
WS04 IEEE ICC 2022 5th Workshop on Integrating UAVs into 5G and Beyond 

Physical Layer Encryption for UAV-to-Ground 

Communications 

Ahmed Maksud and Yingbo Hua 

Department of Electrical and Computer Engineering 

University of California at Riverside 

Riverside, California, USA 

Emails: amaks002@ucr.edu and yhua@ee.ucr.edu 

Abstract—Ensuring secure and reliable wireless communica- 

tion is crucial for Unmanned Aerial Vehicle (UAV) applications. 

Most of the prior works on secure UAV-to-Ground (U2G) 

communications focus on trajectory and/or power optimization 
to ensure that the desired U2G channel is stronger than an 

eavesdropping channel. In this paper we propose a novel physical 
layer encryption method that performs symbol and/or constella- 

tion hiding for secure U2G communications. Unlike prior works 
on symbol and/or constellation hiding which aimed at specific 

detection algorithms by adversaries, our method exploits the 
secrecy inherent in the reciprocal channel between an UAV 
and a desired ground station (GS), and is hence in principle 
robust against any eavesdropping attack algorithms including 

deep machine learning. Given a pair of estimated reciprocal 
channel vectors (ERCVs) with a limited dimension at UAV and 

GS respectively, our method first uses a continuous encryption 
function (CEF) to transform the two ERCVs at UAV and 

GS respectively into two sequences of quasi-continuous pseudo- 
random numbers (QCPRNs) of any desired dimension. Robust 

to a range of statistical distributions of ERCVs, these QCPRNs 
follow approximately a known statistical distribution and hence 

can be further transformed into two sequences of uniformly dis- 
tributed (UD) QCPRNs. The UD-QCPRNs generated at UAV are 

superimposed by UAV in a modulo fashion onto its transmitted 
symbols, and the UD-QCPRNs generated at GS are used for 

decryption at GS. This paper also studies the impact of the 
difference between the two ERCVs along with other noises on 

the performance of the desired U2G channel. 
Index Terms—UAV communication, wireless network security, 

physical layer security, physical layer encryption 

I. INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) are expected to be 

widely deployed in near future for applications such as 

surveillance, transportation, mobile base stations and mobile 

relays [1]. UAV is often exposed in air, and in this case the 

information transmitted from UAV is particularly vulnerable 

to eavesdropping. To protect the information with information- 

theoretic secrecy against eavesdropper (Eve), there are two 

fundamental approaches. One is network layer security where 

a secret key must be pre-established between two legitimate 
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nodes (Alice and Bob) and this secret key can be then used 

to encrypt and decrypt a large volume of information to gain 

a computation-based secrecy (in addition to the information- 

theoretic secrecy from the secret key). The other approach is 

physical layer security where either a secret key is generated 

from correlated observations at Alice and Bob or secret 

information is directly transmitted from Alice to Bob. The 

direct transmission requires schemes to make the channel 

from Alice to Bob stronger than that from Alice to Eve, 

e.g., see [3] and [4] for UAV trajectory and/or resource 

allocation, [5] for beamforming, and [6] for using full-duplex 

radios. This requirement is often not possible especially for 

UAV-to-Ground (U2G) communications where Eves are often 

hidden and their capabilities are often unknown. And the 

range of current in-band full-duplex communication may not 

be sufficiently large. So, without a pre-established secret key 

between a legitimate pair of UAV (Alice) and GS (Bob), 

and without the knowledge of Eve’s capability, achieving an 

information-theoretic secrecy for U2G communications should 

exploit correlated observations that are available to the pair 

of UAV and GS but are independent of the observations by 

any Eve. In this paper, we will focus on the use of a pair of 

estimated reciprocal-channel vectors (ERCVs) obtained by the 

legitimate pair of UAV and GS respectively for secure U2G 

communications. 

Given two ERCVs at UAV and GS respectively, a central 

task of the traditional physical layer security approach would 

be to extract a pair of digital keys at UAV and GS respectively 

[7], [8], [9]. But in practice, much of the statistics of ERCVs 

is unknown, and hence reliable key generation directly from 

the two ERCVs remains a challenge. 

However, without an explicit key generation from ERCVs, 

we can still exploit the secrecy inherent in ERCVs via what is 

called physical layer encryption as first explored in [10] and 

[11]. A crucial tool for physical layer encryption is called con- 

tinuous encryption function (CEF) which is further developed 

in [12]. This paper shows how to apply a CEF developed in 

[12] to hide transmitted symbols and/or constellations, which 

consequently achieves a secure U2G communication. 

There have been many works on constellation detection, 

e.g., see [2] and [21]. More recently, many machine learning 

based methods have been developed for constellation detec- 

tion, e.g., see [22] and [23]. Furthermore, various methods 
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have also been developed to degrade the performances of 

constellation detection methods [16], [17], [18], [19], [20]. 

The constellation hiding method shown in this paper exploits 

an information-theoretic secrecy in ERCVs, which in principle 

prevents any method from successfully detecting the hidden 

constellation. Hence, our work also differs from [24] where 

a hidden constellation can be detected by adversary, and 

differs from [25] where the hidden information is detectable 

by adversary. 

The remainder of the paper is organized as follows. Sec- 

tion II describes the wireless channel model used in this 

paper. See Fig. 1. Section III provides a brief introduction 

of CEF. Section IV-A describes the proposed method for 

symbol and/or constellation hiding, and highlights the main 

issues to be discussed in the rest of the paper. In Section 

IV-B, we discuss how to generate uniformly distributed quasi- 

continuous pseudo-random numbers (UD-QCPRNs) from the 

output of a CEF, and evaluate the noise propagation in the 

encryption/decryption process. In section V, we evaluate the 

impact of the encryption noise on the performance of the 

legitimate receiver. A quantized scheme is shown in section 

VI, which is an efficient form of the proposed method. Section 

VII concludes the paper. 

    

   
Ground 

Station 

——>__(UV2G LoS channel 

— —— > _U2G NLOS channel 

——@——S ‘Eavesdropper channel 

Fig. 1. Illustration of wireless channel model for U2G communication with 

eavesdropper present. 

II. WIRELESS CHANNEL MODEL 

Following [14], we model the reciprocal complex channel 

gain at time n (within a time window in the order of millisec- 

onds) between UAV and GS as: 

In = \/ Bodn °" hn () 

where (J is the large-scale average channel power gain at unit 

distance, d,, is the U2G distance, a, is the path loss exponent, 

and hy is the small-scale fading coefficient. We assume that 

Alice and Bob can each get an estimate of g, by a standard 

channel estimation technique. Furthermore, we assume that d,, 

and a, do not change significantly within the time window of 

interest and hence Alice and Bob can also each get an estimate 

of h,, by scaling the estimate of g,,. For U2G communication, 

hy in general consists of two components: line-of-sight (LoS) 

[13] and non-line-of-sight (NLoS), which is often called Rician 

fading. In this case, h,, can be modelled as: 

1 
in (2) 

K , 
hn = nr CIO 

VK+41° ‘VK 41 

where 6, for all n are i.i.d. and uniformly distributed over 

(0, 27], denoted by 2/(0, 277); and €,, for all n are i.i.d. complex 
Gaussian random variables with zero mean and unit variance, 

denoted by CN’ (0, 1). It follows that E{|h,,|?} = Land Zhy, ~ 
U(0, 27). Here K,, is the Rician factor [15]. For all simulations 

in this paper, we will treat ,, as invariant to n and set K,, = 

27dB. Eve is assumed to be located anywhere on the ground 

and can have LoS with the UAV but less likely have LoS with 

GS due to terrain and obstacles as illustrated in fig. 1. If Eve 

knows the exact distance between the antenna of UAV and 

the antenna of GS at all times, she could try to estimate 6, 

for all n. But due to limited precision in estimated distance 

relative to wavelength, it is reasonable to assume that Eve is 

completely blind to @,,. Because of multipath fading, Eve is 

also completely blind to €,, (except for its distribution). The 

estimates of h,, by Alice and Bob may be denoted by hn,4 

and h,,,g respectively. Then the amount of secrecy available 

from hn, A and hn, p is the mutual information between them. 

For notational convenience and with no serious loss of 

generality, we will from now on let hy,4 = hy and hn.p = 

  

hi, = hn + Wn where wp ~ CN (0, sx) For a time 

window of N/2 samples, we also let h = [hy, ha,--: shal" 

and h’ = [h{,h4,--- ,h’y]?. (Note that the index n in hy 
can be also used to represent the index of any spatial or 

frequency subchannel between UAV and GS.) Furthermore, 

we define the ERCVs obtained by Alice and Bob as x = 

[Re{h}?,Im{h™}]? and x’ = [Refh’$?,Tmf{h’}7]". It 

follows that x’ = x + w, where wz ~ N(O, sn Ly) and 
SNR; = SNR» 

III. BRIEF INTRODUCTION OF CEF 

Let x be an N x 1 real-valued zero-mean random vector, 

denoted by x € R*!. A CEF of x is an easy-to-compute 

(i.e., with a polynomial complexity in terms of N)) map from 

x to a sequence of real-valued numbers y;,%2,---, which is 

expressed as yx = f(x) € R for all k > 1. A good CEF 
as defined in [12] is such that (1) it is hard (i.e., with an 

exponential complexity in terms of NV’) to compute x from yx 

with all & > 1; (2) there is no such k-invariant function of 

x, Le., g(x), that ““y; is an easy-to-compute function of g(x), 
and g(x) is also easy to compute from yz with all k > 1”; 
(3) the signal-to-noise ratio (SNR) in yz, caused by a noise in 

x is not much smaller than the SNR in x; and (4) y, for all 

k > 1 can only have very weak correlations when the entries 

of a random x have zero correlations. 

The first two properties of a good CEF can be empirically 

established although a formal proof seems hard if not impos- 

sible. The third property of a good CEF can be measured 

by comparison to a unitary random projection (URP), ie., 

g, = Rex € R*! where Ry for each index k is a 
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pseudo random unitary matrix (governed by a seed). The noise 

sensitivity of URP is considered to be optimal since the norm 

of the perturbation vector in g;, for each k is always the same 

as the norm of the corresponding perturbation vector in x. 

But URP is not hard to invert (if the seed is known or Rx 

for any k is known). The fourth property of a good CEF can 

be verified via simulations. For URP, there is in general a 

significant correlation between g, and g; for k 4 1 (subject 

to fixed R;, and R,) even if the correlation matrix of x is the 

identity matrix Iy. 

A good CEF is proposed in [12], which is based on 

components of singular value decomposition (SVD) of a 

pseudo-randomly modulated matrix of x. Specifically, let 

Qk € RN*N for all pairs of k and | be pseudo-random 
unitary matrices; Myx = [Qx1x, -:- Qx,wx] where each 

column of M;x is a pseudo-random rotation of x; and 

then Uz. = arg maxXyjulj—1 ul My.xMzU, which is the 

principal left singular vector of M;,x. Finally, choose y; to 

be a particular (e.g. the first) element of ux, for each of k > 1. 

The prior research [12] supports that the above defined CEF, 

called SVD-CEF, appears to possess the previously discussed 

properties. For this reason, we can view SVD-CEF as a 

scrambler that turns a finite number of real-valued random 

numbers in x into an infinite number of QCPRNs y;, for & > 1. 

Unlike any of the conventional PRN generators, here y; is a 

continuous function of x. 

To illustrate the correlations among the output values of 

URP-CEF and SVD-CEF, we now consider the input vector x 

described in section II. The normalized correlation matrix of 

this x is C, = 2€,{xx"} = Ly. For URP-SVD, we know that 

Cz, = 2€x{g.e7 } = Iy for each k. But the corresponding 

cross-correlation matrix Cg, .¢, = 2Ex{gng? } for k 4 lis not 
small in general. The absolute values of all entries in Cg, ¢, 
for a random realization of R;, and R, are illustrated in the 

left of Fig. 2 where N = 16. For SVD-CEF, we let y = 

[y1,--* ; yn]. Since ux,» has the norm one, the variance of y, 

can be shown to be x. Then the normalized correlation matrix 

of y is Cy = NE, {yy7 }. The absolute values of all entries 
of Cy for a random realization of {Q,7;k = 1,---,N;l = 

1,--- ,N} with N = 16 are illustrated in the right of Fig. 2. In 

both cases, the average is done over 10° random realizations 

of x. Here we see near-zero correlations among entries of y. 

Since Q;,; are randomly chosen, the observed phenomenon 

of near-zero correlations holds for all y, with k > 1. 
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Fig. 2. Correlation “heatmaps” of the output of URP-CEF and the output of 

SVD-CEF. 

We will next apply SVD-CEF in a physical layer encryption 

method where the seed used to construct the pseudo-random 

unitary matrices, Q;,; for all k > 1 and1 <1 < N, is assumed 

to be a public information known to Alice, Bob and Eve. 

IV. A PHYSICAL LAYER ENCRYPTION METHOD 

Assume that Alice wants to transmit a sequence of K 

complex information symbols to Bob. For many commonly 

used QAM symbol constellations, the real and imaginary parts 

of the sequence can be each treated as a sequence of M- 

PAM (real-valued) symbols. Hence we can focus on how to 

encrypt a sequence of IM-PAM symbols, denoted by s, with 

k =1,2,--- ,K. Also assume that the constellation of s; for 

each k is a discrete set of M points equally spaced within 

[—1,1]. The spacing between two adjacent points is denoted 

by A= +. 1.€., MAN 4) 4 9) |(s\? _ 3? 

where 3 and sV ) 

)modulo—[-1,1] | =A 

are two distinct realizations of s;. 

A. Basic Approach 

Let z, be a function of y, such that z, is uniformly 

distributed over [—1, 1]. Then an encrypted symbol for trans- 

mission from Alice is defined as 8; = (8% +2k)modulo—[—1,1]- 
Clearly, given any sz, $, has the same uniform distribution 

as z,. In this case, no method is able to detect s; based on 

5, alone. This is because I(s,;8,) = h(8%) — h(Sxlse) = 
h(&%) — h(8%) = 0 where I(-;-) denotes mutual information 
and h(-) denotes the differential entropy. 

At Bob, the received symbol corresponding to §% can be 

written as 8), = 8, +m where nx is the (normalized) channel 

noise with its power inversely proportional to the transmission 

power from Alice. Since Bob has x’ = x+w,,, he can compute 

y;, from x’ in the same way as Alice computes y, from x. 
Furthermore, Bob can compute z;, from yj, in the same way 

as Alice computes z, from yx. Let Zp = 2% + wz, with wz, 

being the encryption noise. 

To decrypt $), (at the physical layer), Bob computes sj), = 

(Si, _ 2, modulo—[-1,1] = (sk + nk — Wz, )modulo—[-1,1]* As 

long as the channel-and-encryption combined noise nz — wz, 

is small compared to A, Bob can detect the information in s/, 

with a small error rate. 

In theory, z, for each k can have a continuous uniform 

distribution over [—1,1]. But in practice, there is a limited 
numerical resolution and hence z, for each k should be 

discrete over [—1, 1]. But the constellation size of z;, must 

be larger than J in order to hide the constellation size of sx. 

If z, and s; have the same constellation size /, the symbol 

5% 1s still protected. The power of &, is generally larger than 

that of s;. But the difference approaches zero quickly as MZ 

increases. 

In the next subsection, we will discuss how to generate the 

UD-QCPRNs z;, from the output y, of CEF and discuss the 

impact of the noise in x’ on the noise in z,. In section V, the 

impact of the combined noise n;, — wz, on the performance 

at Bob is investigated via simulation. 
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B. Obtaining UD-QCPRNs from SVD-CEF 

It is shown in [12] that if x consists of i.i.d. Gaussian 

random variables, then the probability density function (PDF) 

of each element of the output of SVD-CEF can be approx- 

imated by fy) = Cn(1 — y2) where -1 < y < 1 

and Cy = yeaa We have also found that if x is the 

N x 1 random vector constructed as discussed in section I, 

the output of SVD-CEF can be also approximated by the same 

PDF. In fact, the PDF of the output of SVD-CEF is rather 

robust to a range of variations in the statistics of x. This 

is because of the construction of M;,x from x where each 

vector Q;,;x tends to be Gaussian distributed for a moderate 

to large N, which follows the well-known large-sample theory 

of Gaussian random variables. 

To obtain z, with the uniform distribution U(—4, 4), it 
can be shown that z, = Tsv p(y) with 

  

¥ B by 
Tsv oy) = / Bfy(u)du — > = BCy | cos’ ~? 6d0 

(3) 

where 6, = sin7! y and 

Oy n—-1 : 

| cos” 6dé = cos Fy sin Oy 

0 n 

—] Oy 

* | cos”? dé. (4) 
rk) 

Note that for Alice, we have a process of x > yx — Zk, 

and for Bob, we have a similar process of x’ > yj, > Zz}. 
To quantify the relationship between the noise in x’ and 

the noise in “ew we can evaluate )z,2 = "x,yNy,z With zy = 

SNR» SNRy 
SNR, SNR. 

ratio in x’, and SNR, and SNR, are defined similarly. 

1) Nu,yi Assume x! = x+w, with w, ~ N(0,02,Iy). 
Then for a given x and a given set of Q;,;, we can write 

    and 1,,2 = . Here, SNR; is the signal to noise 

      

   
  SNR (fed } ) ny = we  | Kfwe Wel 5S) 5 

leu ~ \I SNR, ( zfs) ©) 
Ewa {iw yll2} 

Since the output of SVD-CEF is invariant to the scaling of 

x, we can choose ||x||? = 1, ||x’||? = 1, |ly,||? = 1 and 
lly;.||? = 1. Hence, 

Ew {[lwyl?} ey = 4) 6 
te = VIE. Alief ©) 

which is equivalent to 7%, in [12]. 

A closed form of 7, for small o2, is available in [12], 

which is dependent on x and Q;,;. For a given x, an upper 

bound of 7,,. can be set by pruning Q;,;. In Table I, the 

percentages of pseudo-randomly generated Q;,; that satisfy 

the condition 7,4 < jr for SVD-CEF are shown. To maintain 

a high percentage, we will choose 77 = 2.5 in the remainder 

of the paper. Note that the choices of Q;,; are publicly known 

and can be locally generated from a common seed. 

TABLE I 

EMPIRICALLY OBTAINED % OF Qx 1 THAT SATISFIES Nx,y <7 FOR 

DIFFERENT NV. 

  
    
  
  

[a> [08 [ 1 [ 15 [ 2. [ 25 ] 
N=16 | 4.62 | 21.98 | 63.25 | 80.78 | 88.26 
N=32 | 0.29 | 6.75 | 4846 | 73.10 | 84.03 
N=64 | 0.007 | 0.84 | 31.61 | 63.32 | 78.35                 

2) Ny,z: Next we evaluate 7, . for small a2, . We first 1 recall 

(ignoring k for convenience) z = i ’ Bfy(u)du — 2 and 

2! =f", Bfy(u)du— 2 where y! = ytwy and 2! = z+u,z. 
It follows that for small o?,, 

wz = 2 —2=Tsvo(y') —Tsvo(y) © Buy fy(y) 
and hence 

Ey {wi} = Ey { Bw, f(y) } 
1 

= Bu? [ fy (u)°du 
-1 

= Bw, Dy (8) 

r(4)3r(s4= var(wz 
where Dy = ae re Hence, rei = = BPD. 

Furthermore, since var(y) = + and var(z) = 4, then 
  

_ SNR, var(y) var (wz) 
Ny,z = ae = a ye x var(wy) 

invariant to B but dependent on NV. 

The above theoretical results of 7, , are compared with sim- 
ulation/empirical results (with B = 2) in Fig. 3. In simulation, 

we used 10° realizations of y, = /1—ayx, + /aw, with 
random y;, and wy, satisfying ||yz|| = 1, ||wx|| = 1 and 
w; yr = 0. We see that the two results are reasonably close to 

each other. We also see that for a large N (such as N > 16), 

Ny,z 18 Close to one and hence 7,,, is dominated by 7z,y. 

Which implies that for SVD-CEF, 2,2 = Ne,yNy,z © Ney < 

NT 

  = (22s which is 

  
  

  

  

        0 
N 

— Theoretical Val. --- Empirical Val. —-- ny2=1 ref. line     0.0   
10 20 30 40 50 60 

N 

Fig. 3. The plot of ny, vs N (both theoretical and empirical) for a = 107°. 

V. SIMULATION 

In this section, we show simulation results of the proposed 

method. These results illustrate the effects of the channel 
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noise and the encryption noise on the performance at Bob. 

As explained before, we can focus on M/-PAM only. 

Dist. of Sk 

Fig. 4. Distributions of s;, $, and si, where SNR, = 20dB and 1/o2 = 

37dB 

  

  

. . oy 
Dist. of 5%, Dist. of Sh 

We assume that the channel noise nz is i.i.d. Gaussian 

N (0,02). The variance of the encryption noise w,, can be 

‘zz where + is the variance of z;. In Fig. 4, expressed as 3 SNR, 5 

we illustrate the distributions of the ideal 4-PAM symbol s, 

(for which the width of each vertical bar is exaggerated for 

visual purpose), the encrypted symbol §;, and the decrypted 

symbol s‘,. It is clear that the distribution of §;, does not reveal 

any information about s;, and its constellation. 

Once Bob has obtained enough samples of s/,, he can use 

any of the existing constellation detection methods [2], [21], 

[22], [23] to detect M (Gf unknown to Bob) and then detect 

the secret symbols using a minimum distance method. The 

simulation results of the symbol error rates (SER) at Bob under 

different sets of parameters are illustrated in Figs 5, 6 and 7. 

  

  

  

      

10°4 

10714 

M& yp-2f | || a eA iG 107 
WY 

-3 4 10 

—e M= 16 
—*- M=32 

10~* = ---. 0,01 SER 

0 70 80 

3 (dB) 

Fig. 5. Plot of SER vs =~ with no encryption noise for different 

In the simulation it is assumed that Bob has correctly 

detected the constellation size M from the samples of s}. 

For each chosen set of NV, M, o2 and SNR,,, 10° random 

realizations of z,, 2}, Sk, 5%; 8%, 8, were generated and the 

corresponding SER was obtained for each set of parameters. 

We see that the performance of SVD-CEF degrades slightly as 

N increases, but empirical study [12] shows that increasing NV 

exponentially increases hardness to attack by the adversaries. 

This is a trade-off in choosing CEF between the performance 

at Bob and the hardness to attack by adversaries. It is impor- 

tant to stress here that even if an adversary with unlimited 

computing power can attack the computation-based secrecy 

due to SVD-CEF, there is no way for the adversary to attack 

the information-theoretic secrecy due to the ERCVs x and x’ 

used in the physical layer encryption method. 
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Fig. 6. Plot of SER vs SNRz with negligible (i.e., 02 

for N = 16 and different 

= 0) channel noise 
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Fig. 7. Plot of SER vs SNRz. The value of o2 for each choice of M is such 

that SER is 1% in Fig. 5 

VI. FURTHER DISCUSSIONS 

Computing a continuous (subject to machine precision) 

uniform random variable z, from the output y, of CEF 

may be costly in practice. To reduce the complexity, we 

can compute a discrete uniform random number Z;, from yz, 

which is equivalent to a uniform quantization of z, or a non- 

uniform equiprobable quantization of y;,. The latter is feasible 

to implement. The procedures of encryption and decryption at 

Alice and Bob respectively are given below. The effect on Eve 

is discussed at the end. 

1) Encryption at Alice: Assume L = 2', M’ = 2” and 
M = 2™ where | > m’ > m are integers. 

Alice constructs the true-symbol constellation Sy = 

{+4 (2i+1);i =0,--- , 4 —1}, and also in a similar way 
constructs the encrypted-symbol constellation Syy:. 

For a known PDF fy(y) of y,, Alice chooses an equiprob- 
able over-quantizer of y;, with the corresponding set of L + 1 

thresholds 77, = {t;;i = 0,--- , L} where fs fy(y)dy =+ 
Note that 7z, also corresponds to a set Zr of L intervals. Each 

Yr is quantized into | bits by Ty. The first m’ bits of each yz, 

are used to determine an integer Z, € Syq’, and the last 1—m/ 

bits of each y, are transmitted to Bob. 

For each true symbol s, € Sj, Alice chooses a Zz, € 

Sy and transmits the encrypted symbol &, = (s, + 
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2k )modulo—[—1,1] to Bob. 

2) Decryption at Bob: Assume that Bob knows I, m’ and 

Ty as they are in the public domain. For each k, Bob knows 

Vp = Ye + Wy, and also 8), = 8% + ny = 8% + Zh +k. 
From the last / — m’ bits (received from Alice) of each yz, 

Bob determines a corresponding set of 2” intervals TC Lr. 

Then each yj, is quantized into an integer Z;, of m’ bits by Zj, 
according to minimum distance. 

The decrypted symbol by Bob is s, = (8 — 

2, modulo—[—1,1] = (sk +N +24 - 2, modulo—[—1,1] . Provided 

that n;,+Z,—2Z}, is small, Bob is able to detect the constellation 

of s; and also the symbol sx. 

We have observed from simulation that with 1 — m’ > 3, 

the quantized scheme shown above has virtually the same 

performance as the continuous scheme. 

3) Effect on Eve: All transmitted s; from Alice are now 

assumed to be received by Eve without noise. It can be shown 

that for VM’ = 21M where 7 is any positive integer, 5, € Sy. 

Without a good estimate of x, Eve is unable to determine a 

good estimate of Z,. In this case, Eve is unable to decrypt 

her received §,. Even if Eve’s random guess of s;, for k = 

1,--- ,£ with any L > 1 is correct and hence Eve knows Z, 

for k = 1,--- ,L, there is currently no known method with 

a polynomial complexity in terms of N that Eve can use to 

compute x [12] and hence Eve may still be unable to compute 

2, for k > L in order to decrypt 5, for k > L. 

VII. CONCLUSION 

In this paper, we have developed a novel physical layer 

encryption method for symbol and/or constellation hiding 

against any possible detection methods by adversaries. Our 

method exploits the information-theoretic secrecy in the re- 

ciprocal channel between Alice and Bob and at the same time 

adds a computation-based secrecy to protect any amount of 

information against adversaries. Our method uses a singular 

value decomposition based SVD-CEF that transforms a secret 

real-valued vector of limited dimension into an unlimited- 

length sequence of QCPRNs. We have found that the statistics 

of these QCPRNs is rather robust against a range of variations 

of the statistics of the ERCVs by Alice and Bob. This is 

an important advantage for many environments where the 

true statistics of ERCVs is unknown. The proposed method 

exploits the stable statistics of these QCPRNs to obtain uni- 

formly distributed UD-QCPRNs, which are then superimposed 

onto transmitted information symbols for encryption, and/or 

onto received encrypted-symbols for decryption. The effect 

of various noises on the performance at Bob has also been 

investigated. 
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