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Abstract—We present optimization algorithms for source and
relay power allocations in a multicarrier relay system with direct
link, where the source power is allowed to transmit in both phases
in a two-phase relay scheme. We show that there is a significant
benefit to the system capacity by allowing the source power to be
distributed over both phases. Specifically, we consider the joint op-
timization of source and relay power to minimize a general cost
function. The joint optimization problem is non-convex and the
complexity of finding the optimal solution is extremely high. Using
the alternating optimization (AO) method, the joint problem is de-
composed into a convex source power allocation problem and a
non-convex relay power allocation problem. By exploiting the spe-
cific structure of the problem, we present efficient algorithms that
yield the exact optimal solutions for both source and (non-convex)
relay power allocation problems. Then we show that the overall
AO algorithm converges to a stationary point of the joint problem.
Moreover, the proposed AO algorithm is asymptotically optimal
for large relay transmit power or large source-relay channel gain.
Finally, simulations show that the proposed AO algorithm achieves
significant gain over various baselines.

Index Terms—Multicarrier relay system,multiuser relay system,
OFDM relay system, optimal power allocations, three-node relay
system.

I. INTRODUCTION

A three-node relay system as shown in Fig. 1 has attracted
much attention in the literature. While the capacity of

such a system remains an open problem, various attempts have
been focused on specific relay schemes and their achievable re-
gions. One of the most recent works is in [1] where the authors
developed algorithms to maximize the relay system throughput
by assuming that the relay node is non-regenerative and the
powers at the source node and the relay node can be controlled
over multiple subcarriers. Specifically, the relay communication
in [1] is achieved in two phases. In the first phase, source node
transmits signal to relay. In the second phase, relay amplifies
and transmits the signal received from the first phase to the desti-
nation node. We call the first phase source phase and the second
phase relay phase. In [1], there is no direct link between the
source node and the destination node. As a result, the source
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Fig. 1. A multicarrier three-node relay system, where
is the index of subcarriers, and the source transmits in both phases 1 and 2. S,
R and D in the figures stands for source node, relay node and destination node,
respectively.

node is always silent during the relay phase. With the pres-
ence of direct link between, the source node has an additional
freedom to distribute its power among the two phases, instead
of only transmitting in the source phase. This paper presents a
power allocation algorithm to minimize a general cost function
for the three-node relay systems with direct link. Moreover, we
allow the source to transmit in both source and relay phase.
The effect of the direct link has also been considered in

[2]–[8]. But in all these works, the source node and the relay
node each transmit only in one of two separate time slots1 for
each carrier. In fact, except for [8], all other works mentioned
above only allow the source to transmit in the source phase.
Many other prior works such as [9]–[12] do not consider the
direct link. More recent works on relays can be found in [13].
In this paper, we let the source repeat a transmission of the

same information (transmitted in the source phase) to the desti-
nation in the relay phase. In other words, we split the total source
power into two slots for transmitting the same information. This
additional freedom makes the required power allocation algo-
rithms differ from those published before. The achieved ca-
pacity is higher than the case where the source power is only
limited to one of two time slots for each carrier, which is a spe-
cial case of our relay scheme. However, this new scheme intro-
duces several technical challenges as elaborated below.
• More Complicated Non-convex Optimization Objec-
tive: Since source node can transmits in both phases, we
need to consider the joint optimization of source power
allocation at both phases and relay power allocation at
the relay phase. This not only increases the number of
optimization variables but also makes the optimization
objective a more complicated non-convex function.

• More Complex Coupling between Source and Relay
Power Allocation: The source and relay power optimiza-
tion is coupled in a more complex way as the destination
node gets signal from both source and relay nodes during
the relay phase.

1We use “phase” and “slot” interchangeably.
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Fig. 2. A multiuser application of the relay system shown in Fig. 1 where the
destination nodes (users) can select different subcarriers embedded in OFDM
frames in each phase.

From an application point of view, the three-node multicarrier
relay system shown in Fig. 1 can be a simple abstraction of a
multiuser multicarrier downlink relay system shown in Fig. 2
where the destination nodes can select different subcarriers in
each phase. In the multiuser case, the channel gains of a link
among different subcarriers are generally diverse, and hence
the power allocations at both the source and relay nodes over
all subcarriers are particularly important. The proposed algo-
rithm can also be used to solve the power allocation problems
in the multiuser multicarrier relay systems for given subcarrier
allocation.
Several of the previous works such as [2]–[7] considered

MIMO relay systems. The work in this paper is limited to single-
antenna nodes. While our contributions do not entirely gener-
alize the previous works on MIMO relay systems, the insight
shown in this paper could help achieve that goal in the future.
In the next section, we present in detail the system model and

the problem formulation. The problem formulated is a joint op-
timization of source power allocation over two phases and relay
power allocation in the second phase. Two types of cost func-
tions are considered. Using the alternating optimization (AO)
method [11], the joint optimization problem is decomposed into
two subproblems, namely the optimization of relay power al-
location for given source power allocation, and the optimiza-
tion of source power allocation for given relay power allocation.
These two subproblems are respectively addressed in Section III
and Section IV. Then the overall AO algorithm and the opti-
mality analysis is given in Section V. Although the exact solu-
tion to the joint optimization problem is not guaranteed, the AO
algorithm converges to a stationary point which is asymptoti-
cally optimal for large relay transmit power or large source-relay
channel gain. Simulation examples are given in Section VI to il-
lustrate the superior performance of the proposedAO algorithm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The relay architecture is shown in Fig. 1. We consider an
OFDM based multicarrier system. Each packet of informa-
tion is encoded into independent complex symbols, ,

, of zero mean and unit variance. To
transmit a packet of information from the source to the destina-
tion, the relay scheme has two phases.
In source phase, the source transmits ,

, over subcarriers towards the desti-
nation and the relay, the relay does not transmit but receives

, , and the destination receives ,
. The power of is .

In relay phase, the source transmits again but it transmits
, , the relay does not re-

ceive but, concurrently with the source, transmits ,
, and the destination receives ,

. The relay factor has the amplitude and
the phase . The power of is .
The channel coefficient of the -th subcarrier from the source

to the destination is denoted by , that from the source to
the relay is , and that from the relay to the destination is

. We use as the amplitude of , and the phase
of . For clarity, we assume that all the channel coefficients
are non-zero. The algorithms developed in this paper can be
easily extended to solve the cases when some of the channel
coefficients are zero.
The subcarriers used in source phase for are indexed

by . But the subcarriers used in relay
phase for (from source to destination) and (from relay
to destination) are indexed by , which can
be a permutation of those used in source phase. Namely, is a
function of via a given permutation. Permuation can be used
to model the subcarrier allocation in multi-user relay systems,
where a user may be allocated with a different subcarrier in the
relay phase.
Now, we can write that in source phase, the destination and

the relay receive, respectively,

(1)

(2)

and in relay phase, the destination receives

(3)

where in and of (3) is a permuted version of in
and of (1) and (2). All the noise terms , and
are assumed to be independent of each other and across

subcarriers, and have zero mean and unit variance. Note that
there is no loss of generality to assume the unit variance. If the
variance of and is , we can divide (1) and (3) by

and adjust the notations. And if the variance of is ,
we can divide (2) by and adjust the notations.
Combining all the previous equations, we can write the re-

ceived signals in both phases as a vector:

(4)

with and

(5)

(6)

Since the covariance matrix of the noise vector is
, a sufficient statistics for is

(7)
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One can then verify that the SNR of is

(8)

It follows from (8) that is the phase
of that maximizes . With the optimal phase , (8)
becomes

(9)

Let source node transmit in relay phase will result in a better
SNR especially when relay power is limited or direct channel
is strong. The simulation results also show that the optimized

’s are typically larger than zero. A more rigorous discussion
will be given at the end of Section IV.
We will consider two types of cost functions. The first is

(10)

This cost could be particularly useful if each of the subcar-
riers is occupied by a distinct downlink user (see Fig. 2) and we
want to ensure a fair quality for all users. The second cost is

(11)

where is any decreasing convex function of
, i.e., and

. A special form of is

(12)

which is the negative of the capacity of the relay system under
the previously defined relay scheme. Clearly, there are many
more variations of the cost functions. But we hope that our re-
sults for and can help solve other related problems.
The joint source and relay power allocation problem is for-

mulated as:

(13)

subject to

(14)

(15)

along with , and . Here, is either
or , is the power constraint at the relay, and is the sum
power constraint at the source.
The above problem differs from those in [3]–[7] in a funda-

mental way. As mentioned earlier, all those references assume

that the source node is silent during the relay phase. As shown
later in this paper, by allowing the source power to be distributed
in both phases, a substantial performance gain can be achieved.
The exact solution to (13) is difficult to find because both

the cost function and the relay power constraint in (15) are
non-convex. In this paper, we provide a local optimal solution
by adoptting an alternating optimization approach where we op-
timize with previously given and , then opti-
mize and with previously given , and then re-
peat the process until convergence. For fixed source power al-
location , the relay power allocation problem (i.e.,
the optimization of ) is still non-convex. However, by ex-
ploiting the specific structure of the SNR expression in (9), we
propose efficient algorithms to find the unique optimal solu-
tion for this non-convex problem in Section III. For fixed relay
amplifying factor , the dual-phase source power allocation
problem (i.e., the optimization of ) is convex and
we propose efficient algorithms to find the optimal solution in
Section IV. The overall algorithm to solve Problem (13) is given
in Section V.

III. OPTIMAL RELAY POWER ALLOCATION GIVEN
SOURCE POWER ALLOCATION

For fixed and , Problem (13) becomes

(16)

subject to

(17)

where .
Neither nor is a convex functions of . In particular,

the in (9) is not a concave function of . However, it is
easy to verify that

(18)

It follows that is a quasi-concave function of , which
has a unique maximum at2

(19)

Namely, is an increasing function of for
and a decreasing function of for . Because of
the power constraint (17), we only need to search the optimal
within . A typical plot of is shown in Fig. 3.
Note that if the source does not transmit in relay phase, then

and hence is simply an increasing concave
function of (and and are convex functions of ).

2Note that if , we let .
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Fig. 3. A typical plot of vs. where is the position of the peak
value .

A. Using the Cost

Recall and
. Denote . Also

denote the solution to (16) by and the corresponding optimal
SNR by . From (9), if we let , we
have the corresponding . Since

is a monotonic increasing function of over ,
we must have:

(20)

Also, because is an increasing function of for
, it follows that

It is easy to verify from (9) that for each , the equation
can be reduced to a quadratic equation of , which

has two (closed-form) solutions and . Furthermore, if
, one (and only one value) of and is

less than or equal to , which is denoted by .
With the above discussions, one can verify that the following

algorithm yields the exact solution to (16) with :

Algorithm 1

1) Compute , and .
2) For each , solve the equation to obtain

. If (17) is satisfied with ,
then set and stop. Otherwise, go
to the next step.

3) Use the bisection search method3 [14] to find within
such that (17) is satisfied with equality as

and . Then, set
, and stop.

B. Using the Cost

Recall where is a decreasing
convex function of . To find the solution to (16), the KKT

3It converges exponentially fast.

conditions [14] are the necessary conditions (but not sufficient
conditions due to non-convexity of with respect to ).
But we can still distill the exact solution from the KKT condi-
tions as follows. Among the KKT conditions,4 we have

(21)

where and is given in (18), is the
Lagrange multiplier associated with the relay power constraint
in (17), and is the Lagrange multiplier for the constraint
. Also, if the equality in (17) holds, and if

.
The following proposition characterizes the properties of the

solution of the KKT conditions.
Proposition 1: The KKT conditions of the relay power al-

location problem in (16) with has a unique solution
denoted by . Moreover, has
the following properties:
1) and

.
2) If , we have ; otherwise

and is the unique
solution of the following equations:

(22)

(23)

3) In (22), is positive and decreasing with
.

4) Let denote the solution of (22) with fixed
. Then we have and is
decreasing with .

Please refer to Appendix A for the proof.
By Result 3) in Proposition 1, for a given feasible , the solu-

tion of (22) can be easily found by a bisection
search. On the other hand, if the optimal
Lagrange multiplier is given by the solution of

(24)

which can also be found by a bisection search according to the
Result 4) in Proposition 1.
Based on Proposition 1, one can verify that the following al-

gorithm yields the exact solution to Problem (16) with :

Algorithm 2

1) Compute . If (17) holds with , set
and stop. Otherwise, go to the next step.

2) Use a bisection search to find within such that (24)
is satisfied, where for a given , the in (24)
is found as the solution to (22) via an inner-loop bisection
search. Then set for all .

4For brevity, we do not list all KKT conditions. We assume that the reader
understands the basic components of the KKT conditions.
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IV. OPTIMAL SOURCE POWER ALLOCATION GIVEN
RELAY POWER ALLOCATION

Given a relay power allocation (i.e., given a set of ), we
now consider the optimization of the source power allocation
by solving the following problem:

(25)

subject to (14) and (15), which is later proved convex.

A. Using the Cost

Since , Problem (25) can be reformulated
as

(26)

subject to (14),(15) and

(27)

It follows from (9) that

(28)

where , and

. It is obvious that is increasing with and
.
It is also obvious that the optimal and must be such

that the equality in (14) is satisfied. If and are such that
the strict inequality in (14) holds, we can increase some or all of

such that the equality in (14) is achieved and is increased
while (15) is not affected.
Furthermore, the optimal and must be such

that . If there is satisfying
, we can reduce to make

without affecting and then we can increase some or all of
such that the equality in (14) is achieved and is increased

while (15) is not affected.
Applying the KKT conditions [14] to the problem (26), we

have

(29)

(30)

where is the -th multiplier due to (27), is the multiplier
due to (14), and is the multiplier due to (15). The discussions
shown previously imply that and .
The following proposition gives the solution to the above

KKT conditions for fixed .

Proposition 2: For fixed , the solution to the KKT con-
ditions of Problem (26) with is given by

,

(31)

,

(32)

where ; is given by

(33)
and is chosen such that (14) is satisfied with equality.
Please refer to Appendix B for the proof.
By Proposition 2, for fixed , the solution of the

KKT conditions only depends on the intermediate variable
. Hence, if the solution in Proposition 2 with

(i.e., ) satisfies the relay power constraint (15),
it is also the optimal solution for Problem (26) with .
Otherwise, we can use bisection search to find the such that
the solution in Proposition 2 satisfies (15) with equality and this
solution is optimal for Problem (26). Note that the probability
for is virtually zero. So, the last expressions
in (31) and (32) should be stable numerically.
From the above analysis, we obtain the following algorithm

which finds the exact solution to (26) with :

Algorithm 3

1) Initialize and .
2) Determine from (33) for all where .
3) Determine and by (31) and (32).
4) One step bisection:5 If the left side of (14) is smaller than
its right side, increase6 . If the opposite is true, decrease
. Go to step 3) until convergence.

5) If and (15) is satisfied, stop. Otherwise, go to the
next step.

6) One step bisection:7 If the left side of (15) is larger than its
right side, increase . If the opposite is true, decrease .
Go to step 2) until convergence.

5The lower bound of is obviously zero. An upper bound of for each
can be found by doubling its previous (nonzero) value each time initially as
is increased consecutively in the bisection search.
6In bisection, “increase a variable” means “increase the variable halfway

towards its nearest larger estimate obtained previously”, and “decrease a
variable” means “decrease the variable halfway towards its nearest smaller
estimate obtained previously”.
7An upper bound of can be found by doubling its previous (nonzero) value

each time initially as is increased consecutively in the bisection search.
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In our simulations, “convergence” means that the difference be-
tween the coefficients obtained in two consecutive iterations is
less than a pre-set threshold.

B. Using the cost

The cost function can be expressed as

(34)

Let and let be
the Hessian matrix of with respect to . Then, one can verify
that for any real vector ,

(35)

where we have applied and . Hence, is convex
with respect to . The KKT conditions of (25) with
include

(36)

(37)

where, as discussed previously, and . The fol-
lowing proposition gives the solution to the above KKT condi-
tions for fixed .
Proposition 3: For fixed , the solution to the KKT con-

ditions of Problem (26) with is given by

(38)

(39)

where , and is given
in (33).
Please refer to Appendix C for the proof.

Summarizing the above analysis, we have the following al-
gorithm for finding the exact solution to (25) with :

Algorithm 4

1) Initialize and .
2) Compute from (33) for all where . Compute

and by (38) and (39) for all .
3) One step bisection: if the left side of (14) is smaller than
its right side, decrease . If the opposite is true, increase
. Go to step 2) until convergence.

4) If and (15) is satisfied, stop. Otherwise, go to next
step.

5) One step bisection: If the left side of (15) is larger than its
right side, increase . If the opposite is true, decrease .
Go to step 2) until convergence.

C. Discussion of the Optimal Source Power Ratio

Some properties of the optimal source power ratio are
shown below.
• Conditions for non-zero source transmit power in the
relay phase: For any given , the optimal is given
in (33), which is larger than zero if . It follows
from the definition of , shown below (28), that
if and only if , , and .
If , it follows from (28) (i.e.,
subject to where is any amount of
power for the th subcarrier) that and
if , or otherwise and if .
It is obvious from the definitions of and that
if . But if , may not always be larger than
.

• Optimal under weak direct link channel gain :
If the direct link has an infinite attenuation (or weak in the
extreme), i.e., , then ,
and hence . In general, as the direct link becomes
weaker, should become smaller.

• Optimal under strong direct link channel gain :
if the direct link becomes relatively strong com-
pared to the relay links ( and ), then and
become more dominant than . In this case, becomes
either very large or very small depending on which of
and is larger than the other.

V. OVERALL ALGORITHM AND OPTIMALITY ANALYSIS

The overall algorithm (named Algorithm AO) for solving
Problem (13) is summarized below.

Algorithm AO

1) Use algorithm 1 (or algorithm 2) with a pre-select source
power to find a new set of relay power, then go to Step 2);

2) Use algorithm 3 (or algorithm 4) with newly updated relay
power to find a new set of source power, then go to Step 3);

3) Use algorithm 1 (or algorithm 2) with newly updated
source power to find a new set of relay power, then go to
Step 2) until converge, where .
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In general, the alternating optimization method may fail to lo-
cate the stationary points, not to mention the global convergence
to the optimal solution. However, since the constraint functions
in ((14)-(15)) are convex either for fixed or for fixed

, and Algorithm AO belongs to the nonlinear Gauss–Seidel
(GS) method [15] where the optimization vector is only parti-
tioned into two component vectors, it follows from [15] that Al-
gorithm AO converges to a stationary point of Problem (13) as
stated in the following theorem.
Theorem 1 (Local Convergence of Alg. AO): Any limit point

generated by Algorithm AO is a stationary
point of Problem (13).
In the following, we derive the asymptotically optimal solu-

tions respectively for large relay transmit power and large
source-relay channel gain . Based on this, we
show that the stationary point found by AlgorithmAO is asymp-
totically optimal for large or . Throughout this section, we
will explicitly express the cost as a function
of for clearness.

A. Asymptotically Optimal Solution for Large Relay Transmit
Power

First, we give an upper bound for the SNR and show that the
SNR upper bound can be approached as grows large.
Lemma 1: For fixed , the SNR on the -th

subcarrier is upper bounded by

Moreover, if we let

(40)

(41)

if

otherwise,
(42)

then the corresponding satisfies

for sufficiently large , where denotes the indi-

cation function such that if the event is true and
otherwise.

Please refer to Appendix D for the proof.
Using Lemma 1, we can obtain an asymptotically optimal so-

lution of Problem (13) for large by solving a convex opti-
mization problem as stated in the following theorem.
Theorem 2 (Asymptotically Optimal Solution For Large ):

Let denote the optimal solution of the following
convex optimization problem

(43)

where either or .

Obtain using ((40)–(42)) with replaced
by . Then for sufficiently large ,

is an asymptotically optimal solution of Problem (13),
i.e., satisfies the power constraints in
((14)–(15)) and

(44)

where is the optimal value of Problem (13).
Please refer to Appendix E for the proof.
Based on Theorem 2, we establish the asymptotic optimality

of Algorithm AO for large .
Theorem 3 (Asymptotic Optimality of Alg. AO for Large ):

Suppose that in Algorithm AO, the initial point is chosen such
that , if and

, otherwise. Then for sufficiently

large , any limit point generated by Al-
gorithm AO is an asymptotically optimal solution of Problem
(13), i.e.,

(45)

and satisfies the power constraints in ((14),
(15)).
Please refer to Appendix F for the proof.

B. Asymptotically Optimal Solution for Large Source-Relay
Channel Gain

We first give an upper bound for the SNR and show that the
SNR upper bound can be approached as grows large.
Lemma 2: For given non-negative , the SNR on

the -th subcarrier is upper bounded by
, where

and . Moreover, for sufficiently large and

given non-negative , if ,

and , then

Lemma 2 follows straightforward and the proof is omitted for
conciseness.
Using Lemma 2, we can obtain an asymptotically optimal so-

lution of Problem (13) for large by solving a convex opti-
mization problem as stated in the following theorem.
Theorem 4 (Asymptotically Optimal Solution for large ):

Let be an optimal solution of the following
convex optimization problem

(46)
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where either or .

Define

if

otherwise.

if

otherwise.

Then for sufficiently large , is an asymp-
totically optimal solution of Problem (13), i.e.,

(47)

and ,

.
Please refer to Appendix G for the proof.
Obviously, if we use the in Theorem 4 as ini-

tial point, the solution found by Algorithm
AO will be an asymptotically optimal solution of Problem (13),
i.e.,

(48)

VI. IMPLEMENTATION ISSUE AND SIMULATION RESULT

A. Implementation Issue

In a real system, the AO algorithm could be executed at the
source node. The global channel state information (CSI) must be
supplied to this node. In relay systems, the source-relay/source-
destination and relay-destination channels can be estimated di-
rectly at the destination node by utilizing pilot signals [16]. The
destination must then feedback the CSI to the source node.
• Complexity Analysis: Here, each of addition, subtraction,
multiplication and division is counted as one FLOP. The
operations for comparisons are neglected.
—Complexity of Algorithm 1: Step 1 requires FLOPs
(floating point operation), while Step 2 and 3 together
require FLOPs, where is the number of subcar-
rier. Then the complexity order of the overall bisection
search process is , where
is the length of the search range in Algorithm 1 and is
the tolerable error.

—Complexity of Algorithm 2: Step 1 requires ,
while step 2 requires , where the
additional FLOPs per subcarrier is introduced by
convex function . A different function may require
a different number of FLOPs in calculating ,
and . Given , the complexity order of the
overall bisection search process is upper-bounded by

—Complexity of Algorithm 3: Steps 1 through
3 require FLOPs. The search ranges for

and are denoted by and , respec-
tively. The complexity order is upper-bounded by

. The
complexity order increases logarithmically with and
.

—Complexity of Algorithm 4: Step 1 through 2 require
, where the additional FLOPs are intro-

duced by the convex function . Then, the complexity
order is upper-bounded by

(49)

—Overall Complexity of AlgorithmAO: With the above
analysis, one can obtain the total number of FLOPS per
iteration of the AO algorithm. Basically, the complexity
grows linearly with the number of carrier and logarith-
mically with precision requirement. The number of iter-
ations of the AO algorithm is difficult to quantify, which
depends on the stop criterion. In our simulation, the re-
quired number of iterations to achieve with

is about 2–4, where is the difference of
between two consecutive iterations.

B. Simulation Results

We have tested Algorithms 1–4 individually. They all con-
verged rapidly to the exact optimal solutions.
For problem (13) with , we apply Algorithms 1 and

3 alternately until convergence. For problem (13) with ,
we apply Algorithms 2 and 4 alternately until convergence. We
determine the convergence when both and satisfy

and where is the current
index of alternation. For all tested cases, the convergence was
reached within three to six alternations. The initialization of the
source power allocation was chosen to be uniform, i.e.,

.
The optimization of the permutation function is compu-

tationally costly. In our simulation, we have compared three
choices of : 1) , 2) is such that is aligned with

, and 3) is such that is aligned with . Two
sequences and are said to be aligned if the largest ele-
ment in is located at the same position as the largest element
in , the second largest element in is located at the same po-
sition as the second largest element in , and so on. We have
found that the third choice of always yields slightly better re-
sult than the first two. Also note that with the third choice of
, the overall relay channel gains defined by have
a larger dynamics than , which intuitively makes the
relay power scheduling more effective. In the following, we use
the third choice of .
We generated the channel parameters , and

as independent circular complex Gaussian random variables of
zero means. We choose and to have the variance
two, and to have the variance . When ,
the direct link has the same strength as the relay links. As
decreases from zero, the direct link weakens. The value of
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Fig. 4. Minimum subchannel capacity determined by Algorithms 1 and 3 (for
) with and . The scheme with free is based on

Algorithms 1 and 3 with no constraint on . The scheme with is based
on Algorithms 1 and 3 with .

Fig. 5. Distribution of the optimal determined by Algorithms 1 and 3
(for ) with and .

measures a relative (averaged) strength in dB of the direct link
over the relay links.
In Fig. 4, we show the minimum capacity among all sub-

channels versus . This capacity was averaged over ten in-
dependent channel realizations. For each channel realization
(of , and ), Algorithms 1 and 3 were used to
maximize (or minimize ). The re-
sulting is used to determine the minimum capacity
(in bits/s/Hz) by . We see a significant
gap of capacity between the case of free (optimal) and the
case of when the direct link is not much weaker than the
relay links. When the direct link becomes much weaker than the
relay links, the gap diminishes as expected.
The distribution of the optimal determined by Al-

gorithms 1 and 3 for a typical channel realization is shown in
Fig. 5. As predicted by the analysis shown in Section IV-C,
when the direct link becomes weaker ( smaller), approaches
to zero. And when the direct link becomes stronger ( larger),
is either very large or very small. For the plot, any value of

Fig. 6. Average subchannel capacity determined by Algorithms 2 and 4 (for
) with and . The scheme with free is that by

Algorithms 2 and 4 with no constraint on , the scheme with is that
by Algorithms 2 and 4 with , and the scheme in [1] is the WF-MCAF
method in [1] which ignores the direct link completely.

Fig. 7. Distribution of optimal determined by Algorithms 2 and 4 (for
) with and .

larger than 4 is set to 4, and any value of less
than 4 is set to 4.
Fig. 6 shows the averaged subchannel capacity determined

by Algorithms 2 and 4 versus . For each channel realization,
Algorithms 2 and 4 were used to minimize shown in (12).
The resulting was further averaged over ten independent
channel realizations and then plotted into this figure. Once
again, we see an important gap between the case of free (op-
timal) and the case of when the direct link is not
very weak.
The distribution of the optimal determined by Al-

gorithms 2 and 4 for a typical channel realization is shown
in Fig. 7. The general trends of the values of as in-
creases or decreases are consistent with the analysis shown in
Section IV-C.
Comparing the two costs and , or equivalently, com-

paring Figs. 4 and 5 versus Figs. 6 and 7, we see that allowing
to be nonzero is more important for than for , i.e., the

capacity gap for is larger than that for . It takes a much
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weaker direct link, for than for , that approaches to zero.
We also see that the distribution of becomes more binary for
than for as the direct link becomes stronger.

VII. CONCLUSION

We have studied a dual-phase power allocation problem for
a multicarrier relay system with direct link. We have developed
four efficient algorithms that yield the exact solutions to the four
corresponding optimization problems, including two that are not
convex. Unlike the previous works, we allow the source power
to be distributed in both phases for each carrier. Our analysis
and simulation show that this additional freedom is important
when the direct link is not too weak compared to the relay links.

APPENDIX

A. Proof of Proposition 1

1) It follows from and (18) that

when , and when . Also note
that the left-side function of the power constraint (17) is
a (finitely) weighted sum of . As a result, if there is a

, we can always increase and decrease a positive
without affecting the power constraint but decreasing

the cost . Therefore, the optimal for the cost must
be positive for all , and hence .

2) Since the optimal (also denoted by ) to Problem (16)
must fall in where is decreasing with , the
optimal must be such that either (17) holds with

or the equality in (17) holds with for at least
one .

3) It follows from (18) that

(50)

where both factors in the right-hand side are positive and
decreasing with . Since is a decreasing
convex function, is also positive and decreasing with

. For a given feasible , the corresponding
for each can be easily found by a bisection search based
on (22), the solution of which is denoted by .

B. Proof of Proposition 2

The constraint (15)may or may not be active (i.e., the equality
may or may not hold at the optimal solution). If the solution to
all the KKT conditions, except with , satisfies (15) with
equality, then is optimal. Otherwise, we need to have

.
Let and . Then, for each pair of
and , (29) and (30) become

(51)

(52)

Taking the ratio of the above two equations leads to a quadratic
equation in terms of , from which we have one unique (posi-
tive) solution in (33).
One can verify from (33) that is a monotonically in-

creasing function of , i.e., .

For any given in , we have from (28)
that and hence for each given
we can choose

(53)

to achieve .
The search for should be such that the equality in (14) is

satisfied. Obviously, the left side of (14) is also a monotonically
increasing function of subject to given .
If the inequality in (15) is satisfied by the optimal solution to

(26), is optimal. Otherwise, we must have . So,
we should start the search for from . The left side
of (15) is a decreasing function of subject to (33) and the
equality in (14).
The expression of in (33) is numerically unstable when
is small (especially since , and hence , for some can

be exactly zero). To solve the numerical problem, we need to
consider the case when is arbitrarily small. As , we
can use the Taylor series expansion of (33) and write that

(54)

and using this in (53) leads to (31) and (32).

C. Proof of Proposition 3

The (36) and (37) are equivalent to

(55)

(56)

which are virtually the same as (51) and (52).
Taking the ratio of (55) and (56) and solving the resulting

quadratic equation in terms of , we have the same solution as
shown in (33). Hence, for any given , we can find from
(33).
Since is monotonically increasing with , it

is also monotonically increasing with subject to
. Hence, if we are also given

(in addition to ), we can find from (56) a unique ,
and then the corresponding . Specifically, we recall

, and hence have from (56)
that .

Therefore,

(57)
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where is the inverse function of , and
.

It is clear from (57) that increase as decrease,
subject to any given . So, we can use the bisection search to
determine such that the equality in (14) holds.
The equality in (15) may or may not be satisfied by the op-

timal solution subject to (or equivalently ). If it is
satisfied, is optimal and no further search is needed. Oth-
erwise, we need to increase . Since increases with ,

the left side of (15) is monotonically decreasing with subject
to the equality in (14). Hence, we can use the bisection search
to find such that the equality in (15) is satisfied.
Similar to the discussions for (31) and (32), as , we

should apply (54) to (57), which yields

(58)
and

(59)

(57), (58) and (59) together conclude the proof.

D. Proof of Lemma 1

For fixed , we have
. Then for fixed , the SNR

upper bounded can be obtained by solving

(60)

It is easy to see that the optimal solution of (60) is given by
((40)–(41)) and the optimal value is . Substituting
((40)–(42)) into the SNR expression in (9), it can be verified
that .

E. Proof of Theorem 2

By Lemma 1, we have

(61)

(62)

From (62), we have

(63)

Then (44) follows immediately from (61) and (63). Finally,
using the definition of , it can be verified
that also satisfies the power constraints in
((14), (15)).

F. Proof of Theorem 3

Using the KKT condition in (22), it can be shown that for any
initial point that satisfies the condition in Theorem
3, the optimal obtained in step 1 of Algorithm AO satisfies

if , and
otherwise. Following similar analysis as in the proof of Lemma
1, it can be shown that

(64)

By Lemma 1, we have

(65)

For fixed , the optimal obtained in step 2 of
Algorithm AO satisfies

(66)

From ((64)–(66)), we have

, i.e., after the first iteration of Algorithm AO, the
solution is already asymptotically optimal for large . The rest
iterations will only decrease the cost function. This completes
the proof.

G. Proof of Theorem 4

Using Lemma 2 and the fact that the constraint
in (46) is a more relaxed relay power constraint compared to

the original one in (15), we have

(67)

Note that . Then it follows from Lemma 2,

and that

(68)
From (68), we have

(69)

Then (47) follows immediately from (67) and (69). Finally,
using , , and the

definition of , it can be verified that

satisfies

, .
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