. We could clearly observe that, for the same order,
the error reduces as the number of the linear models in use
increases, which shows a compelling evidence of using piecewise
linear model for compact thermal behavior modeling and
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Fig. 20. Transient view of the on-chip temperature response (at the 1st tempera-
ture point) of the piecewise linear models (PLM) built with different numbers of
local models. (a) PLM built with 11 local models. (b) PLM built with 6 local models.
(¢) PLM built with 4 local models.

simulation. The output error statistics of the identified system is
summarized in Table 4, where we also list the maximum of the
mean errors (Max Mean error) among all the ports over the entire
transient simulation period. We have also confirmed that each
local models are stable, and as an example, a pole-zero configura-
tion (poles marked with ‘x’ and zeros marked with ‘o’) of one
local linear model is shown in Fig. 22, which shows that all the
poles are inside the unit circle.

On the other hand, the linear model with order 4 suffers from
huge loss of accuracy as shown in Fig. 6 before. To make the linear
model achieve comparable accuracy with the piecewise linear
model, high order model needs to be chosen. In our experiment,
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Fig. 21. Absolute errors of the on-chip temperature response (at the 1st tempera-
ture point) of the piecewise linear models (PLM) built with different numbers of
local models. (a) PLM built with 11 local models. (b) PLM built with 6 local models.
(c) PLM built with 4 local models.

Table 4

Model accuracy comparison with different identified models (order: 4).
Num. of linear models in use 11 6 4
Max mean error (%) 2.1 3.9 5.9

we used 20412 transient time points to identify the model.
As summarized in Table 5, the time required to identify (ID time)
the high order linear model (LM) is 627.1 s, while on the other
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Fig. 22. Pole-zero configuration of a transfer functions in an identified local model.

Table 5
Comparison of model accuracy and CPU times.

Comparison items Error (%) ID time (s) Simulation time (s)
PLM (order:4) 2.1 63.8 7.88
LM (order:15) 23 627.1 222
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Fig. 23. Different convection rates of the heat sink.

hand, the time required to identify all the piecewise linear models
(PLM) is 63.8 s. Hence, the speedup factor for model identification is
9.8 comparing with linear model. Also, we used 25 412 time points in
transient simulation, and the high order linear model uses 22.2 s to
conclude the simulation, and the piecewise linear model uses only
7.88 s to conclude the simulation, which is approximately 35% of the
simulation time of the high order linear model.

We remark that although in our case, order 15 of the linear
model is not significantly higher than the order 4 in a sense, yet,
the time required to identify the state space model through
subspace identification method increases significantly because a
large amount of input and output data are required to identify the
state space model accurately. As a result, choosing low order
model to identify the targeted dynamic system leads to substantial
savings in subspace identification method, which is important in
the process of building and calibrating a dynamic model in a
dynamically changing environment. Also, piecewise linear model
achieves substantial savings in simulation time because the lower
order model is used in simulation.

6.2.2. PWL-based nonlinear modeling for different convection rates
Another potential thermal nonlinearity could be caused by the
changing speed of the cooling fan, which translates to changing
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Fig. 24. Power traces used to build and validate the piecewise linear model for
different convection rates.
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Fig. 25. Comparison of the on-chip temperature response (at the 1st temperature
point) predicted by the piecewise linear models (PLM) with the one predicted by a
linear model under variant convection rate. (a) PLM built with 4 local 4th order
models. (b) A simple linear 4th order model.

(nonlinear) boundary conditions for the thermal circuits. In this
case, our proposed piecewise linear model offers a viable solution
to build a model working for the changing boundary conditions.
In package level thermal modeling, different fan speeds could
be translated to different convection rates at the top surface of the
heat sink. Hence, to model various fan speeds, in our experiment,
we linearly change the convection rates of the top surface of the
heat sink as shown in Fig. 23, and use the model identification
routine with 16 orthogonal power map configurations to identify
each local model for a certain range of the varying convection rate
in Fig. 23. Each two adjacent models covers a common range of the
convection rate, which is served as model transition region to
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determine the transformation matrices that transform all the local
models to a common state base using the procedure in Section 5.2.
The identified model is validated under different ranges of con-
vection rate in the validation phase. The power trace in the
experiment is shown in Fig. 24, in which PRBS signal is used for
model identification and while the power signals from our
industry partner are used for model validation.

By choosing 4th order model, and following the same proce-
dure used before, all the 4 local models could be identified. The
simulation result in Fig. 25(a) confirms that the piecewise linear
model could effectively predict temperature waveforms in differ-
ent ranges of convection rate. As a comparison, if we use a single
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Fig. 26. Absolute error of one on-chip temperature response at the 1st temperature
point. (a) Piecewise linear model. (b) Linear model.
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4th order linear model, the predicted transient response some-
times could be significantly deviated away from the reference
temperature data as Fig. 25(b) shows. The errors of the transient
waveform by the piecewise linear model and the corresponding
linear model with the same order are shown in Fig. 26(a) and
(b) respectively.

In addition, we could anticipate that the model identified under
higher convection rate should be a faster model because the package
could reach steady state quicker with higher convection rate, which
could be confirmed by investigating the pole-zero configuration
shown in Fig. 27. We could find that the dominant pole (0.9879 in
z-plane) of one transfer function in Model2 (identified with convec-
tion rate from 1625 W/(m? K) to 2750 W/(m? K) is farther away from
the unit circle than the dominant pole (0.9920 in z-plane) of the
corresponding transfer function in Model1 (identified with convec-
tion rate varying from 500 W/(m?K) to 1725 W/(m? K)), and it is
also much closer to zero, which partially cancels the effect of the
dominant pole. Hence, this result of pole-zero configuration suggests
that Model2 has faster response as theoretically anticipated, which
also indicates that each local model is identified to take account of
the significantly changed convection rate overtime.

Hence, to sum up, we applied the proposed method to model
the chip package with variant convection rate, and the experiment
result of the piecewise linear model shows significant accuracy
improvement over the conventional linear modeling, which con-
firms the validity of the proposed methodology in thermal
modeling. By investigating the resulting pole-zero configuration
of the identified model under different convection rates, we also
confirmed that each local model is identified to consider the
potential huge variation of the fan cooling effects during the chip
operation.

7. Conclusions

In this paper, we have first proposed a new thermal modeling
technique considering practical power maps with highly correlated
input powers. We have proposed to generate independent power
maps to meet the spatial rank requirement in the presence of highly
correlated input signal. The new method, ThermSubCP, can also
automatically select the order of the thermal models for the given
error bounds. Secondly, we have also proposed piecewise linear
(PWL) modeling approach for modeling nonlinear effects and various
boundary conditions. The new modeling algorithm, ThermSubPWL,
partitions the nonlinear ranges (due to temperature or boundary
condition changes) into a number of small ranges and performs the
modeling on each range. Experimental results have validated the
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Fig. 27. Comparison of dominant pole-zero of the transfer functions in Model1l and Model2 (from input 1 to output 1). (a) Modell and (b) model2.
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proposed method on a practical microprocessor package modeled by
commercial multi-domain/physics tool, COMSOL V4.1, under practical
power signal inputs. By using multiple power map configurations in
model identification, the predictability of the identified model is
significantly improved. The new piecewise linear models can model
thermal behavior over wide temperature ranges or over different
thermal boundary conditions due to different cooling configurations.
Further, the PWL modeling technique can lead to much smaller
model order without accuracy loss, which translates to significant
simulation time reduction and about 10 x less time to identify the
reduced models compared to the simple modeling method by using
the high order models in our examples.
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