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Optimal Pilots for Anti-Eavesdropping
Channel Estimation

Qiping Zhu

Abstract—Anti-eavesdropping channel estimation (ANECE) is
a method that uses specially designed pilot signals to allow two or
more full-duplex radio devices each with one or more antennas
to estimate their channel state information (CSI) consistently and
at the same time prevent eavesdropper (Eve) with any number of
antennas from obtaining its CSI consistently. This paper presents
optimal designs of the pilots for ANECE based on two criteria. The
first is the mean squared error (MSE) of channel estimation for
the users, and the second is the mutual information (MI) between
the pilot-driven signals observed by the users. Closed-form optimal
pilots are shown under the sum-MSE and sum-MI criteria subject
to a symmetric and isotropic condition. Algorithms for computing
the optimal pilots are shown for general cases. Fairness issues for
three or more users are discussed. The performances of different
designs are compared.

Index Terms—Physical layer security, covert eavesdropper,
channel estimation, pilot design, secret information transmission,
secret key generation.

I. INTRODUCTION

NTI-EAVESDROPPING channel estimation (ANECE)

[1] is a method that allows two or more legitimate full-
duplex radio devices (also called users subsequently) to obtain
consistent' estimates of their receive channel state information
(CSI) and at the same time prevents eavesdropper (Eve) from
obtaining any consistent estimate of its CSI. ANECE is use-
ful for the users to maintain a positive secrecy in subsequent
transmission of information to each other even if Eve has an
unlimited number of antennas. ANECE is unique from many
physical layer security approaches as recently surveyed in [2]
and [3] where Eve’s CSI is assumed to be known not only to Eve
but also to users. Only an “innocent” Eve would allow users to
know its CSI. A “covert” Eve would never do that. ANECE can
handle not only covert Eve but also “colluding” Eves who could
form a large antenna array.
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At the core of ANECE is the choice of the pilot signals that
the full-duplex users transmit to each other simultaneously. As
shown in [1], the pilots from all users are such that they excite
all dimensions of the CSI for each user but leave a subspace of
Eve’s CSI unexcited. In other words, the composite pilot matrix
for any user has a full rank that allows consistent estimation of
the CSI at this user, but the composite pilot matrix for Eve has a
rank deficiency that makes a subspace of Eve’s CSIunobservable
by Eve. While sharing a similar goal, ANECE differs from the
discriminatory channel estimation (DCE) approach shown in
[4]-[6] in a number of ways. DCE is designed for user A to: a)
assist user B to estimate its CSI, and b) degrade Eve’s ability to
do the same. DCE requires user A to have more antennas than
user B so that artificial noise can be added to the pilot transmitted
by user A. In contrast, ANECE does not have the requirement
of different numbers of antennas at different users, but ANECE
requires the full-duplex capability of users. Also unlike DCE,
ANECE is applicable to two or more users simultaneously and
allows each and every user to obtain their CSI while keeping
Eve blind to its CSI with respect to any user.

When Eve’s CSI is unknown to Eve due to use of ANECE,
the secrecy capacity of the network against eavesdropping is
substantially improved subject to a limited time of information
transmission per coherence period as shown in [1] and [7].

In the literature, there are other works on channel estimation
for secret information transmission such as [8]-[10]. But they
are not very relevant to this paper as the interest here is to prevent
Eve from obtaining its CSI with respect to every transmitter of
secret information.

The primary focus of this paper is the optimal design of the
pilots for ANECE. We will consider two criteria for optimality:
1) minimizing the mean squared error (MSE) of the estimated
channel matrix by each user, and 2) maximizing the mutual
information (MI) between the received signals by users. The
first criterion is useful since the MSE of channel estimation
for a user affects the quality of the subsequent operation of
information detection by the user. The second criterion is also
useful since the MI between two signals observed by two users
is the capacity of secret key generation based on the two signals
if Eve’s knowledge of its CSI is independent of the (reciprocal)
CSI between the two users [11]-[14].

The novelty of this paper includes: 1) the discovery of closed-
form optimal pilots under the sum-MSE and sum-MI criteria
and a symmetric and isotropic condition where each user has
the same number of antennas, the same noise variance, the same
transmit power and the independent and identically distributed
(i.i.d.) channel coefficients; and 2) the development of algo-
rithms for computing the (approximately) optimal pilots for any
other choices of the above parameters. The closed-form optimal
pilots and the computed optimal pilots are compared with each
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Legitimate user

Eavesdropper

Fig. 1. Multiple full-duplex multi-antenna users perform ANECE against
covert eavesdropper (Eve) with any number of antennas.

other and with the previous choice shown in [1]. The algorithm
for minimum sum-MSE is an extension of [15] from two users
to more than two users. The algorithm for maximum sum-MI
extends [16] from two users to more than two users.

The rest of the paper is organized as follows. In Section II, we
briefly review ANECE and formulate the pilot design problem.
A new insight into the effect of ANECE on Eve’s performance
are included in Appendix A. In Section III, the optimal pilots
are designed to minimize the sum of MSE for all users, and a
discussion for better fairness of MSE among three or more users
is also provided. In Section IV, the optimal pilots are designed
to achieve the maximum sum of the pair-wise MI between the
signals observed by all users, and a discussion for better fairness
of MI among three or more users is also provided. In Section V,
simulation results are shown to compare several types of optimal
pilots based on different criteria.

Notations: Vectors and matrices are represented by bold lower
case and bold upper case respectively. The n x n identity matrix
is I, or simply I when its dimension is obvious. The trace,
expectation, differential, natural logarithm, base-2 logarithm,
determinant, transpose, conjugate, conjugated transpose and
Kronecker product are respectively T'r, £, 9, In, log,, | - |, 7,
*, H and ®. The n x m real field and n x m complex field are
R™ ™ and C™*"™. All other notations are defined in the context.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider a wireless network of M
legitimate full-duplex multi-antenna users and a passive multi-
antenna eavesdropper (Eve). Let IV; be the number of antennas
on user ¢, and N be the number of antennas on Eve. According
to ANECE [1], all users concurrently transmit their pilots p; (k)
over a time window k = 1, --- | K with ¢ corresponding to user
1. These pilots are designed in such a way (see below) that all
users can reliably estimate their own channel matrices but Eve
cannot.

Specifically, let the signal received by user ¢ over a time
window of K sampling intervalsbe Y; € CVi*¥ ‘and the signal
received by Eve in this window be Y € CV&*K Ttfollows that

M
1 T
Y; =) R’H,;R7P; +N;,

(la)
J#i
M
r
Yg=>» HgRP;+Ng (1b)
=1
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where P; = [p;(1),---
1 T
sent by user 4, R7H,; ;R ? is the overall channel matrix from

,pi(K)] € CNi*K is the pilot matrix
T

T
user j to user i, and Hg ;R? is the overall channel matrix
from user 7 to Eve. Here, we have assumed that all channels
between users are reciprocal, the transmit/receive correlation
matrix of user i is denoted by R; € C+*N: and the elements in
H, ; € CNo*Ni are independent and identical distributed (i.i.d.)

T

with CA/(0, 1) entries. We also assume that |Hp ;R? P;|| for
T

any 4 is not negligible compared to [|[Hp ;R ? P;|| with j # i.

We will write R; = Rl-% Rl-% which is of full rank and known to
all users and Eve. We assume that Hg ; € CV=*Ni for any j
is independent of H; ,,, for any i and m. Finally, N; € CNi*K
includes all residual self-interference at user ¢ and consists of
iid. CN(0,02) entries, and Ng € CVo*K consists of i.i.d.
CN(0,0%) entries.

Now define Ny =YY N;,, P=[P], .-, PL|T ¢
CNrxK Py e CNT=NxK 35 P without P;, R =
diag[Ry, - ,Ry] € CNox* Nt R(i) € CWr=Ni)x(Np=Ni)
astithoutRi,I:I(q;) € CNix(N1=Ni) a4 the horizontal stack of
Hiyj for all j # 4, and I:IE = [HE',L ce 7HE,JW] € CNexNr
Alsolet P; be the transmit power by user ¢ and Pr = Zfﬁ , Pibe
the total power by all users. It follows that Tr(P;PH) < K P;.
Then (1) can be rewritten as

1 _ _ I _
Yi=RIHHR; P + N, (2a)

Yy =HzRZP + Ng. (2b)

For ANECE [1], we need to choose the (publicly known)
pilots such that rank(P(i)) = Nr — N;(i.e.,allrows of P ;) for
every i are linearly independent) and rank(P) =7 < Ny — 1
(i.e., all rows of P are not linearly independent). It is easy to
verify from (2) that the first rank constraint allows each user
to obtain a consistent estimate of its channel matrix while the
second rank constraint creates a subspace of Eve’s channel

matrix for which there is no consistent estimation.lNote thqgt
since ?(i) has a full row rank, user ¢ can estimate R? I:I(i)f{f)

1
consistently. And since P has a left null subspace, Eve cannot
obtain a consistent estimate of HgyRZ. In Appendix A, the
MMSE of Eve’s CSI by Eve subjectto rank(P) =r < Ny — 1
is further discussed.

In the rest of this paper, we will focus on the optimal designs
of the pilots subject to the rank conditions required for ANECE.
We will consider two design criteria: one is based on the MSE
of users‘ channel estimation, and the other is based on the
MI between users’ observations. A discussion of maximum
likelihood (ML) channel estimation is included in the end of
the next section.

III. PrLOT DESIGNS BASED ON MSE

Define S; as the IN; x N selection matrix such that S,P =
P;,and S(;) asthe (N7 — N;) x Np matrix which is the vertical

stack of S; for all j # 4. Note that R(%f’(i) = S(i)f{gf’. Also
using vece(XYZ) = (Z7 @ X)vec(Y), (2a) becomes
yi = G/'h; +n; 3)
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whereyz = vec(Y ).h; = vec(H;),
(SyR *P*9R, % )-
LetKyy =& {xyH } be the correlation matrix between two

ranflom vectors x and y, and Kx = K x. The MMSE estimate
of h; by user i is

n; = vec(N;)and G; =

h, = Ki . K)lvi=Gi(GI'Gi+ o) 'yi. (4
Define Ah; = h; — fll Then the MSE of ﬁi is
MSE; = Tr(£{Ah;Ah}"}) = Tr(Ky, - Ky, , Ky 'K, ;)
=Tr (I-Gi(GI'G; +o71) 'G]T)

1 -1
Tr<<I — G GH> ) (5)
UZ

where the last equality is based on the well known matrix inverse
lemma.
Now we consider the following criterion for pilot design:

Z MSE;

st. Tr(P,PTY<KP;,i=1,...,

mln Juy =

M,
rank(P) =r (6)

where NI - Nmin S r S NT — 1 with Nmin = mini N,L'.
Since R is known and nonsingular, we can apply the following
change of parameters:
R%P* =FV 7

where V € C™X is any semi-unitary matrix satisfying
VVH =1, and F € CN7*" is now what we need to design.
Namely,

P=R ZF'V* (8)
which meets the rank constraint as long as F has a full column
rank. To further simplify (6), we use the eigenvalue decomposi-
tion (EVD):

R, = U;A, UY 9)
where AZ‘ = diag{jxm, . ;\i,Ni} with Zl 5\“ = N;,. The di-
agonal elements in A; are in descending order. From (9), we

1 ~ ~ 1
have R? = U,A7.
With (7) and (9), the cost function in (6) becomes

M
JM = ZTT <|:I
i=1

where we have used Tr(I+X®Y]™!)
X]~1), and hence (6) becomes

1. S -1
+;(Ai®s(,;)FFHs};))] > (10)
=Tr(I+Y®
min Jy,

F

st. Tr(S;R2FFIR2ST) < KP,i=1,....,M (11)

where S;R-* FF¥R 287 = P;PT.
The problem (11) is non-convex in general. We will next treat
it in three separate situations. We will first present a general
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algorithm for M > 2, then a specialized (efficient) algorithm
for M = 2, and finally closed-form solutions of the optimal
pilots under the case of M >2, N; =N, P, =P, 0? = o>
and R; = Iy. The invariance of the above parameters to i
is called a symmetric condition, and R; = Iy is an isotropic
condition.

A. General Algorithm for M > 2

To solve the problem (11) with M > 2, we can apply the
logarithmic barrier method [17]. With the barrier coefficient ¢,
we define

M
g1 (F) =tJy + Y Bpi(F) (12)
i=1
where
Bpi(F) = —In(¢p,(F)) (13)
and ¢p,;(F) = KP, — Tr(S;R-ZFFYR 2S7). Then, (11)

is approximated by

min ¢ (F). (14)
F

The gradient of a real-valued function f(X) with respect to a

complex matrix X is denoted and defined as V f (X)) = % =

8#;88 +3 6<‘EX§ One can verify that Vg; (F) = tVJy (F) +
S M VBpi(F) where
M N; 5\
_ il =
VIu(F)=-23 > “5S,
i=11=1 1
5 -2
<I + Of_gs(i)FF S! )> SoF,  (15)
o Ta AT
¥p,i(F)

Algorithm 1 shown in the table solves (14) using gradient
descent where F is initially set to be vVDQ; € CN7*" Q, is the
N7 x Ny discrete Fourier transform (DFT) matrix without the
last (N — 7) columns and D = diag{d,1%, ,...,dn1%, } €
RNT*N7 is a positive definite matrix for power control. This
initialization is based on the pilots proposed in [1].

Remark 1: If there is a strong channel correlation (i.e., one
of R; has a high condition number) and Pr is not suffi-
ciently large, Algorithm 1 may converge to a solution where
rank(P;y) < Nr — N; for some i such situation also happens
in solving (25) and (44) with the proposed methods). This is an
undesirable situation which should and can be avoided by either
increasing Pr or reducing the “active” number N; of antennas
at user 7. The latter choice would reduce the condition number
of Ri.

Remark 2: The problem in (11) is meaningful as long as the
channel conditions for all users are comparable. The result from
(11) is perfectly fair for two users since (11) with M =2 is
equivalent to two separate problems for individual users (as
shown in next section). But to achieve a better fairness in
all situations for three or more users, one may consider the
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Algorithm 1: Solving (14) With Increasing .
Input:

rR,N;,0;, P;, T,fori =1,..., M;

Accuracy thresholds: €1, €2, N,.

Initialization: ¢ > 0, u > 1, and FO = \/ﬁQt.

1: repeat
2: p=0;
3: repeat
4: Compute the derivatives %ﬂr))
5: Choose step size v(P) via backtracking line
search [17].
6: Update F»*+1) = F®) 7(p)vgl(1_?(p))‘
7: p=p+l.
8: wntil |[Vgy(F®) - Vg (FP V)| <egorp> N,
9: FO =F®) = pt.
10: until 2 < ¢
11: return F(®)

following problem:
min €,
e,F

1 - S -1
5.t TT([I+2(A¢®S(1-)FFHS%;))} )gs,
0;

Tr(S; R ZFFIR 38T) < KP,i=1,...,M. (17)

The constraints in (17) are non-convex. To solve (17), we can
define the following logarithm barrier function

M M

gLF(E,F) :t5+ZBP,i(F)+ZBMSE,1'(5,F) (18)
1=1 i=1
where
Buyse,i(F) = —In(¢umsei(e, F)) (19)
and Vuse,i(e, F)=e—Tr(I+ %(Al ®

S(i)Ff‘HSZ))]*l). Then (17) can be approximated by
min g1, (e, F). (20)
e, F
To solve (20), the gradient descent method can be used and all
required derivatives can be easily derived based on (15) and
(16). However, the gradient search of (20) is sensitive to the
choices of initial points. In the simulation, we choose FO —
vVDQ,,, where Q,,, is given by Theorem 1. We also choose
£ = max, {MSE'”’} where MSE\”) is the corresponding MSE
from F(), The algorithm to solve (20) is similar to Algorithm
1 and the details of the algorithm are omitted due to space
limitation.

B. Special Algorithm for M = 2

When M = 2, we can develop an efficient algorithm with
guaranteed global optimality. This algorithm has a simple con-
nection with that in [15] as shown next.

Denote the two users by the indices ¢ = 1 and ¢ = 2. Now
the cost function is Jy given by (10) with M = 2. Notice that

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

S(l)f‘ = S,F € CN>*" and 9(2)F =S,F € CN'*" which do
not have any shared entry. Let us now use the following singular
value decompositions (SVDs) to reparameterize F:

Si)F = UA VY,
o 2D
S)F = U A VY

where [J1 c CNlXNl, Al c Rle'r’ Vl c C'I”Xr’ U2 c

CN2xNa A, € RV2XT and V4 € C™*7. All of these matri-
ces need to be optimized as they all affect the pilots. With
r > max{Ny, Na}, we denote the singular value matrices in
(21) as A1 = [diag{/\Ll, ey )\1_’1\/1}, Ole(rle)} and Ag =
[diag{A2,1,- .., A2,N, }, On,x(r—nN,)] Where the diagonal ele-
ments in each matrix are in descending order. Using (8) and
(21), we have

P =R 2[(UA VT (UyA, VT HV, (22)
Let A? = diag{)\il, cee A%,Nl} and A2 =
diag{)31,...,\2x,}. Also let C;=A; A} and
C, = A;Ag. Then one can verify that J5 becomes
1 - -
Jg = TT((I + ?(Al X CQA.2)71)
1
1 - -
+ Ir((I+ (A CiA)) ) (23)
2

which is invariant to Uy, V1, Uy and V5. Only C; and C,
remain to be optimized as far as the cost function is concerned.
For the power constraints in (11), we see that for: = 1, 2,

Tr(PPH) = Tr(A; ' U;,A2UT) > Tr(A; ' A2) = Tr(C;)
(24)
where the equality in “>" holds when U; = I, [18, H.1.h].
Therefore, both the cost and the power constraints are opti-
mized by choosing U; and V; with ¢ = 1,2 to be the identity
matrices. So, (11) becomes

min Jo
C,,Co

S.t. T’I’(Cl) < KPPy, TT(CQ) < KP, (25)

where J, is shown in (23) Here C; and C, are completely
decoupled from each other. Each of the two decoupled problems
can be solved by following [15], [19]. It is obvious that if Ai
is proportional to the identity matrix, so is the optimal C; with
1=1,2.

C. Closed-Form Solution

For M > 2, we now consider the (previously mentioned)
symmetric and isotropic case, i.e., N; =N, P, =P, af =
0% and R; = Iy. Furthermore, we consider 7 = (M — 1)N
which yields the maximal dimensional of the subspace of
Eve’s CSI that is not identifiable by Eve. Then from (10),

Jyu=NSM Tr((1+ %S(i)FFHSE))’l). Also the power
constraints become T (S;FF#ST) < KP, i =1,..., M.The

corresponding Lagrangian function is

M
L=Jyu+ ZMi(TT(SiFFHSiT) — KP)

i=1

(26)
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and the KKT conditions [17] are

oL  OJu

M
— =42 STS,F =0,
oF ~ oF ;" i 0

Tr(S;FFIST) < KPi=1,....M

)

KP)=0,u;>0,i=1,..., M.
27)

It is shown below that a set of (equally optimal) solutions to (27)
are given by the NM x N M discrete Fourier transform (DFT)
matrix Q with any N equally spaced columns removed.

Theorem 1: Let Qbe suchthatits (I + 1, k + 1)thelementis
(Q)l+1,k+1 = ’LUK?M with wy s = 677‘2‘"%, 0<I<NM —
land 0 <k < NM — 1. Let Q,, consist of N equally spaced
columns of Q as follows:

Qm -
1 1 e 1
m m-+M m+(N—-1)M
W N wM}L\f wMN( :
m(NM-1 m+M)(NM-1 mA(N—1)M)(NM-1
w]L[(N )w§\4N ) )_“wng( )M)( )
_ (28)
Also let Q,,, be Q without the columns in Q,,,. Then, a solution
to (27)is F = %Qm where m can be any integer in
[0, M —1].
Proof: See Appendix B |

For M = 2, the theorem yields P, = S;F*V* that satisfies
P,PH = %IN where ¢ = 1,2 (easy to verify). These pilots
are known to be globally optimal. For M > 3, our numerical
simulations using the previously developed algorithm did not
yield any result better than that from Theorem 1 subject to the
conditions in the theorem.

1) For Optimal ML Channel Estimation: The ML estimate
of h; is h; yr, = (G;G)"1G,y, and its covariance matrix

H 1
is Cyarr = 02(G,GH) 1 = 02(8 FFIST @ REFRE)!
We can design the optimal pilots by minimizing Jas a7, =
Zﬁ1 Tr(C;,m1) subject to the same power constraints as
before.

IfN; =N,P,=P,0? =0?R; =Iyandr = (M — 1)N,
one can verify that Jys ps7, equals Jys as o2 becomes small or
equivalently K P becomes large. Hence, the optimal pilots from

Theorem 1 also apply here (which can also be proved directly
by following a similar procedure used for Theorem 1).

IV. PILOT DESIGNS BASED ON MI

Given Y; at user ¢ for all ¢ as shown in (2a), every pair of
users can follow a secret key generation protocol [11]-[14]
to produce a (shared) secret key. This secret key can be a
useful by-product of ANECE which was originally designed
to protect the information directly transmitted between users
[1]. If Y g received by Eve as shown in (2b) or equivalently the
Eve’s channel matrix H, is independent of all channel matrices
between users, the capacity of the secret key (in bits per channel
coherence period) achievable between user ¢ and user 7 is known
[12, Th. 4.1] to be I(Y;;Y;) which is the mutual information
between Y; and Y. So, it is also meaningful to design the

2633
optimal pilots as follows:
M-1
max Iy = Z Z (YY)
=1 j=i+1
st. Tr(P,PTY<KP,i=1,..., M,
rank(P) =r, (29)

with Ny — Nyin <7 < Np — 1. Like (6), the above problem is
also non-convex. We will treat it next in three separate situations
as before.

A. General Algorithm for M > 2

From (1a), we can write

(30)
M 1 _
YT, Zi#j(Rj @ PTRzS)h, ; + np
where y; = vec(Y;), yr; = vec(Y] ), Hi; =HT,, h;; =

vec(H; ;), n; = vec(N;) and np; = vec(N] ). Clearly we
have I(Yl, Y ) = I(yu yT,;)

Recall G = (SHR7P* @R, % ). Also define Gr; =
- H
(R2 ®S;R?P*),G;; = (S,RZP*®@R;? )and Gr; =
(R} > ©SRYP ). From (30) , one can verify that
Ky, =01+ GG, (31)
Ky, , =01+ GG, (32)
Ky, yr, = GI;G1 i, 33)
Kyr,y. = G7;,Giy. (34)
Also note
I(yi;yr,) = h(yi) + h(yr,;) — h(yiyT,5)
= 1Og2 |KY1' =+ 10g2 ‘KyT,j| - 10g2 |K{yi,yT,j}‘
= - 10g2 |I - K;ql"] KYT,j;)'i K;,}Kyi,yT,j |
(35a)
= — 10g2 |I — (0‘]21 + G%jGT}j)_lGrZI{j}iGi}j
(o714 GI'Gy) "G/ Gr il (35b)
where
Ky, yr,) = { v Yoy (36)
{y ,yT’J} KYT,iji KYT,j

and the last equality in (35a) is based on the fact
thatHYH Z”—|X\|z YHX Y| = |Z|[X - YZ'YH|
with invertible X and Z.
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From (30), we can express the MMSE estimates of h; ; by
users ¢ and j, respectively, as

hiji = Kn,, y.K;lyi = Gi;(0]1+ GI'G:) 'y,

hij; =Kn,,y. ,Kyr y7; (37

= GTJ'J(O’JZI + Gqf{jGT,j)ilyTyj.

The following lemma is a generalization of a SISO result shown
in [20]. It also complements the fact that I(y;;yr ;) equals to
the mutual information between the ML estimates of h; ; by
users ¢ and j [13].

Lemma 1: For each pair of 7 and j, if S; RZP* ., S;
R;, R; have all full row ranks (Wthh requires

max{N;, N;}), then we have I(y;;yr ;) = I(h,N, hzm)~
Proof: With the stated conditions, we have Kfuj =
Gi;(c 1+ GEG,)'GE, K; =Grp;i(071+

" - ©,5° hy; ;
G7,;Gr;)'GY ;i and K, =Gy, (0T +

R? P,
K>

ij,1 h”]

GHG,) 'GH Gr, (02T + Gl Gr,) 'GH . Also,
ij)hhlm =Ky, 7Kf17” Then
I(hiji;hyj )
=—log, [I-K! Ky g Kib Ky
= —logy I-Kj = Ky |
= —logy I - G ;(c71+ G/'G;) "G/ ;Gr,;
(01 + GE,Gr) "Gl = I(yiiyr;) (38)

where the last equation follows from (35b) using log, |I —
XY| =log, I - YX]. o

Define Fi,j = Giyj(O'iQI -+ GzHGl)ilG{:IJ and FT,j,i =
Grj.i(071+ ng GTJ)_lG%j’i. Also using (7) and (9), one
can verify that

Ty = (S;F @ AZ)(021+ FHSE S F @ A,) !
(FYST @A), (39)
Try. = (A! ©S;F)(0?1+ A, o FUST S, F)~!
(A @ F7ST). (40)

The rank constraint on P is satisfied by using F defined in
(7). With (39) and (40), we have

M-1 M
_ Z Z logo I—T; ;L1 ;|

41
i=1 j=i+1
and (29) becomes
max Iy
F
st. Tr(S; R 2FFAR 38T) < KP,i=1,..., M. (42)

To solve (42) by using the logarithmic barrier method, we let

M
92(F) = —tIy + Z Bp,i(F)

i=1

(43)
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where t is the barrier coefficient and Bp Z( ) is shown in (13).
Then we can solve (42) by solving the following (with an
increasing t):

min - go(F). (44)
The algorithm to solve (44) is similar to Algorithm 1 and hence
omitted here. The way to find the gradient of go(F') is shown in
Appendix C.

Remark 3: For M = 2, the previous method is perfectly fair.
For a better fairness of MI for all pairs among three or more
users, we can consider the following problem

min €,
e,F

st. Tr(SiR 2FFHR :ST) < KP,i=1,..., M,
L ;Tr ;.| <eV{ij} (45)

I'; ;T'r ;.| is the mutual information for the

logy [T —

where — log, [T —
user pair {i,5}.

The constraints in (45) are non-convex. To solve this problem
using the logarithm barrier method, we define

M
92,7 (&, F)—t€+ZBP1 +Z ZBM“»EF
=1 i=1 j=i+1
- (46)
where Barr (e, F) = —In(e —log, I—T; ;1 ;;|). Then
(45) can be approximated by
min g r (e, F) 47)

67

which can be solved by gradient descent. This algorithm is
similar to Algorithm 1. But for initialization, we will use F(®) =
vDQ,, and £ = = maxy; j){logy [T — I‘(O)I‘g))JJ} All re-
quired derivatives can be easily obtained using results in Ap-
pendix C. The details are omitted.

B. Special Algorithm for M = 2

For M = 2, the problem is similar to one addressed in [16]
where an algorithm was developed and its local optimality is
stated there. In this following, we effectively readdress the
same problem but show some new insights. One of them is the
establishment of optimality of two matrices heuristically chosen
in [16]. Furthermore, we will present an asymptotical analysis to
show the globally optimal solution in high or low power region.

For M = 2, we know S(l = S5 and S (2) = S;. Using (21),
(39) and (40), we have

| S
= ($:F @ A7) (0?1 + FFST, S F @ Ay) | (FST @ A7)

— (Us@T)(As @A) (0T + A2 @ A,) !

(A} @ AD)(UY o 1), (48)

Lo

— (Af © S1F)(031 + Ay 0 FH¥ST, S F)

— 12 U)(A] ®A)(031+As @ ATA,) !
C(Al @ AT)I2 UM

~ 1 _
(A2 @ FHST)

(49)
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It is obvious that both I =I(y1;yrz2) = —logy|I—
'y oTr21| and Tr(P,PH) are invariant to V; in (21)
where ¢ = 1,2. We can set V; = I,.. Now we reformulate (42)
to

max I
U;,Uz,A1,A2

st.Tr(A] UL A2UH) < KPy, Tr(A, U,A2UH) < K P,
Ay -0, Ay > 0. (50)

In (50), we have introduced the positive definite constraints on
A; and A5. The reasons are: 1) the optimal U; and Us subject
to those positive definite constraints are the identity matrices
(which is shown next); 2) those constraints barely change the
solution from (42) in terms of the objective function and the
power constraints; and 3) with those constraints each user is
able to have consistent estimate of its channel.

With A; > 0 and Ay > 0, (49) and (48) become I'; 5 =
(I+ 03 (UA3UT @ A)) ™)™t and Trop = T+ 03 (Ae®
U, A2UH)~1)~1 and then the cost function in (50) becomes

I, =log, |T+ 02(Ay ® ﬁlAfﬁ{{rw
+logy [T+ 07 (UsASUL @ Ay) 7Y
—log, |(I+03(A2 ® U;ATUT) )

I+ 01 (UoAUF @ Ay)7) — 1| (51a)

= logy |01 + Ay ® A2| +log, |02T + A2 @ A,

—log, |02021 + 02 Ay ® U A2UH 4 62U, A2UY @ A4
(51b)

=logy |021 + Ay @ A2| +log, |02+ A2 @ A4

—logy |02021 4+ 02Ay ® A2 + 02U(A2 @ A,) U
(51c)

where U 2 U, ® U, Here, (5la) is due to —log, |I —
A 'B!| =log, |A| + log, |B| — log, |AB — I|,and (51b) is
due to log, [T+ A~!| = log, [T + A| — log, |A|. Then the op-
timal U; and U, that maximize (51) are given by

. 2 2
{U1,0pt, Uz,0pt} = arg min log, |ojo31
U,,U,

+ 0f Ay @ AT + 03 U(A] @ AU,

According to [21], we have:

Lemma 2: Given Hermitian matrices A,C € C™*" and
B, D € C™*™ with the corresponding diagonal eigenvalue ma-
trices Ag, Ac, Ap, Ay where the diagonal elements in each
diagonal matrix are in descending order. Then

|A®B+ CeD| > nglgl A @Ay + Ao p, ®Ag p, |, (53a)

1,472

(52)

|A® B+ CoD| < max [A; @ Ap + Acp, ®Aup,| (53b)
1,472

where the minimum or maximum are taken over all possible
(diagonal-wise) permutations { Py, P }.

From Lemma 2, we have:

Lemma 3: Let A, B, C, D be positive semi-definite Hermi-
tian matrices with the corresponding eigenvalue matrices A,
Ay, A, Ay each of descending diagonal elements. Then

A@B+COD|>[A, @Ay +A @ Adl,  (54)
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[A®B+CD|<|A, @Ay +A. @ Ay (54b)

where A, and A4 are respectively A. and A, but with reversed
order of diagonal elements.

Proof: See Appendix D |

Applying (54a) to (52) and from (24), we have:

Theorem 2: For M = 2, Uy oy = I and Uy ,p; = I are re-
spectively the globally optimal solutions of U; and U, (defined
in (21)) to the MI based problem (50).

The above choices of U; and Uy were also used in [16]
but they could not establish their optimality. Also note that the
optimality of the above choice of U; and U, was rather obvious
(see the discussions of (23) and (24)) for the MSE based problem
(6).

Let C; = AIIA% and Cy = A;lAg with their diagonal el-
ements denoted by ¢1; = )\il/)\u and cg ), = Ag’k/)\gyk. Then
(51c¢) becomes

I
= 10g2 |O’§I + AQ X ClA1| + 10g2 ‘O%I + CQA.Q X A1|
— log, [0103T + 07 Ay @ C1A1 + 03CaAs ® A4
No N N I
_ iZlOg ( (03 + Aadower)(0F + Ao rcar) )
- ) A2,k 172,
k=1 1=1 0103 + 0i A AokC1L1 + O3 AL A2 kCo
N» N
ENN " (e, can). (55)
k=1 =1

Let c; and ¢4 be the vectors of the diagonal elements from C;
and Cs respectively. Then (50) is transformed to

N2 Ny
max E E fl,k(cl,laCQ,k)
c1>0,c2>0
k=11=1

Ny Ny
st Y e <KPL Y con <KPy.  (56)
=1 k=1

Itis easy to verify that f(c1 s, ¢2, ) is a monotonically increasing
function of ¢;; and ¢y ;, respectively. So, the optimal solutions
must satisfy S ¢y, = K Py and .02, o = K Py

However, — f; 1 (c1,1, c2,5) is not always convex of ¢; ; and
¢2,- The Hessian matrix of — f; ;(c1,1, c2.1) is

~2 ~2 ~2 ~2
A, (905001 11) _U?USAl,l)\z,k

01,0,k Dk
<2 =2 ~2 =2 (57)
_gto3 A e AriAs 5 (91.6—0802.0.1)
F1k 021,601,k
h 01,06 = (03 + Aidocr)? 020 = (07 +
where 1,1,k = (03 1,1A2,kC1,1)"> 2,1,k = (07

and Ok = (003 + o\ Ao ker +

This matrix is positive semidefinite if

)\17£/\2,502,k)2

03NN kCo k)2
and only if ¢y jco > —5Z—. This means that when K Py

2A10A2 1

and K P, are large, the Hessian matrix of —f; x(c1,,¢2.%)
is typically positive definite and hence —f;x(ci,co) is
typically convex. In this high power case, the problem (56) is
convex and the globally optimal solution is available. In general,
—fik(c1,,c2,) is a convex function with respect to ¢1; and
o} individually. To obtain locally optimal solution to (56),
we can apply a two-phase iteration method, i.e., optimizing

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on May 05,2020 at 23:44:17 UTC from IEEE Xplore. Restrictions apply.



2636

Algorithm 2: Bisection Section Search to Solve (59).
Input:

A1, Ay, P, P2 K

Accuracy threshold €1, €s.

Initialization p = 0, c(p) Kljl 1n,, cgp) = KTI?INQ
1: repeat
2: Given c(p ), do bisection search of 1 and obtain

solution cgp ™ 0 meet the power constraint
\ ZlNzll c1, — KPi| < e1; Given cgpﬂ), do bisection
search of v and obtain solution cgp ™ o meet the
power constraint | ch\zl ca — KPs| < e.

3: p=p+1

4: untllH[c1 e -

1 —1
P eV < e

5: return {c{" c{"}

c; and c; alternately until convergence. The discussion of the
following two-phase algorithm is similar to that in [16].
In phase one, the Lagrangian function with respect to c; ; is

Ny Ny
L= firlers car) (ZC1l—KP1)+a ci.
k=11=1 =1
(58)

And the corresponding KKT conditions are

oL 1
86171 o

Ny Ny
Zl:l C1, S KP17 M (Zl—l C1,0 — KP]) = 07 1% Z 07

c1>0,aT01:O,a20

N2
n2 Z firlerp, can) — =0,
k=1

where
fl/,k(x’y) =
<2 ~2
U%/\l,l/\Q,ky

_ 2.kY_ _ (60)
(03 + M A2 k) (0203 4+ 02 A1 1 A2k + 05N 1 A2, 1Y)

In phase two, similar KKT conditions can be found. From
(59), we see that i is a monotonically decreasing function of
c1,;. Therefore, we can use a bisection search to solve (59).
An efficient algorithm to solve (56) is shown in Algorithm 2.
From (60), we know that f[,k(Cl,z, Ca2,5) 1s an increasing
function of 5\1,1 and a decreasing function of c;;. Given
any cg, the solution from (59) is cj, which must satisfy
Sz fir(€1 s c2,6) = p11n 2. Hence, one can verify that ¢} ; >
c’{)Hl. (If 1 < Ci,l+1 then pln2 = ZkNil fl’)k(c’{)l,cZk) >

N. * N. *
D k2 fl/,k(c1,z+1ac2,k) > k2 fl/+1,k(cl,l+17027k) = pin2,
which is not possible.) Similarly, ¢ > ¢ ;. ;. Therefore, the
diagonal elements of the optimal solutions of A? and A2 are
also in descending order respectively.

1) Asymptotic Analysis: The following theorem shows the
globally optimal solution to (29) in high or low power region.
These solutions are also given by Algorithm 2.
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Theorem 3: Let P = P, = P. If P is arbitrarily large, the
globally optimal ¢y ; and ¢z ;, (defined before (55)) are invariant
to [ and k& (which will be called “uniform power” allocation),
and a less correlated channel yields a higher secret key rate. If
P is arbitrarily small, the globally optimal ¢; ; and c3 , are all
arbitrarily small except for [ = k£ = 1, and a higher correlated
channel yields a higher secret key rate.

Proof: See Appendix E. |

C. Closed-Form Solution

For M > 2, we now consider the same symmetric and
isotropic case considered before. Without loss of generality, also
let o = 1. Then applying the matrix inverse lemma to (39) and
(40), we have

= (S;FFST ®1)

~ ((8,FFYST) (1 + 8, FFVST) ' (S, FFST)) @ 1,

(61)
I'r;;=(I®S,FF’S])
~ 1o ((SFFYS],) (I + S, FFST)) (S, FF”ST)).
(62)
Note that I(y;;yr,;) = —loge [I—T5,;r |, Iy =

Zf‘i{l ijvil 41 I(yi; y7,;) and the power and rank constraints

in (29) become Tr(S;FFHAST) < KP,i=1,...,M. Then
the Lagrangian function is now
M
L=1Iy-> p(Tr(S;FF7ST) - KP) (63)
i=1

and the KKT conditions are
oL

_ 0ly M
OF  OF _-ZE:i=1

Tr(S;FFISTY < KP i=1,...,

21;8TS,F = 0,

M,
wi(Tr(S;FFAST) — KP)=0, u; >0,i=1,..., M.
(64)

Theorem 4: The solutions to (27) as shown in Theorem 1 are
also solutions to (64).

Proof: See Appendix F. |

For M = 2, the pilots from this theorem satisfy P,PH =
%I ~ where ¢ = 1, 2, and these pilots are known to be globally
optimal for maximal MI [22] under the symmetric and isotropic
condition. Also note that for M > 3, our numerical simulations
did not yield any result better than that from Theorem 4 subject
to the symmetric and isotropic condition.

V. SIMULATION RESULTS
To show some simulation results, we let P, = P, 0 =1,
N,=4R,=R,r=(M-1)N and K > r. We choose the

channel correlation matrix to be such that (R); ; = RI""*l where
R € [0, 1] is the correlation coefficient.
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st T pinst (0.8)

'A']I./u’sl(o) - s

1074 £ |8 Tuuse opt(0.8) '~ N,

w9 Tare—opt(0.8) \‘\ EA’:,,‘
= o = Tarm1-opt(0.8) \\(\ "’*:;,;,
—A-];u,ms;:‘ opt(0) l\" ”'
=B = Jare—opt(0) }/ N

108 Lo Tnr1-opi(0) o

10 20 30 40 50 60 70
KP (dB)

Fig.2. Normalized MSE vs 10dB < K P < 70dB where M = 3.

A. Comparison of User’s Channel MSE

We first use the normalized MSE (per element of each channel
matrix):

Jur

IM = ST - 1)N?

(65)

to compare three different choices of pilots. Since [y, depends
on R, we will also write Jy; = Ja(R). More specifically,
we use Jar, v 5E—opt(R) for the optimal pilots computed from
algorithm 1, Jas c—opt (R) for the conditionally optimal pilots
from Theorem 1, Jas jirst(R) for the pilots proposed in [1]
(which coincides with that from Theorem 1 if N; = N = 1)
and T m1—opt (R) for the pilots that maximizes MI from (29).

For M = 3, Fig. 2 shows the normalized MSE vs 10dB <
KP <70dB. We see that for high KP all curves of the
normalized MSE in log-scale vs K P in dB become paral-
lel straight lines. This is expected since for large enough
K P the MSE is proportional to ﬁ. It is also expected that
I, SE—opt(0) = Tnte—opt (0) = Tar,m1—opt (0). But we see
that T amsE—opt (R), Tt c—opt(R) and Tas arr—opt(R) are
still rather close to each other even for R = 0.8 and they all are
substantially better than Ja, fmt(R) especially at high K P.
The above results suggest that the pilots from maximizing Ml is
a good sub-optimal solution for minimizing MSE.

Using  the  pilots  from  Theorem 1, we

know that InrsB-opt(0) = N M Tr((T+
0 S QmQriSH)) "), and hence one can verify
that

Kllgrilm ImmsE—opt(0) = 2N (1 - M) KP (66)

which is invariant to large M. But this limit increases linearly
as NV increases (because the per-antenna power is %).

Fig. 3 shows Inmseopt08) o A1 and N where KP =

I, MSE-opt (0)

60 dB. Note that Z2rarsE—ont08) ¢ invariant to large KP.
I, mMSE-opt(0)

From this and other similar plots that we have obtained but
not shown here, we have observed that Jas a5 £—opt (R) is also
invariant to large M but increases as IV increases. Furthermore,
Jm,msE—opt(R) increases as R increases within [0,1) in the
high power region.
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Fig. 4. Normalized MI 10dB < K P < 70dB with M = 3.

B. Comparison of User’s Channel MI

We also use the normalized MI (per pair and per degree-of-
freedom):

Iy
M(M-1)N?
2

I = (67)

to compare four different choices of pilots. Let Zy; = Zys(R).
We use Loz, v11—opt (R) for the pilots that maximizes the MI from
(29), Zas,c—opt (R) for the pilots from Theorem 4, Ty, firsi(R)
for the pilots initially suggested in [1] and Zas, ars 5—opt (R) for
the pilots that minimized MSE from (6).

For M =3, Fig. 4 shows Zp/(R) vs 10dB< KP <
70dB. Since Zp/(R) is a constant plus logy(KP) at
high KP, we see that all curves here become paral-
lel straight lines when KP is large. As expected, we
see that Zps ar7—opt (0) = Zas,c—opt (0) = Zas,m5E—ope (0). But
IMJ\lIfopt(R)’ I]W,cfopt(R)’ IM7MSE70pt(R> are still rather
close to each other even for R = 0.8 and they are all signif-
icantly better than Zy, firs¢(R). Such results suggest that the
pilots from minimizing MSE is a good sub-optimal solution for
maximizing MI.

One can verify by using (100) and I arr—ope(0) =
—N?logy(1 — T'?) that

. 1 1
KIIIDIEOOIM',MI—opt(O) = log, (W (1 + M — 1))

+ logy (K P) (68)

which is invariant to large M but decreases as N increases.
Flg 5 shows IM,JMIfopt (08) - IM,]WIfopt (O) vs M
and N where KP =60 dB. Note that Zys arr—opt(0.8) —
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E o max; Jii fair
=3 "." i T} fair
~ K e D2 T} MSE-opt
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1.6 ..'0,. e maxy; ) Ziijy, fair
e ming jy Z; ), fair
g 14+ . {13} £{ighf
<
m 4
iy
Fig. 6. Fairness ratios of Ty rair. J{iy,MSE-opts L{i,j},fairs

T4y, mI-opt  for  the  case {02 =1,02=06,02=0.1} vs

10dB < KP < 404dB.

I, Mm1-opt(0)isinvariant to large K P. From this and other sim-
ilar plots not shown here, we have observed that Zy; ar7—opt (R)
is also invariant to large M but decreases as N increases. And
Tam, mi-opt(R) decreases as R increases within [0,1) in the high
power region.

C. Comparison of User’s Channel Fairness

We now compare the results from (17) and (45) with those
based on the sum of MSE and the sum of MI. We consider
two situations with three users: 1) different noise variances
0? =1, 03 = 0.6, 03 = 0.1 with the same channel correlation
R; =0,Vi, and 2) different channel correlations R; = 0.8,
R = 0.4, R3 = 0 with the same noise variance 022 =1, Vi.
We use J(4), fair and Ty mrsE—opt to denote the normalized
MSE for the ith user based on (17) and (6) respectively, and use
ZLyi v, fair a0d I 5y ar7—ope to denote the normalized MI for the
distinct pair of users {4, j } based on (45) and (29) respectively.

In Fig. 6 and Fig. 7, we shows the “fairness ra-
max; Jiiy, MSE—opt max; Ty, fair méx{i,j}z{i,j},MI—opt and
ming Jiy MSE-opt * MG Ji), fair > Ming 5} Zi 5y, M1-opt

T

W vs 10dB < K P < 40dB for the situation of
i,7 i,] air

different noise variances and the situation of different channel

correlations respectively. As expected, results based on criteria
aimed for better fairness have smaller fairness ratios. But we
also see that as the power or K P increases, the “worst case”
based algorithms (i.e., (17) and (45)) and the “equally weighted”
algorithms (i.e., (6) and (29)) yield the same fairness ratios.

tios”
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Fig. 7. Fairness ratios of Ty rairs J{i},MSE-opts ZL{ij},fairs
Ziijy,MI—opt for the case {R; =0.8, Ro =04, R3 =0} vs

10dB < KP < 40dB.
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Fig.8. Averagenormalized MSEforEvevs10 dB < K P < 70 dBwith M =
3.
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A
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Fig.9. Normalized MSE for 10dB < K P < 30dB with M = 2.

D. Comparison of Eve’s Channel MSE

To illustrate the performance of the channel estimation by
Eve, we define the following normalized MSE

Eve _ i KAhE L) (69)
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Fig. 10. Normalized MI for 10dB < K P < 30dB with M = 2.

where T7(Kany ) is from (75) and we assume o gy ; = 1, Vi.
Also note that we can write J ]5”6 =J ]5”6 (R) where R is the

users’ channel correlation. We compare two different pilots: 1)
Tit515E-—opt (R) for the MSE based pilots from (6), and 2)

Tar'si1—opt (R) for the MI based pilots from (29).
In Fig. 8, we can see that both J{7%sp ., (R) and

J, 15”1\9/1 I—opt (I12) become saturated as K P increases, and both are
lower bounded by a significant constant. We also see that each
of Tgve, Mi—opt(R) and Jgve mSE—opt (R) is almost invariant
to R. These results indicate that both MSE and MI based designs
have a similar detrimental impact on Eve’s channel estimation.
The key reason for this is because of the reduced-rank constraint
on the pilots.

E. Two-User Case

For the two-user case, we use J2 pmsg(R) and Iy yse(R)
for the MSE based pilots from [15], J2 a7 (R) and Zo pr1(R)
for the MI based pilots from (50), and J2 ,,(R) and Z; ,,(R) for
the pil}({)t}g based on the “uniform power” allocation, i.e. ¢c; =
Coy = =1,

Frorrllv[19], [22], we know that Jo arse(0) = Jo,nr(0) =
J2,.(0) and I pr5£(0) = Zo a7 (0) = Zo,,,(0).

But for the correlated channels, the normalized MSE is shown
in Fig. 9, and the normalized MI is shown in Fig. 10. We see
that 75 arr(R) and Zy ar7(R) arerather close to J2 v sg(R) and
s mse(R) respectively. Also J2 arr(R) and Zy prr(R) overlap
with J2 ,,(R) and Z, ,,(R) respectively in the high power region.

Finally, to show the corresponding normalized MSE at Eve

for the two-user case, we use J v (R) for the pilots from

(50) and jzl?]\”fSE(R) for the pilots given by [15]. In Fig. 11,
we show J2V¢(R) vs 10dB < K P < 30dB. As expected, both

TLE (R) and T Vs i (R) getsaturated to a significant constant
as K P increases.

VI. CONCLUSION

We have developed algorithms for computing the optimal
pilots for ANECE under MSE and MI criteria. Each channel
matrix is modelled by a known correlation matrix and a matrix
of i.i.d. complex Gaussian entries. While the logarithmic-barrier
based gradient method was used to develop algorithms for more
than two users, more efficient algorithms were developed for two
users. Under a symmetric and isotropic condition, a closed-form
expression of the optimal pilots was shown (in Theorems 1 and 4)
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Fig. 11. Average normalized MSE for Eve vs 10dB < K P < 30dB with
M =2.

for both sum-MSE and sum-MI criteria. While this closed-form
expression coincides with that proposed in [1] for three or more
single-antenna users, this is a significant discovery for three or
more multi-antenna users. The general algorithms developed for
three or more multi-antenna users are also significant contribu-
tions beyond the prior works shown in [15] and [16].

We have shown that although the sum-MSE and sum-MI
criteria yield the same optimal pilots under the symmetric and
isotropic condition or under a lower transmit power condition,
they do not yield the same optimal pilots in general but each
criterion yields a good sub-optimal solution for the other. In
terms of computational complexity, the algorithms based on both
criteria are nearly the same.

We should note however that although the optimal pilots
developed in this paper meet the KKT conditions of non-convex
problems and there is no other known design that performs better,
the global optimality of the optimal pilots from this work is not
yet established for most situations of three or more users. One
strategy to prove the global optimality (if true) of the solutions in
Theorems 1 and 4 is to find all solutions to the KKT conditions
of the non-convex problems and rule out the possibility of better
solutions. This is a challenge not yet met.

APPENDIX
A. MMSE of Eve’s CSI by Eve

In this section, we show that Eve cannot obtain a consistent
estimate of its CSI by MMSE when users apply ANECE. To
simplify the analysis, we assume that the receive correlation
matrix at Eve is the identity matrix and Hg ; consists of i.i.d.
CN (0, U%J) entries. Corresponding to the pilots sent by all
users, the signal received by Eve as shown in (2b) can be
rewritten as

M
YE = Z(PTR%S? ®Dhg,; +ng

i=1

(70)

whereyp = vec(Yg),hg, = vec(Hg ;),ng = vec(Ng) and
S, € RVixN7 ig the selection matrix defined in Section III.

Since hg ; for all ¢ are independent of each other and hg ;
has the covariance matrix U%’il, Eve’s MMSE of hg ; is

hpi =K,y Ky ye = 0% (SIRTP* @ 1)

_ _ _ _ -1
(PTR%EER%P* ® I+I) VE 1)
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where X = diag{o} ,In,, ..., 0% 3N, }- Then we know

that the covariance matrix of hg ; is
b
Ki,, = Knp v Ky Kily oy =0 (SIRTPY®T)
_ _ _ _ -1 _
(PTRIZ,REP @I1+1) (PTRIST 01

=0} (85,783, ST @ 1) = 0% (S, 88T & 1)
(72)

(PTRz SLRYP + I) PTRIX:,

R . (73)
Let Hg ; = ivec(hg ;). It can be verified from (72) that the
kth and [th columns in H e, are correlated and the elements
in each column of I:IEZ are i.i.d. complex Gaussian. Because

rank(SER¥P*) = r < Ny, the (thin) SVD of £ ZR % P* can
be expressed as 22 RZP* = U[A 0, (k)] VI where U €
CNrxr A € R™" and V € CE*K Tt follows that
S s _
® =U[A O, (_|(diag(A”, 0 ) + )7
’ [A OT‘X(K—T)]TGH

= UA*(A®+1)10H, (74)

Itisknownthat Ahg ; = hg; — h E,; has the covariance matrix
-1
KAhE,i = KhE,i - KhE.'ivyEKYEKYEth,;L - KhE,i -
K; . Define the semi-unitary matrix U, € C Nz x(Nr—r)
hg;

such that U U = 0. It follows that
Tr(Kang,) =0, Tr (I—(S;®S] ®1))

))
=03, Tr ((Si(1—- ®)ST ® 1))

0% NgTr (s UI-A’(A +I)-1)UHSZ)

+ op NgTr ((S;U,UST). (75)
From the definition of A shown above, we know that each
element in A is propositional to the total transmit power Pr.
Therefore, the first term in (75) reduces to zero as Pr increases.
But the second term in (75) is independent of Pr. In general,
SiUn = 0 given r < Np, and hence Eve is unable to obtain a
consistent estimate of hg ; for any 4.

B. Proof of Theorem 1
From (28), the (I + 1,k + 1)th element of Q,,, QX is

N-1
(Qng)H—l.k-&-l = Z e’j%i(m)%ﬂ"m e —j2m (LRm
n=0
= 2 m 0, [l — k| #uN
ST = (76)
n=0 Ne 7“7 |l — k| =uvN

where v is an integer satisfying 0 < v < M — 1. From (76), we

know that there are only M non-zero elements on each column
. . ; 1

or row of Q,,, Q. More specifically, using wy; = e 72737, we

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

have
Qn Qs
—-m —(JW—l)m
1 Wiy M(M )
wh 1 W, m
N ']V[ M o1y
M 1)m M-2)m
wgw ) wgw "o 1
(77)
— Nana! @1y (78)
where q,, = [1,w}, . .. w(TY™T Since QEQ,, = 0, we

have (q,,q @ In)Q,, = 0.

For N; = N, we have S(;) = Iy ; @ Iy where Ip; Iy
without its ith row, and S; = e;; R1Iy,i=1,..., M where
e; is the M x 1 vector with its ¢th element equal to one.
Now assume F =,/a4Q,,. Then FF¥ =0,Q,,Qf =
ag(MNIyn — QnQl) = ag(MNIyy — Nanall ®
Iy) = ag(MNIy — Nq,,q?) ® Iy, and

(Tar-1yn + S FFIS() ™

= Lr—nyn + aa(Tai @ In)(NMT = Napma)y © Iy)
(L @ In)]

=((1+ NMoag)Ip—1yn—Nag (IM,iQmQﬁIﬂ,i) @Iy

-1
Na HyT
(IM_1 — mIM,iQquIM,i) ®1In

1+ NMOtd
(IMfl + JFVTQ&IM,iqugIZI\;[’i) ®@In
o 1+ NMay
(79)
where the last equality in (79) is based on (I + xy )1 =1 —

Xy and a1, Ty = M — 1.

Without loss of generality, we now set 0> = 1 since P can be
any positive number. Then from (15) and the conditions of the
theorem, we have

ﬁJM

727 _
T QNZS(L) (1+8( FFIST)) "SuF  (80)

=1

where, using (79), we have

Zs (Xas-w +SFEST)) 8,

Zi]\il S(i) ((IM71 + 15%5%IM,iquernI%\F/I,i)2 ® IN) S)

(1+ NMay)?
B SM S( ) ((Tnr-1 + Blariamaii Tl ;) © In) Sq)
(14+ NMag)?
B Sy (1 Iar + BIL; aridm a1, Tar) ® Iy
(14+ NMayg)?
(M =14 B)Iy + B(M = 2)amap) ® In
(14+ NMag)?

(81)
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2Nag(1+Nag)+N2a2(M-1)
(1+Nag)?

I,‘ZJ\}JIM,Z' = (M - 1)IM and

where § =
M
(81) hasused )~

> 0. The last equality in

M
S 1 hviamali I Iy =Ty + (M = 2)ama). (82)

i=1

Using (aq;, © IN)F = Q1 Q,, = 0, (80) and (81) yield

(M —14p) =
VJy = -2N———5F 83
M (1+ NMay)? (83)
M QT M
Also note that > .2, STS, = (3L, eel) @Iy =1y ®

Iy = I,/n. Therefore, the first KKT cond1t10n in (27) is
satisfied by p; = NV_L+5) >0, and all the other KKT

(I+NMag)?
conditions are satisfied by ag = m. Therefore, F =

A /N"’(TQW is a solution to (27).

C. The Gradient of go(F) in (43)

It follows from (43) that Vgo(F) =
3 i Viogy [T = Ti Tyl + 30, VBi(F).
Here, VB;(F) is given by (16). To show V log, [I — T'; ;T'r ; 4|,
we first consider

Vlogy 1T ;1
L -1
- In 20F Tr (]‘-‘T;j7i<1 - I‘le"Tm) ari’j)
~ agp I (T=ToyTr;0) 'Tiy0r5a)  (84)
where we have applied dln |X| = Tr(X 10X), 9(XY) =

X Y +X-90Y and Tr(XY) = Tr(YX).
Using the matrix inverse lemma, (39) can be rewritten as

1 o ~
T, = —2(s FFsT) @A; — 7((stFHs§;)) ® A;)
1 - - o .
- (I+ =S,FFYS]) @ M) (S FFYST) ® A,) (85)
UZ

where each factor or term is a function of FF¥, which
is useful to simplify the gradient expressions. For example,
with respect to the complex matrix X, VIr(AXX?B) =
2BAX. Let T;; be such a permutation matrix that
TY,[(S;FFAST) ® Aj|T;; = A; ® (S,FFIST). Also de-
fine fi,j = ngI‘T,j,i(I — I‘i,jI‘T,j,i)_lTi,j- Then, one can
verify (after a slightly tedious process) that the first term in (84)
can be written as (without the coefficient 1/ In 2):

LTT (T@jf‘@jngj@Fi)j) =92 (I‘l(_f)j)_r( )—l—l"( ) 1.‘(3)) P

OF J
(86)
where
N; 5\
il =
I =3 2SI ()8, 87)
1=1 &
N, 72 ~ -1
D VI N7 =
(1) il aT 1
i = 2 S (” 5 S FFS]; ))
=1 ¢ i
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S FFYS] (T ;)i8;, (88)
N; XB 5\ -1
(2) _ il QT ila HaT _ HeaT
s = 25050 <I+ o2 S FE Sm) S@FF"S;
=1 7 7
S\ -1
HGQT ila HaT
(T JiS; FFTS ) <I+ 52 S0 FF Su)) S,
(89)
N; 5\2
(3) _ il QT HGT
i =D i8] (T )8, FFIS,
=1 z
< -1
1428 FFIST | S
t 52 o0 W] So (90)

and (T; ;); is the Ith N; x N; diagonal block of T'; ;.

A similar procedure can be applied to obtain the correspond-
ing (explicit) expression of the second term in (84). The details
are omitted here.

D. Proof of Lemma 3

To prove (54a), we start with (53a) which can rewritten as
|A®B—|—C ®D| > mln H H al)\bk + Ae, Py i, Py k )

*k=11=1
oD

where ), ; is the [th diagonal element of A, and Ay 1, Ac.p, 1
and Ag p, r are defined similarly. Every permutation of the
diagonal elements of a diagonal matrix can be represented by a
sequence of pair-wise permutations (each involving two diago-
nal elements). To prove (54a), we only need to prove that (1) for
every pair of diagonal elements of A, (which are descending)
the corresponding pair of diagonal elements of A, p, must be
descending to minimize the right side of (91), and (2) for every
pair of A, (which are descending) the corresponding pair of
diagonal elements of A4 p, must be descending to minimize the
right side of (91). The proofs of the above two statements are
virtually the same. So, we only need to prove the first.

Let Ac.p, s and A p,; be two diagonal elements in A, p,
where s <[ and A. p, s > A p,; (descending). Let P| be
another permutation that differs from P; only for these two
elements, i.e., Ac p; s < Ac p (ascending), Ac pys = Ac Py
and A¢ p, 1 . To compare the two permutations P; and
Py, we only need to compare the two factors in (91) that are
affected from P; to Pj. The difference between the products of
the two factors is

(Aa,s A0k + Ao, Py sAd,Pok) (AaiNok + Ao Py i A, Py k)
= (Ma,s Aok + Ac,PpsAd Py k) (Aa,iAb b + Ac Pl NG Py k)

= )‘C,P{,s

= Aa,s bk Ac, Py IAd, Py k + Ac, Py s Ad, Py k Na,l b,k
— Aa,sAb, kA, PlIAd, Py k = Ac, Pl sAd, Py, kAa,i b,k
= Ad, Py kAo k(Aays — Aayt)(Ae, i — Aeyprys) < 0. (92)

This proves the first statement. The second statement can be
proved similarly. Hence (54a) is proven.
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The proof of (54b) can be done in a similar manner.

E. Proof of Theorem 3

Define ¢1; = ;—’IQ and ¢ ) = 5. Then, the power con-

straints become SV ¢y =1 and Zk:l ¢, = 1. And (55)
now becomes

Ny N;
=2 log,

k=11=1

( (03 + KPXi iAo it11) (0} + KPA o ko k) > 93)
O'%O’% + KPU%/\l,lAZ,k’él,l + Kpgg)\l,l/\lkélk ’

1) High Power Case: For large P, (93) can be approximated
as

Ny Np
DY

Na N oL

~ s KPX 1 A21C1 162
2 2
01C1, +05C2k

et k=1 1=1
C14C N2 Ny
1,102,k o
<U%01,z +U§c2’k> ZZ 2a( 1,1A2,k)

k=11=1
£ ¢1(éla 62) A17 AQ)

From (94), we know that the degrees of freedom per channel

(94)

realization is lim p_,«, M = N1N2

log, P
0241 _ ol _
Also, —35= = = > ((a TR Ep ) >0, which
means that qbl is a convex function of ¢;. Meanwhile, —P1

is a symmetric function of ¢;. Therefore, ¢ is a Schur-concave
function [18] of ¢;, and then we have ¢1(1N1,ég,5\1,5\2) >
¢1(€1, Ca, 5\1, :\2) with any ¢&; of descending elements. Similar
idea can be applied to show that (94) is also a Schur-concave
function of ¢5. Therefore, the optimal power allocation in the
high power case is such that ¢; = N%lNl and &y = N%lNz-

Also, by applying the same argument, one can easily prove
that (94) is also a Schur-concave functign of 5\1 and 5\2 respec-
tively. Therefore, when A\; = 1, and A2 = 1y,, (94) is max-
imized. In other words, in the high power case, less correlated
channel yields a higher secret key rate.

2) Low Power Case: For small P, we can approximate (93)
by its second-order Taylor series expansion at point P = 0:

1
I = Ihlp—o + VIs|p—oP + 5v212|p=0P2 +0(P?) (95)

where VI and V21, are the first and second order derivatives of
(93) with respect to P. It can be easily proved that VIs|p—o = 0
and

N1 N2

V2IQ|P 0—1 2;;/\1[>‘2k]{ CllCQk

2 $y(€1, €2, M1, o).
To maximize (95), we just need to maximize the term (96). Based
6¢2 K25\il Zj\’jl S\;kég’k. Since {1} is

in descending order, we know that ¢o (€1, Ca, 5\1, 5\2) is a Schur-
convex function of ¢; with descending entries, which means it

(96)

on (96) we have
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is maximized by putting almost all of the power to ¢; ;. The
reason that “almost all” instead of “all” is used here is to ensure
the positive condition on ¢,. The same conclusion can be drawn
about ¢, 1 for maximizing ¢ (€1, €2, A1, A2). That s, in the low
power case, almost all of the power should be allocated to the
strongest stream. o

Itis also clear that ¢ (€1, €2, A1, A2) is a Schur-convex func-
tion of A\ and A9 individually. Therefore, in low power region,
a higher channel correlation leads to a higher secret key rate.

F. Proof of Theorem 4

Refer to Appendix B. Assume F = /a3Q,,,. With (78), the
first term of I'; ; in (61) can be written as

SJFFHS;F ® Iy
= aa(e] (MNIy — Ngmq))e;) @ Iy2
= ag(M — 1)NIy-=. 97
With (79), the second term of T'; ; in (61) becomes
((S;FF7SE) (T ar1yn + S FE7S)) (S FEST) )
®In

(IM,l + ﬁVTaﬁMIM,iqugIﬂ,i)
(1+NMag)

®In

((S()(MNIy — Napmall)e;) @ Iy) ) @Iy

(7-1)m

B a2(MNe! —Nw(; V" gH)0,;(MNe;— Nw,, Q)
N 1+NMay
X In2 (98)

where ©; £ I,]Z;[JIIVI,Z' 1+chd IILI zIJVf ququIM zIM ;. Note
that I7, Ty ; is the identity matrix I5; with its ith diagonal ele-
ment set to zero, and Ifj dar, Z—qm is q,, with its ith element set

to zero. Alsoe O,e; =1+ e’®,q,, = wg\g[ 1)m(1 i

1+N(¥d’ J

o — 1 o
Lo (M - 1)), al©@e; = wy V" (1 + e (M - 1))
and qf@©;q,, = (M —1)(1 + 7= (M —1)). Then, (98)
becomes
2 2
agN 2T (j-1)m el
T+ Nilay (M?e] @ie; — Muyf "] Oia
- ij(\][nmqi@iej + Qﬁé)iqm)lm
Na
7@3N2(1+NZJ+M2—M—1)I ) 09)
1+ NMag N

Using (97), (98) and (99), I'; ; becomes

adMN—Nad/(1+Nad)
14+ MNay

T, = In: 2TIN:  (100)
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where 0 < I' < 1 which is invariant to ¢, j, m. Similarly, one can
verify that I'r ;; = I'Iy2. Then we have (I —T'; ;T'7;;)"' =
(1 — FQ)_llNz.

Using the above results in (84), we have

aI(Yi;_YT,j) _ 1 _
OF In 20F

r
<Tr( T2 T ;) +TT(1I‘28I‘T7J¢)) . (101)

Similar to (86), the first term in (101) (except for a constant
factor) can be expressed as

2

i) =2 (0 -+l - T F a0

where I‘Z(.?j) = Neje] @1y,

) _ N§ S FFHST ) (S, FFH

T, = NS{,(I+ S, FFYS() (S FFHS])S;, (103)

%) = NST, (148, FF/S],)) (5 FF!'sT)
-(S,FFHST))(1+ 8, FF7S])) 'S,y (104)

and 1‘1(-?’]-) = (Fg}j))T.Funhermore, using I}, Ins.e5e] = ejef

for i # j and the previous results under F = /0y Q,,,, we have
Nay (@i(MNI—quqg)eje;f) @Iy
1+ NMOéd

1) _
;=

Naoy (MNejejT — 1_s_]\,%lIM7IMlqmqme] ) ® Iy

14+ NMay ’
(105)

r® _

i =

Na ((—) (MNI- quqm)ej T(MNTI- quqg)('-)i)@)IN

(1+NMOzd)
_ aZN3
(1 + NMad)2
<M2ejeJT +

1
WI?\}JIM,;‘CIm QgITM,iIM,i

M
- meje?qm,qu{l,iIM,i

M

1+ Nay (106)

I?\ﬂ/[ ZIM 1q7nqme] 7 ) & IN

where the derivation of (106) is shown in Appendix G.
(S)imilarl()i,)one (ian verify that % = Q(I‘S?Z-) - I‘;}i) +

r—(T; L) O

Jsi
Note that

Z Z ejel +ee]) @Iy =(M—1)Iyy, (107)
=1 j=i+1

M-1 M

> Y @Iviamalieje] + 15 Tu jamaiee])
i=1 j=i+1

2643
= (M = 2)amay, + I, (108)
M M
Z Z I]V[7iIM,iqmqu]1\;[,iIM,i
+ IM,J-IM,quqﬁlﬂ, ) (109)
= (M —1)gma + 21y,. (110)
Then, with some further manipulations, we obtain
M-1 M
5IM Z Z oI( thT]
i=1 j=i+1
B 2NT ( M—1
C (1-T2)In2\(1+ MNay)?
2Nag(1l+ 2N _
n ca(l +2Naa) ) A
(]. + MNad)2(1 + Nad)2

Then one can verify that the first condition in (64)

. . _ NT M-1
is satisfied by (111) and p; = = F2)1112((1+MN%)2 +
(1+2]\];/J(\lfda (dl)t(zlji (ﬁid)2> > 0, and all other conditions in (64) are

satisfied by further choosing ag = Therefore, F =

\/% Q. is a solution to (64).

G. Derivation of (106)

KP
N2(M-1)

From the first equality in (106), we have

@ (M e] 7 7quqmej J Mejej qum+qum) ®’L

= M? @zeje 0, — M@lejej qmqm®i

— M®,qnajeje] O; + 0,d4,q,,0;. (112)
Let n = lfﬁgd. Each of the four terms in (112) can be
simplified as follows:

M2®leje e, = M? (e]—e? + neje?qmqﬁlﬂ,iIMﬂ-
+ 0Ly I amanejel + UQIE,Z-IM,imeZIﬂ,Z-IM,i) ;
(113)

M®iejejrq'mq£®i :M<(77(M - 1)+1)eje_?q7rzq7HnI£I,iIA4,i
(114)

+ (n*(M —1) + n)1ﬂ7iIM7iqmquI{47iIM7i), (115)

M®;qnq)iejel ©; M(( (M = DHT I samareje;

+ (M —1)+ n)Iﬂ,iIM,iqmqﬁIﬂ,iIM,i), (116)

0.4 ©; = (n(M — 1) + 1)°13, I iamaliTi; Iari.
(117)

Applying (112)—(117), the second equality of (106) follows.
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