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Abstract— This paper considers the secrecy performance of
several schemes for multi-antenna transmission to single-antenna
users with full-duplex (FD) capability against randomly distrib-
uted single-antenna eavesdroppers (EDs). These schemes and
related scenarios include transmit antenna selection (TAS), trans-
mit antenna beamforming (TAB), artificial noise (AN) from the
transmitter, user selection based their distances to the transmitter,
and colluding and non-colluding EDs. The locations of randomly
distributed EDs and users are assumed to be distributed as
Poisson Point Process (PPP). We derive closed form expressions
for the secrecy outage probabilities (SOP) of all these schemes and
scenarios. The derived expressions are useful to reveal the impacts
of various environmental parameters and user’s choices on the
SOP, and hence useful for network design purposes. Examples of
such numerical results are discussed.

Index Terms— Physical layer security, beamforming, artificial
noise, stochastic geometry, full duplex, secrecy connectivity,
power allocation.

I. INTRODUCTION

S INCE Wyner’s work [1], physical layer security has been
studied as an alternative or complementary approach to

cryptography for information security. This trend of study has
accelerated in recent years given its importance for 5G and
future wireless networks [2].

Due to the broadcast nature of wireless communications,
transmitted information in air is highly vulnerable to eaves-
dropping unless a positive secrecy rate at the physical layer is
achieved. Many prior works for achieving a positive secrecy
rate require that the locations and/or channel-state-information
(CSI) of eavesdroppers (EDs or Eve) are known to the
legitimate users (also referred to as users) [3]–[12]. This
requirement is generally difficult to meet in practice.

Manuscript received June 27, 2020; revised September 18, 2020 and Decem-
ber 3, 2020; accepted December 11, 2020. Date of publication December 28,
2020; date of current version February 1, 2021. This work was supported
in part by the Army Research Office under Grant W911NF-17-1-0581. The
associate editor coordinating the review of this manuscript and approv-
ing it for publication was Dr. Ragnar Thobaben. (Corresponding author:
Yingbo Hua.)

Ishmam Zabir, Ahmed Maksud, and Yingbo Hua are with Depart-
ment of Electrical and Computer Engineering, University of California,
Riverside, CA 92521 USA (e-mail: izabi001@ucr.edu; amaks002@ucr.edu;
yhua@ee.ucr.edu).

Gaojie Chen is with the School of Engineering, University of Leicester,
Leicester LE1 7RH, U.K. (e-mail: gaojie.chen@leicester.ac.uk).

Brian M. Sadler is with the Army Research Laboratory, Adelphi, MD
20783 USA (e-mail: brian.sadler@ieee.org).

Digital Object Identifier 10.1109/TIFS.2020.3047763

One way to handle EDs whose locations and CSI are
unknown to users is to assume a statistical model for EDs’
CSI where both the small-scale-fading and large-scale-fading
of EDs’ CSI are statistically modelled. While the small-
scale-fading is commonly modelled as Gaussian distributed,
the large-scale-fading can be treated by assuming EDs to be
randomly distributed according to a Poisson Point Process
(PPP) [13]–[24]. This paper will also adopt the PPP model
to investigate the impact of random EDs locations on secrecy
performance which is useful over a time window within which
the EDs’ locations change randomly.

The conventional radio is half-duplex (HD). But full-
duplex (FD) radio promises to be available in the near future
[25]–[30]. A user equipped with FD capability can receive a
desired information while transmitting an artificial noise (AN)
to jam nearby EDs [7], [27]–[31]. We will also refer to this AN
as Rx-AN which differs from the AN (along with information
signal) transmitted by a multi-antenna transmitter. The latter
will also be referred to as Tx-AN. Subject to randomly distrib-
uted EDs, schemes based on Tx-AN without Rx-AN have been
studied in [16]–[20] for non-colluding EDs and in [21]–[24]
for colluding EDs. In [16], authors investigated the design of
multi-antenna Tx-AN to minimize the secrecy outage probabil-
ity (SOP) by ignoring thermal noise at EDs. In [17] and [18],
authors derived exact closed-form expressions for optimal
Tx-AN allocation to minimize SOP. In [19], authors further
investigated secrecy performance under imperfect CSI. The
aforementioned studies reveal that Tx-AN (for HD receiver)
improves secrecy performance against any EDs’ scenarios.

This paper will present statistical analyses of SOP for a
range of downlink transmission schemes for pairs of multi-
antenna base-station (BS) and single-antenna user equipment
(UE) in the presence of randomly located EDs, which is
illustrated in Fig. 1. These schemes include the following
scenarios: the BS may or may not apply Tx-AN, the UE may
or may not apply Rx-AN or equivalently operate in either
FD or HD mode, and the EDs may or may not collude with
each other to form a virtual antenna array. For randomly
distributed UEs, the BS can have them ordered according to
their distances to the BS before a downlink transmission may
be applied. Furthermore, the BS may apply a transmit-antenna-
selection (TAS) scheme or a transmit-antenna-beamforming
(TAB) scheme. The TAB scheme requires full CSI knowledge
at BS whereas the TAS scheme is a comparatively low-cost
low-complexity method [32]. In particular, we will focus on
the SOP for all the schemes listed above (with exception
shown in Table I). The organization of these analyses is shown
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Fig. 1. Wireless network subject to randomly located eavesdroppers where
Alice is BS and UE is Bob.

TABLE I

ORGANIZATION OF SECTIONS III AND IV

in Table I. Note that HD is a special case of FD, and using
no Tx-AN is a special case of using Tx-AN. Much of the
mathematical details is given in appendices. Section V shows
numerical results to verify the analysis. Section IX summarizes
the paper.

The key contributions of this paper (a substantial extension
of [34]) include the following:

• We derive the closed form expressions of SOP for all the
schemes/scenarios listed in Table I. In the context of ran-
domly distributed EDs, the scheme with both Tx-AN and
Rx-AN was not studied before, and none of the schemes
listed under colluding EDs was before considered either.

• We focus on SOP conditional on user’s CSI, which results
in a tight lower bound of SOP for both TAS and TAB
schemes against randomly located colluding EDs. This
is in contrast to [33] where TAS was analyzed based on
unconditional SOP and zero thermal noise at EDs. The
latter is only valid for scenarios of high jamming noise.

• We extend the analysis shown in [35] from TAS to TAB
with Tx-AN for multiple HD users. Comparisons between
TAS and TAB are shown analytically and numerically.
(The low cost advantage of antenna selection has been
exploited for network throughput as well as physical layer
security [44]–[47]. But TAS shown in [33] and [35] is the
most relevant to this paper.)

• We reveal the existence of a finite optimum Rx-AN power
for both TAS and TAB schemes, which can be also
computed based on our closed form SOP expressions.

The symbols used in this paper are shown in Table II.

II. SYSTEM MODEL

We consider a base station (BS or Alice) with multiple
antennas located at the center of a circle of radius R, which

TABLE II

NOTATION AND SYMBOLS

transmits secret information to a single-antenna (omnidirec-
tional) user equipment (UE or Bob). Without loss of gener-
ality, we first assume that Bob is located at a unit distance
away from Alice. There are randomly located single-antenna
(omnidirectional) eavesdroppers (EDs) in the circle, and the
random locations of EDs (denoted by �) are modeled as a
PPP with the intensity ρE .

The channel gain vector from Alice to Bob is denoted by
h ∈ CM×1, which has been normalized to be a complex
Gaussian random vector with zero mean and the identity
covariance matrix, i.e., CN (0, I). We assume Bob is equipped
with full-duplex antenna (full-duplex can be implemented with
either one Tx and one Rx antenna or even with single antenna
via RF circulator [36]) where Bob can transmit and receive
at the same time in the same frequency band. The normalized
residual instantaneous self-interference channel gain at Bob is√

ρgB with the distribution CN (0, ρ) where ρ corresponds to
a normalized gain factor (which is relative to the main/user
channel gain and should be kept small in application although
it can be larger than one if the actual distance between Alice
and Bob is relatively large [29]). The channel vector from
Alice to the eth ED is

√
aehAEe ∈ CM×1 and distributed as

CN (0, aeI), and the channel gain from Bob to the eth ED is√
beh B Ee and distributed as CN (0, be). We also let ae = 1

dα
AEe

with dAEe being the normalized distance between Alice and
the eth ED, and be = 1

dα
BEe

with dB Ee being the normalized

distance between Bob and the eth ED. Note that ae and be
are the large-scale fading parameters as they are dependent on
the location of ED while h, gB , hAEe and h B Ee are the small-
scale fading parameters. We assume that the channels are all
quasi-static where the channel coefficients stay constant during
transmission of any given packet.

The secrecy rate of the downlink transmission from Alice
to Bob is

SAB = [log2(1 + SN RAB ) − log2(1 + SN RAE∗ )]+, (1)

where SN RAE∗ = F(SN RAEe). The operator F(.) takes the
location dependent Signal-to-Noise Ratios (SNRs) of EDs as
argument. The form of F(.) is dependent on whether EDs are
acting independently or colluding with each other. In the case
of non-colluding EDs, the strongest ED channel is considered
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and the form of F(.) is defined as

F(.) = max
e∈�

(.). (2)

In the case of colluding EDs, we assume that all EDs can
combine their own SNRs to jointly decode the information
bearing signal. We consider passive (distributed) EDs. Since
they do not have access to the full CSI between Alice and
themselves, they are unable to form a virtual antenna array
for colluding. This assumption is the same as in [13]–[15],
[24] and [33]–[35]. Thus,

F(.) =
∑
e∈�

(.). (3)

For a target secrecy rate RS , the SOP is defined as

Pout
�= P(SAB ≤ RS) = P

[
1 + SN RAB

1 + SN RAE∗
≤ 2RS

]
, (4)

where P(·) denotes the probability. We will also use Pcon
�=

1 − Pout .

A. Transmit Antenna Selection

In the TAS scheme, Alice only transmits via the antenna
corresponding to the element in h that has the largest ampli-
tude. Let

√
PT x A(k) of power PT be the information signal

transmitted from Alice, and hi∗ be the element selected from
h = [h1, · · · , hM ]T , i.e., |hi∗ | = max

i
|hi |. Thus, Bob and Eve

receive the following signals respectively:
yB(k) = hi∗

√
PT x A(k) +√ρPJ gBw̃B(k) + nB(k), (5)

yEe (k) = √ae PT h Ai∗ Ee x A(k) +√be PJ h B EewB(k)

+ nEe (k), (6)

where
√

PJ wB(k) of power PJ is the jamming noise or Rx-
AN from Bob, nB(k) and nE (k) are the background Gaussian
noises at Bob and Eve each with the unit variance, and
the second term of (5) denotes the residual self-interference.
Then, the SNR at Bob is

SN RT AS
AB = |hi∗ |2 PT

1 + ρ|gB|2 PJ
, (7)

and the SNR at the eth Eve is

SN RT AS
AEe = ae|h Ai∗ Ee |2 PT

1 + be|h B Ee |2 PJ
. (8)

B. Transmit Antenna Beamforming

In the TAB scheme, Alice takes the advantage of the
complete knowledge of h by transmitting the following signal:

s(k) = √(1 − ε)PT tx A(k) +
√

εPT

M − 1
Wv(k), (9)

where x A(k) is the message signal of zero mean and unit vari-
ance, t = h∗

‖h‖ , W ∈ CM×(M−1) has the orthonormal columns
that span the left null space of t (hence ttH + WWH = I),
v ∈ C(M−1)×1 is the Tx-AN CN (0, I), and ε ∈ {0, 1} is the
power fraction factor that splits the total power PT between
the Tx-AN term and the message term.

Consequently, the received signal at Bob and the eth Eve
are:

yB(k) = √(1 − ε)PT ‖h‖x A(k) +√ρPJ gBw̃B(k) + nB(k),

yEe (k) = √ae(1 − ε)PT
hT

AEeh∗

‖h‖ x A(k) +√be PJ h B EewB(k)

+ √
ae

√
εPT

M − 1
hT

AEeWv(k) + nEe (k),

respectively. Then the SNR at Bob is

SN RT AB
AB = (1 − ε)‖h‖2 PT

1 + ρ|gB |2 PJ
, (10)

and the SNR at the eth Eve is

SN RT AB
AEe

=
ae(1 − ε)

|hT
AEe

h∗|2
‖h‖2 PT

1 + be|h B Ee |2 PJ + ae
ε PT
M−1 Ev{|hT

AEe
Wv|2}

=
ae(1 − ε)

|hT
AEe

h∗|2
‖h‖2 PT

1 + be|h B Ee |2 PJ + ae
ε PT
M−1‖hAEe ‖2(1 − |hT

AEe
h∗|2

‖hAEe ‖2‖h‖2 )

= (1 − ε)X1�PT

dα
AEe

+ PJ dα
AEe

dα
BEe

X2 + ε PT
M−1 X1(1 − �)

, (11)

where Ev denotes the expectation over v and
Ev{|hT

AEe
Wv|2} = Ev{|hT

AEe
WvvT WT hAEe |2} =

hT
AEe

(I − ttH )hAEe , X1 = ‖hAEe ‖2, X2 = |h B Ee |2 and

� = |hT
AEe

h∗|2
‖hAEe ‖2‖h‖2 . Note that X1, X2 and � are independent of

each other.
Furthermore, X1 has a Chi-squared distribution with 2M

degrees of freedom (DoF), i.e., its probability density function
(PDF) is fX1(x) = x M−1e−x

�(M) ; X2 has a Chi-squared distribution
with 2 DoF (also known as the exponential distribution of the
unit mean); and � is known to have the beta distribution [30]
with parameters B(1, M−1), i.e., f�(x) = (M−1)(1−x)M−2.
Note that Beta(a, b) distributed random variable X the PDF
fX (x) = xa−1(1−x)b−1

B(a,b) .
In order to maintain a data rate RD from Alice to Bob,

we must have log2(1 + SN RT AB
AB ) > RD , i.e., 1 − ε >

1+ρ|gB |2 PJ
‖h‖2 PT

(2RD − 1) for the non-negative ε.

C. TAB With User Selection (TAB-US)

In the TAB-US scheme, we assume that Alice (BS) serves
multiple single-antenna HD Bobs (UEs) (where PJ = 0) based
on the user’s distance from Alice. The locations of Eves and
Bobs are all modeled as spatial PPP, i.e., �E with intensity
ρE and �U with intensity ρU respectively.

Let dABn be the distance from Alice to the nth (nearest)
Bob. Similar to (10), the SNR at the nth Bob is

SN RABn = (1 − ε)PT ‖hABn ‖2

dα
ABn

, (12)

and, similar to (11), the SNR at the eth Eve is

SN RAEe =
ae(1 − ε)‖hAEe ‖2 ‖hH

AEe
hABn ‖2

‖hAEe ‖2‖hABn ‖2 PT

1 + ae
ε PT
M−1‖hAEe ||2(1 − ‖hH

AEe
hABn ‖2

‖hAEe ‖2‖hABn ‖2 )

, (13)
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where X2,n = ‖hABn ‖2 is independent from X1 and both fol-
low the Chi-squared distribution with 2M degrees of freedom,

i.e., fX2,n (x) = fX1(x) = x M−1e−x

�(M) . Also � = ‖hH
AEe

hABn ‖2

‖hAEe ‖2‖hABn ‖2

follows the B(1, M − 1) distribution [30], and X4 = �X1
is exponentially distributed with mean equal to one. Also,
X4,4 = (1 − �)X1 follows �(M − 1, 1) distribution and most
importantly X2,n , X4 and X4,4 are independent.

III. SECRECY PERFORMANCE AGAINST NON-COLLUDING

EAVESDROPPERS

Throughout this section, we study the secrecy performance
of both the TAB and TAS schemes against independently
acting EDs.

Furthermore, we analyze the secrecy performance of the
TAB scheme as a function of the ordering index of each
Bob (among randomly distributed Bobs) with respect to his
distance to Alice.

A. Secrecy Performance of the TAS Scheme

The performance of the TAS scheme was analyzed in [33]
by assuming that the noise at each node is dominated by
the interference. A novelty of the following analysis is an
insight that there is generally a nonzero optimal PJ . Such
an analytical insight would not be possible if the noise is
assumed to be negligible from the very beginning of the
analysis. Moreover, authors of [33] derived the SOP expression
averaged over the distribution of legitimate channel. Such
analysis does not provide useful insights for a given/common
realization of the legitimate channel. In this paper, we study the
SOP expression conditioned on the legitimate channel CSI. For
a large coherence period of the legitimate channel, the SOP
averaged over EDs’ distribution can be minimized over the
jamming power from FD Bob. Thus, this study enables us
to find the optimum allocation at Bob. We will also show
the overall averaged SOP considering the distribution of the
legitimate channel.

We will use the following parameterizations: β
�= 2Rs , m

�=
PJ
PT

(“a transmit power ratio”), Y
�= SN RT AS

AB = |hi∗ |2
1

PT
+ρm|gB |2

and Y0
�= Y

β + 1
β −1. Note that for any given realization of h and

gB , Y is a given constant. Hence, P[ST AS
AB > Rs |�, h, gB] =

P[ST AS
AB > Rs |�, Y ].

Proposition 1: Conditioned on h and gB , the probability of
achieving a secrecy rate strictly larger than Rs using the TAS
scheme is given by

Pcon,Y = exp

[
− ρE

∫ R

0

∫ 2π

0
�(Y, r, θ)rdθdr

]
, (14)

where

�(Y, re, θe) = exp(− dα
AEe
PT

Y0)

1 + m(
dAEe
dBEe

)αY0

, (15)

and (re, θe) are the polar coordinates of the location of the eth
Eve with the origin at the location of Alice. Also dAEe = re

and dB Ee = √r2
e + d2 − 2re cos θ .

The proof is shown in Appendix A.
Remark 1: It is obvious that Pcon,Y is a decreasing function

of �(Y, r, θ). One can verify the following statements subject
to PT > 0:

TABLE III

EFFECTS OF PARAMETERS ON �(Y, r, θ) & Pcon,Y WHEN Rs = 0, WHERE
−, ↑ AND ↓ DENOTE INVARIANCE, INCREASING AND DECREASING,

RESPECTIVELY

• If Rs = 0, then �(Y, r, θ) is invariant to PT .
• If Rs = 0 and the product ρPJ is a fixed constant, then

as PJ increases to ∞, �(Y, r, θ) decreases monotonically
to zero and hence Pcon,Y increases monotonically to one.

• If ρ 
 1, then in a region of small PJ , Y and hence
Y0 are approximately invariant to PJ . But in this case,

�(Y, r, θ) decreases as PJ increases (since Y0

(
dAE
dBE

)α
is

not small) and hence Pcon,Y increases as PJ increases.
The aforementioned statements are summarized in Table III

where PJ
∗ is nonzero optimal value of PJ and a is an arbitrary

constant. Here PJ → ∞ implies that the jamming power from
Bob is large or more precisely PJ � 1

ρ|gB |2 . The expression
(14) provides the relationship between the target secrecy rate
Rs and different parameters in the network. To obtain Pcon,Y
numerically, the double integrals shown there need to be
computed for a given choice of the path loss exponent α.
In general, experimentally estimated α results in difficulty for
simplification of the double integrals. But for Rs = 0 (i.e.
Y0 = Y ) and α = 2, a simplification can be shown to be

Pcon,Y = exp

[
− ρE

(
π PT

Y

(
1 − exp(−Y R2

PT
)
)− πmY

×
∫ R2

0

exp(− Y r
PT

)r√(
(1 + mY )r + d2

)2 − 4rd2
dr

)]
(16)

which is shown in Appendix B.
Then, the unconditional Pcon = EY [Pcon,Y ] can be obtained

by

Pcon = P[ST AS
AB > Rs ] =

∫ ∞

y=0
Pcon,y fY (y)dy, (17)

where the distribution of Y due to the random |hi∗ |2 and |gB|2
is given in the following lemma:

Lemma 1: The cumulative distribution function (CDF) of
Y is

FY (y) =
M∑

i=0

C M
i (−1)i e

− iy
PT

1 + iyρm
, (18)

where C M
i = M !

(M−i)!i! . Hence the PDF of Y is

fY (y) =
M∑

i=0

C M
i (−1)i+1ie

− iy
PT

( iyρm
PT

+ 1
PT

+ ρm)

(1 + iyρm)2 . (19)

Next, we consider Pcon,Y in the two special cases: PJ = 0
and PJ → ∞.

1) The Case of PJ = 0: Now we consider the
case of PJ = 0 thus m = 0 and assume that
PT � 1−β

|hi∗ |2 thus Y0 ≈ PT |hi∗ |2
β . It follows from
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(45) that �(Y ; r, θ) = exp(− dα
AEe
PT

Y0) = exp
(
−rα |hi∗ |2

β

)
.

Hence

ln Pcon,Y

ρE
= −
∫ R

0

∫ 2π

0
�(Y ; r, θ)rdθdr

= −2π

∫ R

0
exp

(
−rα |hi∗ |2

β

)
rdr

= − 2πβ
2
α

α(|hi∗ |2) 2
α

∫ Rα(|hi∗ |2
β

0
exp(−z)z

2
α −1dz

= − 2πβ
2
α

α(|hi∗ |2) 2
α

γ

(
2

α
,
|hi∗ |2 Rα

β

)
, (20)

where z = rα |hi∗ |2
β and γ (x, y) = ∫ y

0 zx−1e−zdz is the lower
incomplete gamma function which increases monotonically
with y. From (20), it is clear that Pcon,Y monotonically
decreases as R increases. In particular,

lim
R→∞

ln Pcon,Y

ρE
= −π

(
β

|hi∗ |2
) 2

α 2

α
�

(
2

α

)
, (21)

where �(x) = ∫∞
0 zx−1e−zdz. It is known that x�(x) =

�(x + 1) for positive x and �(x + 1) decreases to one as x
decreases to zero. Then, provided β

|hi∗ |2 > 1, the above limit
increases as α increases. The result (21) serves as a benchmark
corresponding to a HD Bob.

2) The Case of PJ = ∞: We now consider the case of
PJ = ∞ and also assume Rs = 0 and α = 2. In this case,
Y0 = Y = 0 and mY = |hi∗ |2

ρ|gB |2 . Then, following a similar
derivation as that in section 1 of the supplement, one can verify
that

ln Pcon,Y

ρE
= −2π

∫ R

r=0

(
1 − 1√

1 + ρ |gB |2
|hi∗ |2 (1 + d

r )2

× 1√
1 + ρ |gB |2

|hi∗ |2 (1 − d
r )2

)
rdr, (22)

where the integrant converges to

⎛
⎝1 − 1

1+ρ
|gB |2
|hi∗ |2

⎞
⎠ r as r

becomes large and the integral goes to ∞ as R → ∞.
Hence limR→∞ Pcon,Y = 0. This result suggests that PJ
should not be too large. Combining this with a previous result
for small PJ implies that there is generally a finite nonzero
optimal PJ .

B. Secrecy Performance of the TAB Scheme

Unlike the TAS scheme, Alice will now use all transmit
antennas via beamforming to transmit each information sym-
bol. We will assume that all the channel links from Alice to
Bob are independent and identically distributed.

In addition to m = PJ
PT

and β = 2Rs , we will use

Z = S N RT AB
AB

(1−ε) = ‖h‖2

1
PT

+ρm|gB |2 , C = Z
β PT

− (1− 1
β )

(1−ε)PT
, fe =

(
dAEe
dBEe

)αm (“a large scale receive power ratio”) and G =
1

C PT
= β(1+ρ PJ |gB |2)

PT ‖h‖2 . The random variables Z , C and G
are one-to-one related to each other. We will use z, c and

g for the realizations of Z , C and G respectively. Unlike
fe, the variables z, c and g are invariant to the locations of
Eves but dependent on the small scale fading parameters h
and gB . For given realization of h and gB , z is given. For
m = 0, Z = PT ‖h‖2 has obviously a Chi-squared distribution
with 2M DoF. For m > 0, one can prove the following
lemma:

Lemma 2: If m > 0, the legitimate channel’s SN RAB
(which is Z ) has the following PDF (shown in Appendix C)

fZ (z) = Mρm(zρm)M−1

(1 + zρm)M+1 e
1

ρPJ . (23)

Proposition 2: Conditioned on h and gB , the probability of
achieving a secrecy rate strictly larger than Rs using the TAB
scheme is given by

Pcon,h,gB = Pcon,z =exp

[
−ρE

∫ R

0
r
∫ 2π

0
�(

1

g
; r, θ)dθdr

]
,

(24)

and hence Pcon = ∫∞
0 Pcon,z fZ (z)dz where

�(
1

g
; r, θ) = e

dα
BE
PJ

(1 + fe
g )(1 + ε

(M−1)g )M−1
(25)

and all other variables are defined before.
The proof is shown in Appendix D.
Remark 2: From (24) and (25), one can also verify the

following subject to PT > 0:
• For ε > 0, Pcon,h,gB → 1 as PT → ∞. (1 +

ε
(M−1)g )M−1 converges to eε/g as M increases. For large

PT ,
1− 1

β

(1−ε)PT
≈ 0 so, fe

g =
(

dAEe
dBEe

)α ‖h‖2

β( 1
PJ

+ρ|gB |2)
which is

invariant to PT and ε
g = ε PT ‖h‖2

β(1+ρ PJ |gB |2) which goes to ∞
as PT → ∞.

• Pcon,h,gB increases as ρ decreases. As ρ decreases, Z
and c increase, and hence g and �( 1

g ; r, θ) decrease, and
hence Pcon,h,gB increases.

• If ρ → 0, then Pcon,h,gB → 1 as PJ → ∞.
• If ε = 0, the optimal PJ is ∞. If ε = 0 then it follows

from (24) and (25) that

Pcon,h,gB = exp

[
− ρE

∫ R

0
r
∫ 2π

0

e
dα

BEe
PJ

1 + fe
g

dθdr

]
, (26)

which is independent of PT and monotonically increases
as PJ increases. Thus the optimum PJ is ∞.

• For ε > 0 and PT > 0, the optimal PJ is a finite
positive number. For ε > 0 and PT > 0, fe

g monoton-

ically increases to ‖h‖2

βρ|gB |2 as PJ → ∞ and 1 + dα
BEe
PJ

monotonically decreases to 1 as PJ → ∞. So,
1+ dα

BEe
PJ

1+ fe
g

monotonically decreases to 1

(1+ ‖h‖2

βρ|gB |2 )
for PJ → ∞.

We can also observe that ε
g monotonically decreases to 0

for PJ → ∞, so 1
(1+ ε

(M−1)g )M−1 monotonically increases

to 1 as PJ → ∞. So, we can conclude that there is a
finite positive PJ at which Pcon,h,gB is maximized.
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TABLE IV

EFFECTS OF PARAMETERS ON �(z, r, θ) & Pcon,z WHEN Rs = 0

• For Rs = 0, �( 1
g ; r, θ) is a decreasing function of ε

which makes the upper bound of ε optimal. Furthermore,
�( 1

g ; r, θ) is rather flat around the optimal PJ , which
makes it easy to find a practically optimal PJ .

The aforementioned observations are summarized
in Table IV.

As shown in Appendix E, �( 1
g ; r, θ) for any r and θ is a

unimodal function with its minimum at a finite positive value
of PJ . Therefore,

∫ R
0 r
∫ 2π

0 �( 1
g ; r, θ)dθdr must also have its

minimum at a finite positive value of PJ , or equivalently
Pcon,z = exp(−ρE

∫ R
0 r
∫ 2π

0 �( 1
g ; r, θ)dθdr) has its peak at

that value of PJ .
Next, we consider two special cases for which the double

integral in (24) can be simplified.
1) Bob in Full Duplex Mode With β = 1 and

α = 2: For β = 1 and α = 2, it is shown in Appendix F
that ∫ R

0

∫ 2π

0
�(z; r, θ)dθrdr

= 2π

(1 + zε
M−1 )M−1

×
∫ R

0

(
1 − 1√

1 + (r+d)2

r2zm

√
1 + (r−d)2

r2zm

)
rdr. (27)

And Pout = 1 − Pcon versus PJ and ε will be illustrated
in Fig. 4 from which we will see that for a given ε there is
an optimal PJ and the optimal PJ is not very sensitive to ε.

Furthermore, if PJ → ∞, then z → 0, zm → ‖h‖2

ρ|gB |2 and
(27) yields∫ R

0

∫ 2π

0
�(z; r, θ)dθrdr

= 2π

∫ R

0

(
1− 1√

1+ρ |gB |2
‖h‖2 (1 + d

r )2
√

1+ρ |gB |2
‖h‖2 (1− d

r )2

)
rdr.

(28)

Comparing (22) and (28), we see a similar structure of the two
expressions. Since ‖h‖2 ≥ max

i∈M
|hi |2, the TAB scheme always

yields a lower SOP than the TAS scheme.
Also note that if ε > 0 and PT → ∞, then (27) implies

that the SOP of the TAB scheme becomes one (similar to the
case for TAS).

2) Bob in Half-Duplex Mode: In this case, we have PJ = 0
and z = PT ‖h‖2. Also assuming a large PT , it is shown in
Appendix G that∫ R

0

∫ 2π

0
�(z; r, θ)dθrdr

= 2πβ
2
α

α(‖h‖2)
2
α (1 + ε PT

M−1
‖h‖2

β )M−1
γ
( 2
α

,
Rα‖h‖2

β

)
. (29)

Here γ ( 2
α , Rα‖h‖2

β ) is the lower incomplete gamma function
and increases monotonically as R increases. (29) is similar to
(20) and is independent of PT when ε = 0. Since ‖h‖2 ≥
max
i∈M

|hi |2, the HD-TAB (even without using AN) results in

a better secrecy performance than the HD-TAS. Note that
the secrecy performance of the HD-TAB depends on PT

when ε > 0. Furthermore, the term
∫ R

0

∫ 2π
0 �(z; r, θ)dθrdr is

inversely proportional to the factor
(

1 + ε PT ‖h‖2

(M−1)g

)M−1
. Thus,

the term
∫ R

0

∫ 2π
0 �(z; r, θ)dθrdr and hence SOP decreases as

the number of transmit antenna M increases.

C. Secrecy Performance of the TAB-US Scheme

In [35], a TAS based downlink transmission scheme for
multiple ordered half-duplex receivers or “a TAS based User
Selection (US) scheme” was considered. In this section,
we consider a TAB based counter part of the above scheme,
which will be referred to as the TAB-US scheme.

As shown in Appendix H, we have
Proposition 3: For ε ≥ 0, the probability of achieving a

secrecy rate strictly larger than Rs conditional on the distance
of a selected user is

P[SAB > Rs |dABn ]

= exp

[−2πρE

α

(βdα
ABn

)M B(M − 2
α , 2

α )

( ε PT
M−1 )M− 2

α

× U(M − 2

α
, 2 − 2

α
,
(M − 1)βdα

ABn

εPT
)

]
(30)

where dABn is the distance between Alice and the nth closest
user, and U denotes the confluent hypergeometric function of
the second kind [42].

With P(SAB > Rs |dABn ) and fdABn
(x) from lemma 4 in

Appendix I, one can readily compute the SOP P(SAB < Rs) =∫∞
0 P(SAB > Rs |x) fdABn

(x)dx for any ε. We will show via
simulation that the TAB-US scheme outperforms the TAS-US
scheme.

As shown in Appendix I, for the special case of ε = 0,
P(SAB < Rs) can be simplified into:

P[SAB > Rs] = 1(
1 + ρE

ρU

2
α β

2
α B(M − 2

α , 2
α )

)n , (31)

where ρE
ρU

is the ratio of the density of EDs over that of the
legitimate receivers.

Furthermore, for n = 1 (the nearest Bob), (31) reduces to

P[SAB < Rs] = 1 − 1

1 + ρE
ρU

2
αβ

2
α B(M − 2

α , 2
α )

. (32)

IV. SECRECY PERFORMANCE AGAINST

COLLUDING EAVESDROPPERS

In this section, we consider the situation that EDs can share
all information to decode the message. Since Alice knows
the channel between Alice and Bob, the secrecy performance
conditional on h and gB is a useful measure. In one coherence
period, h and gB remains deterministic and study of closed
form expression is important to find the optimal resource
allocation strategy (i.e., how to choose ε and PJ ). Considering
h and gB as deterministic makes the study completely different
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from that in [33] as the Laplace trick used there can not be
directly applied to derive the SOP closed form expression.

A. Full-Duplex Bob in the TAS Scheme

The SOP against colluding EDs conditional on h and gB is

P[ST AS
AB < Rs |h, gB] = P

⎡
⎢⎣ 1 + SN RT AS

AB

1 + ∑
e∈�

SN RT AS
AEe

< 2RS |h, gB

⎤
⎥⎦

= P

⎡
⎢⎣∑

e∈�

|h Ai∗ Ee |2
dα

AEe
PT

+ dα
AEe

dα
BEe

m X2

> y0

⎤
⎥⎦

=
∫ ∞

y0

f Ie (x)dx (33)

where Ie = ∑
e∈�

SN RT AS
AEe

= ∑
e∈�

|h Ai∗ Ee |2
dα

AEe
PT

+ dα
AEe

dα
BEe

m X2

which is the

sum of SNRs at all EDs. It is shown in Appendix J that the
Laplace transform of the PDF of Ie is

LIe (s)=exp

[
−ρE

∫ R

0

∫ 2π

0

s

fe
E1(K (s))eK (s)dθrdr

]
(34)

where E1(a) = ∫∞
0

e−ax

1+x dx is the so called exponential

integral function of a and K (s) = s+ dα
AEe
PT

fe
. Note that E1(a)

is monotonically decreasing function of a, and K (s) is a
strictly positive quantity. Later, we will discuss the relationship
between E1(K (s)) and SOP.

We know that

P[ST AS
AB < Rs |h, gB] = P[ Ie

y0
> 1]

� P[ Ie

y0
> l]

= E
[
1 − exp(−a Ie

y0
)
]N

= E

[
N∑

n=0

(
N

n

)
(−1)n exp(−an

y0
Ie)

]

=
N∑

n=0

(
N

n

)
(−1)nLIe

(an

y0

)
, (35)

where � denotes “less than and asymptotically equal to”, and
l is a normalized gamma distributed random variable with the
shape parameter N , and as N → ∞, l approaches its upper
bound equal to 1 [39]–[41]. (Note that the left side of � is
less than the right side if N is finite, or equals to the right side
if N → ∞.) Also a = N

(N !) 1
N

, and y0 is a realization of Y .

From (34) and (35), we have
Proposition 4: For the TAS scheme,

P[ST AS
AB < Rs |h, gB]

�
N∑

n=0

(
N

n

)
(−1)n exp

[
− ρE

∫ R

0

∫ 2π

0

s

fe
E1(K (s))

eK (s)dθrdr

]∣∣∣∣
s= an

y0

(36)

TABLE V

COMPARISON BETWEEN �(Y, r, θ) AND �(s, r, θ)|s= an
y0

SUBJECT TO Rs =
0. THE COLUMN FOR PJ → ∞ IS SUBJECT TO A FIXED ρ PJ

where s = an
y0

, K (s) = K (s)
∣∣
s= an

y0

= K (s)
∣∣
s= an

y
β −1+ 1

β

= dα
BEe
PJ

+
s
fe

= dα
BEe
PJ

+ an
fe y0

. If β = 1, we have y0 = y and then K (s) =
dα

BEe
PJ

+ an
dα

BEe
dα

AEe

1
PJ

+ρ|gB |2
max
i∈M

|hi |2 which is independent of PT .

Remark 3: The secrecy performance is dependent on PJ
throughout the term �(s, r, θ)|s= an

y0
= s

fe
E1(K (s))eK (s)|s= an

y0
.

One can verify that as PJ increases,
• s

fe
eK (s) decreases monotonically and saturates to a lower

bound.
• E1(K (s)) increases monotonically and saturates to an

upper bound.
These statements indicate that finding the optimal PJ to

minimize �(s, r, θ)|s= an
y0

is similar to that of �(Y, r, θ) for the
non-colluding TAS scheme. A comparison between �(Y, r, θ)
and �(s, r, θ)|s= an

y0
is shown in Table V. Note that, optimum

jamming power PJ
∗ is not necessarily the same for �(Y, r, θ)

and �(s, r, θ)|s= an
y0

. Finally, simulation result shows that as PJ

increases, the conditional SOP in (36) achieves its minimum
at a finite nonzero PJ .

B. Half-Duplex Bob in TAS Scheme

If Bob is in the HD mode, then the sum of ED’s SNR is

I H D
e = ∑

e∈�

X ′
1,e PT

dα
AEe

, where X ′
1,e is exponentially distributed

with unit mean. One can verify that the Laplace transform of
the PDF of I H D

e is

LI H D
e

(s) = E�

[∏
e∈�

1

1 + s PT
dα

AEe

]

= exp

[
− ρEπ R2F(1,

2

α
; 1 + 2

α
; − Rα

s PT
)

]
(37)

where F(1, 2
α ; 1+ 2

α ; − Rα

s PT
) is known as the Gaussian hyperge-

ometric function. Note that α is governed by the environment.
So, only the last parameter Rα

s PT
in F(1, 2

α ; 1 + 2
α ; − Rα

s PT
) is

controllable via PT , which takes real value between 0 to ∞.
One can verify that Rα

s PT
is independent of PT for β = 1, which

is similar as non-colluding HD TAS scheme.
Replacing LIe in (35) by LI H D

e
in (37) yields

P[ST AS
AB < Rs |h, gB] �

N∑
n=0

(
N

n

)
(−1)n exp

[
− ρEπ R2

F(1,
2

α
; 1 + 2

α
; − Rα

s PT
)

]∣∣∣∣
s= an

y0

(38)

where s = an
y0

. The result in (38) is that in (36) with PJ = 0
but the former is a much simplified form than the latter.
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C. Full-Duplex Bob in TAB Scheme Without
an From Alice

Conditional on h and gB , the legitimate channel’s SNR is
z as previously defined. For ε = 0 (i.e., without AN from
Alice), the SNR at the eth Eve is (from (11)):

SN RT AB
AEe

= X1�
dα

AEe
PT

+ m
dα

AEe
dα

BEe
X2

= X4
dα

AEe
PT

+ m
dα

AEe
dα

BEe
X2

. (39)

Similar to the analysis leading to (36), the SOP now is still
given by (36) but with s = an

z
β −1+ 1

β

. Hence, we have:

Proposition 5: For the TAB scheme with ε = 0,

P[ST AB
AB < Rs |h, gB]

�
N∑

n=0

(
N

n

)
(−1)n exp

[
− ρE

∫ R

0

∫ 2π

0

s

fe
E1(K (s))

eK (s)dθrdr

]∣∣∣∣
s= an

z
β −1+ 1

β

. (40)

Since ‖h‖2 ≥ max
i∈M

|hi |2, the TAB scheme always outper-

forms the TAS scheme.
1) Bob in Half-Duplex Mode: In this case, we have PJ = 0

and z = PT ‖h‖2. The SOP expression is similar to (38) and
can be expressed as

P[ST AB
AB < Rs |h, gB]

�
N∑

n=0

(
N

n

)
(−1)n exp

[
− ρEπ R2

F(1,
2

α
; 1 + 2

α
; − Rα

s PT
)

]∣∣∣∣
s= an

z
β −1+ 1

β

. (41)

D. Full-Duplex Bob in TAB Scheme With an From Alice

For the TAB scheme with ε > 0, we have

P[ST AB
AB < Rs |h, gB]

= P[ 1 + SN RT AB
AB

1 + ∑
e∈�

SN RT AB
AEe

< 2RS |h, gB]

(a)

� P[
∑
e∈�

X4
ε

M−1 X4,4 + fe X2
>

z

β
+

1
β − 1

1 − ε
]

(b)

�
N∑

n=0

(
N

n

)
(−1)nL Ĩe

( an

z
β +

1
β −1

1−ε

)
(42)

where the parameters defined after (13) have been applied
and Ĩe = ∑

e∈�

X4
ε

M−1 X4,4+ fe X2
. Here, (a) is due to neglecting

Fig. 2. Comparison of the TAS and TAB schemes in terms of Pout against
non-colluding EDs.

the background noise n A,Ee (k) at Eve (but not the noise at
Bob), and (b) is due to the application of the normalized
gamma random variable as discussed before. Similar to that
in Appendix J, one can verify

L Ĩe
(s) = exp

[
− ρE s

∫ R

0

∫ 2π

0

∫ ∞

x=0

e−sx

(1 + fex)

× 1

(1 + ε
M−1 x)M−1 dxdθrdr

]
. (43)

V. SIMULATIONS

In this section, we illustrate the secrecy outage probabilities
(SOP) of the TAS and TAB schemes against randomly located
EDs. We consider both colluding and non-colluding cases.
Most of our simulation results provide comparisons between
TAS and TAB schemes. Moreover, we present the secrecy
performance enhancement of the TAB scheme using AN.

Throughout the simulations, we will assume unit noise
variance, α = 2, PT = 40 dB, RD = 4 b/s/Hz, ρE = 1,
M = 5, d = 1 and R = 5. Unless otherwise specified,
we let PJ , ρ and ε be 40 dB, 0.01 and 0.01 respectively.
Since Alice can estimate the legitimate channel and know the
self interference channel of Bob, therefore, we will first study
the SOP under conditional h and gB for the TAB scheme.
Considering RD = 4, ε can be set between 0 and 0.53 to
maintain a nonzero desired data transmission for the above
given ρ and PJ .

In Fig. 2, the SOP of the TAS and TAB schemes for
non-colluding EDs is illustrated under different values of
PJ and ρ. For the TAB scheme, ε = 0 is chosen.
We see that as ρ decreases, the optimum jamming power
increases which results in lower SOP for both TAS and TAB
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Fig. 3. Comparison of theoretical results (“TR”) and simulation results
(“MC”) of the TAB scheme in terms of Pout versus PJ .

Fig. 4. Illustration of Pout = 1− Pcon versus PJ and ε for the TAB scheme.

schemes. And the TAB scheme outperforms the TAS scheme
substantially.

In Fig. 3, we compare the Monte Carlo (MC) simulation
results (using NR = 105 independent runs) with our theoretical
results shown in (24) where R = 5 and ρE = 10. We
observe that the two results match each other very well. This
consistency between theory and simulation holds for all other
results we have tested under a sufficiently large NR .

Fig. 4 shows the SOP of the TAB scheme with ε > 0.
We see that the SOP decreases as ε increases, the optimal
value of PJ is dependent on ε but the dependence is rather
weak (or not very sensitive).

To illustrate the TAS and TAB schemes with user selection
(i.e., TAS-US and TAB-US), we consider PT = 50 dB, α = 2,
β = 2, ε = 0.00001, ρU = 0.5 and ρE = 0.1 unless otherwise
specified.

Fig. 5 shows the SOP of the TAS-US and TAB schemes
for the nearest user. As the number M of transmit antennas
increases, the performance gap between TAB-US and TAS-US
increases rapidly for ε > 0. More importantly, we see that only
a small fraction (e.g., ε = 0.00001 or εPT = 0 dB which is
at the same level as the noise variance) of the transmit power
used for AN makes a huge difference.

Fig. 6 illustrates the effects of ED’s density ρE on the SOP
of TAS-US and TAB-US for the nearest user. And Fig. 7
illustrates the effects of the users’ density ρU on the SOP
of TAS-US and TAB-US for the nearest user. We see that
SOP increases as ρE increases but decreases as ρU increases.
The performance gap between TAS-US and TAB-US remains

Fig. 5. SOP of TAS-US and TAB-US for the nearest user vs the number of
transmit antennas against non-colluding EDs.

Fig. 6. SOP vs intensity of eavesdroppers for ordered users against non-
colluding EDs.

Fig. 7. SOP vs intensity of users against non-colluding EDs.

approximately the same as ρE increases but increases as ρU
increases.

Fig. 8 shows the SOP of the TAS-US and TAB-US schemes
as functions of the order index (n) of users (from nearest to
farthest). We see that the SOP increases as n increases and the
performance gap between TAB-US and TAS-US reduces as n
increases.

Now, we consider the TAB and TAS schemes for colluding
EDs. We assume that there are two circles of radii Rg and R
around Alice, and EDs exist and collude within the two circles.
In our experiment, we let Rg = 0.1 and R = 5. Although the
closed form expressions of the SOP in this case are all in
series expansions, choosing N = 20 (e.g., see (36)) provided
good approximations.
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Fig. 8. SOP vs the order number of user against non-colluding EDs.

Fig. 9. Comparison of the TAB and TAS schemes in terms of Pout against
colluding EDs.

Fig. 10. Comparison of the TAB and TAS schemes in terms of Pout against
colluding and non-colluding EDs.

Fig. 9 shows the SOP of TAS and TAB schemes for
colluding EDs as functions of the self-interference power gain
ρ and the jamming power PJ from full-duplex Bob. We see
that the optimal PJ increases as the self-interference power
gain ρ decreases, and the optimized SOP reduces significantly
as ρ decreases.

Finally, Fig. 10 illustrates the differences of SOP
for colluding and non-colluding EDs. We see that the
performance gap between colluding and non-colluding is
large. But the TAB scheme is consistently better than the
TAS scheme in terms of SOP.

VI. CONCLUSION

In this paper, we presented closed form expressions
of secrecy outage probabilities (SOP) of several schemes
for multi-antenna downlink transmissions against randomly

located eavesdroppers (EDs). We considered both transmit
antenna selection (TAS) and transmit antenna beamform-
ing (TAB) schemes, full-duplex (FD) and half-duplex (HD)
receivers/users, colluding and non-colluding EDs, the use of
artificial noise (AN) from transmitter, and user selection based
on their distances to the transmitter. For all these schemes
and scenarios, we assume that EDs are distributed as the
Poisson Point Process (PPP). For user selection, we also
assume the PPP model for users’ locations. The closed-form
expressions of SOP are useful for numerical computations
needed for network design purposes. We provided numerical
examples to illustrate the usefulness of these expressions,
which also revealed important observations such as the optimal
jamming power from FD users and the impacts of several other
parameters on SOP.

APPENDIX A
PROOF OF (14)

It follows from (1), (7) and (8) that

Pcon,�,Y
�= P[ST AS

AB > Rs |�, Y ]

= P

⎡
⎣ 1 + SN RT AS

AB

1 + max
e∈�

SN RT AS
AEe

> 2RS

∣∣∣∣∣∣�, Y

⎤
⎦

= P

[
max
e∈�

SN RT AS
AEe

< Y0

∣∣∣∣�, Y

]

=
∏
e∈�

P

⎡
⎢⎣ |h Ai∗ Ee |2

dα
AEe
PT

+ dα
AEe

dα
BEe

m|h B Ee |2
< Y0

∣∣∣∣∣∣∣�, Y

⎤
⎥⎦

=
∏
e∈�

(
1 − �(Y, re, θe)

)
, (44)

where (due to the lemma shown next)

�(Y, re, θe) = exp(− dα
AEe
PT

Y0)

1 + m(
dAEe
dBEe

)αY0

We have applied the following lemma.
Lemma 3: If A and B (like |h Ai∗ Ee |2 and |h B Ee |2 ) are two

independent random variables with the exponential distribution
of unit mean, then P( A

a+bB < c) = 1 − e−ac

1+bc .
Note that we are only interested in such Rs that log2(1 +

SN RAB ) ≥ Rs , which implies Y0 ≥ 0.
Let Pcon,Y be Pcon conditional only on Y . Applying the

Campbell’s theorem [38] to (44) yields:
Pcon,Y = E�{P[SN RT AS

AB > Rs |�, Y ]}
= exp

[
− ρE

∫ R

0

∫ 2π

0
�(Y, r, θ)rdθdr

]
.

APPENDIX B
A SIMPLIFICATION OF THE DOUBLE INTEGRAL IN (14)

Assume Rs = 0 and α = 2. Then,
β = 1 and Y0 = Y . Let the distance between Alice

and Bob be d . Then,
dα

AE
dα

BE
= d2

AE
d2

BE
= r2

r2+d2−2rd cos θ
, and
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furthermore∫ R

0

∫ 2π

0
�(Y, r, θ)rdθdr

=
∫ R

0

∫ 2π

0

exp(−Y r2

PT
)

1 + mY r2

r2+d2−2rd cos θ

rdθdr

=
∫ R

0

∫ 2π

0
exp(−Yr2

PT
)

×
(
(1 + mY )r2 + d2 − 2rd cos θ

)− mYr2

(1 + mY )r2 + d2 − 2rd cos θ
rdθdr

= 2π

∫ R

0
exp(−Yr2

PT
)rdr

−
∫ R

0

∫ 2π

0

mYr3 exp(−Y r2

PT
)

(1 + mY )r2 + d2 − 2rd cos θ
dθdr, (45)

where the first term can be obviously reduced. The second
term in (45), can be simplified by applying

∫ 2π
0

1
a−b cos θ dθ =

2π√
a2−b2

identity. Then, (45) yields

∫ R

0

∫ 2π

0
�(Y, r, θ)rdθdr

= π PT

Y

(
1 − exp

(
−Y R2

PT

))
− 2πmY

×
∫ R

0

r3 exp(−Y r2

PT
)√(

(1 + mY )r2 + d2
)2 − 4r2d2

dr

= π PT

Y

(
1 − exp

(
−Y R2

PT

))
− πmY

×
∫ R2

0

exp
(
− Y r

PT

)
r√(

(1 + mY )r + d2
)2 − 4rd2

dr. (46)

which is a much simplified expression of the double integral
in (14).

APPENDIX C
PROOF OF LEMMA 2

Here, Z = ‖h‖2

1
PT

+ρm|gB |2 . Lets consider, Y3 = ‖h‖2, Y2 =
1

PT
+ρm|gB|2 and Z = Y3

Y2
. Note that fY3(x) = 1

�(M) x M−1e−x

and fY2(x) = 1
ρm ex p(− x− 1

PT
ρm ), x > 1

PT
.

FZ (z) = P[Y3

Y1
< z]

= P[|gB |2 >
Y3 − z

PT

zρm
]

=
∫ ∞

y=0
fY3(y)dy

∫ ∞

x=
y− z

PT
zρm

e−xdx

= 1

�(M)

∫ ∞

y=0
y M−1e−ye−

y− z
PT

zρm dy

= e
1

ρPJ

�(M)(1 + 1
zρm )M

∫ ∞

y=0

(
y(1 + 1

zρm
)
)M−1

× e−y(1+ 1
zρm )d
(
y(1 + 1

zρm
)
)

= e
1

ρPJ

(1 + 1
zρm )M

. (47)

If m > 0 then, fZ (z) = e
1

ρPJ Mρm zρm M−1

(1+zρm)M+1 . Ror m = 0, Z
follows scaled CHI squared distribution.

APPENDIX D
PROOF OF (24)

The secrecy of the TAB scheme can be analyzed as follows.

Pcon,�,h,gB

�= P[SAB > RS |�, h, gB]
= P[SAB > RS |�, z]
= P

[
max
e∈�

SN RT AB
AEe

<
SN RAB

β
−(1− 1

β
)

∣∣∣∣�, z

]

= P

[
max
e∈�

X1�

dα
AE + PJ dα

AEe
dα

BEe
X2 + ε PT

M−1 X1(1 − �)

<
‖h‖2

β(1 + ρ|gB|2 PJ )
−

1 − 1
β

(1 − ε)PT

∣∣∣∣∣�, z

]

=
∏
e∈�

P

[
X1�

PJ dα
AEe

dα
BEe

(
X2 + dα

BE
PJ

)
+ ε PT

M−1 X1(1 − �)

< c

∣∣∣∣�, z

]

=
∏
e∈�

P

[
� <

ε
M−1 + fe

X3
X1

ε
M−1 + g

∣∣∣∣∣�, z

]
, (48)

where X3 = X2 + dα
BE
PJ

, and X1, X2 and � are independent
variables as defined previously (after (11)). It is easy to verify
that f X2

X1

(x) = M(1 + x)−(M+1), which is similar to the

F(2, 2M) distribution [37]. When large scale channel gain of
jamming signal at ED is higher than noise level, i.e., PJ

dα
BE

� 1,
the shift between X3 and X2 becomes smaller. Furthermore,

one can verify that f X3
X1

(x) ≈ e
dα

BE
PJ M(1+x)−(M+1). It follows

from the PDF f�(x) shown earlier that the CDF of � is
F�(x) = 1 − (1 − x)M−1. Then, it is shown in Appendix D-A
that

P

[
� >

ε
M−1 + fe

X3
X1

ε
M−1 + g

|�, z

]
= e

dα
BE
PJ

(1 + fe
g )(1 + ε

(M−1)g )M−1
,

(49)

where g is a function of Z as defined before. Averaging over
the PPP distribution of the locations of the Eves, one can verify
(using the Campbell’s theorem) that

Pcon,h,gB = Pcon,z
�= E�{P[SAB > RS |�, h, gB]}

= E�

[∏
e∈�

(
1 − P

[
� >

ε
M−1 + fe

X3
X1

ε
M−1 + g

|�, z

])]
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= E�

⎡
⎢⎣∏

e∈�

(
1 − e

dα
BE
PJ

(1 + fe
g )(1 + ε

(M−1)g )M−1

)⎤⎥⎦
= exp

[
− ρE

∫ R

0
r
∫ 2π

0
�(

1

g
; r, θ)dθdr

]
,

where z is a realization of Z , g is a function of z, and

�(
1

g
; r, θ) = e

dα
BE
PJ

(1 + fe
g )(1 + ε

(M−1)g )M−1
.

A. Proof of (49)

The complement of (49) is

P[� <

ε
M−1 + fe

X3
X1

ε
M−1 + g

|�, z]

=
∫ ∞

0
F�

(
ε

M−1 + fex
ε

M−1 + g

)
f X3

X1

(x)dx

=
∫ g

fe

0
F�

(
ε

M−1 + fex
ε

M−1 + g

)
f X3

X1

(x)dx

+
∫ ∞

g
fe

F�

(
ε

M−1 + fex
ε

M−1 + g

)
f X3

X1

(x)dx . (50)

Here, F�(y) = 1 for y ≥ 1, so F�

( ε
M−1 + fe x

ε
M−1 +g

)
= 1 for

x ≥ g
fe

. Then (50) continues as follows:∫ g
fe

0
F�

(
ε

M−1 + fex
ε

M−1 + g

)
f X3

X1

(x)dx +
∫ ∞

g
fe

f X3
X1

(x)dx

=
∫ g

fe

0

⎡
⎣1 −
(

1 −
ε

M−1 + fex
ε

M−1 + g

)M−1
⎤
⎦ f X3

X1

(x)dx

+ 1 −
∫ g

fe

x=0
f X3

X1

(x)dx

= 1 − Me
dα

BEe
PJ gM−1

( ε
M−1 + g)M−1

∫ g
fe

0

(1 − fe
g x

1 + x

)M−1 dx

(1 + x)2 . (51)

Let k = fe
g and z = 1

1+x . Then ( 1−kx
1+x )M−1 = k M−1

( − 1 +
z k+1

k

)M−1. The above leads to

P[� <

ε
M−1 + fe

X3
X1

ε
M−1 + g

|�, z]

= 1 − Me
dα

BEe
PJ (gk)M−1

( ε
M−1 + g)M−1

∫ 1

k
k+1

(− 1 + z(
k + 1

k
)
)M−1

dz.

(52)

Now, using y = z( k+1
k ) − 1, we have

P[� <

ε
M−1 + fe

X3
X1

ε
M−1 + g

|�, h, gB]

= 1 − Me
dα

BEe
PJ k M

(1 + k)(1 + ε
(M−1)g )M−1

∫ y= 1
k

y=0
y M−1dy

= 1 − e
dα

BEe
PJ

(1 + fe
g )(1 + ε

(M−1)g )M−1
. (53)

APPENDIX E
UNIMODALITY OF �

From (25), we have

�(
1

g
; r, θ) = e

dα
BEe
PJ(

1 + fe
g

)
︸ ︷︷ ︸

�1(PJ )

1(
1 + ε

(M−1)g

)M−1

︸ ︷︷ ︸
�2(PJ )

, (54)

where �1(PJ ) and �2(PJ ) are shown below to be positive
and strictly monotonically decreasing and increasing functions,
respectively, w.r.t. PJ , i.e., �′

1(PJ ) < 0 and �′
2(PJ ) > 0 for

any PJ ≥ 0. We will apply x = 1
PJ

where x ∈ (0,∞) as PJ ∈
(0,∞). Now, recall fe = (

dAEe
dBEe

)α PJ
PT

and g = β(1+ρ PJ |gB |2)
PT ‖h‖2 .

Then, it follows that

�1(x) = exdα
BEe

(
1 − ke

x + ke + ρ|gB |2
)

�′
1(x) = �1(x)

(
dα

B Ee
+ ke

(x + ke + ρ|gB|2)(x + ρ|gB |2)
)

,

(55)

where ke =
(

dAEe
dBEe

)α ‖h‖2

β , and �1(x) and �′
1(x) are strictly

positive. Also,

�2(x) = 1(
1 + kx

x+ρ|gB |2
)M−1

�′
2(x) = −�2(x)

(M − 1)kρ|gB|2
(x + kx + ρ|gB |2)(x + ρ|gB|2) , (56)

where k = ε PT ||h||2
(M−1)β , and �2(x) and �′

2(x) are strictly positive
and negative respectively.

Next, we will show that �(x) = �1(x)�2(x) is a unimodal
function with minimum at a finite nonzero x . Consider the
following stationary condition on x �′(x) = �1(x)�′

2(x) +
�2(x)�′

1(x) = 0 or equivalently
�′

2(x)
�2(x) = −�′

1(x)
�1(x) which can

be further reduced to

�′
2(x)

�2(x)
= −�′

1(x)

�1(x)

dα
B Ee

+ M

x + ρ|gB|2 = 1

x + ke + ρ|gB |2 + M − 1

x + ρ|gB |2
k+1

. (57)

Using y = x + ρ|gB|2 in (57) and after some algebraic
manipulations, we get

y3 +
(

ke − kρ|gB|2
k + 1

)
y2 +
(

ke

dα
B Ee

− kρ|gB|2
k + 1

(ke

+ M − 1

dα
B Ee

)

)
y − Mkekρ|gB|2

dα
B Ee

(k + 1)
= 0, (58)

which is a cubic polynomial equation. Based on the character-
istics of cubic polynomials, (58) has one, two or three roots

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on August 10,2022 at 20:39:27 UTC from IEEE Xplore.  Restrictions apply. 



2072 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

and one inflection point [43]. Furthermore, a cubic function
is anti-symmetric around its inflection point. To show that
(58) has only one positive solution, we just need to show
that the inflection point is negative. The inflection point is
where the second-order derivative of the cubic function is
zero, i.e., 6y − 2(ke − kρ|gB |2

k+1 ) = 0, or equivalently x =
− 2k+3

3(k+1)ρ|gB|2 − ke
3 , which in this case is indeed negative.

Finally, it is easy to verify that �( 1
g ; r, θ) is a decreasing

function of PJ at PJ = 0. Therefore, we have shown that
�( 1

g ; r, θ) for any r and θ has its minimum at a positive
finite PJ .

APPENDIX F
PROOF OF (27)

Assume α = 2 and β = 1. Then, g = 1/z, and∫ R

0

∫ 2π

0
�(z; r, θ)dθrdr

= 1

(1 + zε
M−1 )M−1

∫ R

0

∫ 2π

0

1

1 + zm r2

r2+d2−2rdcosθ

dθrdr

= 1

(1 + zε
M−1 )M−1

∫ R

0

∫ 2π

0

(
1

− zmr2

(1 + zm)r2 + d2 − 2rdcosθ

)
dθrdr, (59)

where∫ 2π

0

(
1 − zmr2

(1 + zm)r2 + d2 − 2rdcosθ

)
dθ

= 2π

(
1 − 1√

1 + (r+d)2

r2zm

√
1 + (r−d)2

r2zm

)
. (60)

Combining (59) and (60) yields (27).

APPENDIX G
PROOF OF (29)

Assuming PJ = 0 and a large PT , it follows that c =
‖h‖2

β − 1− 1
β

(1−ε)PT
≈ ‖h‖2

β and z = PT ‖h‖2. And from (48),
we have

P[SAB > RS |�, h, gB]
=
∏
e∈�

P
[ X1�

dα
AEe

+ ε PT
M−1 X1(1 − �)

< c|�, h, gB
]

=
∏
e∈�

P
[ X4

dα
AEe

+ ε PT
M−1 X4,4

<
‖h‖2

β
|�, h, gB

]
, (61)

where X4 = �X1 is exponentially distributed with mean =
1 and X4,4 = (1 − �)X1 is independent of X4 and has the
�(M − 1, 1) distribution. Then,

P
[ X4

dα
AEe

+ ε PT
M−1 X4,4

<
‖h‖2

β
|�, h, gB

]
= P
[
X4 <

(‖h‖2

β
dα

AEe
+ ‖h‖2

β

εPT y

M − 1

)
|�, h, gB

]
=
∫ ∞

0
FX4

(‖h‖2

β
dα

AEe
+ ‖h‖2

β

εPT y

M − 1

)
fX4,4(y)dy

=
∫ ∞

0

[
1 − exp

{
−
(‖h‖2

β
dα

AEe
+ ‖h‖2

β

εPT y

M − 1

)}]

× fX4,4(y)dy

= 1 −
∫ ∞

0
exp

{
−
(‖h‖2

β
dα

AEe
+ ‖h‖2

β

εPT y

M − 1

)}

× y M−2e−y

� (M − 1)
dy

= 1 − e− ‖h‖2

β dα
AEe

�(M − 1)

∫ ∞

0
e−(1+ ‖h‖2

β
εPT
M−1 )y y M−2dy

= 1 − e
− z

β

dα
AEe
PT

(1 + z
β

ε
M−1 )M−1 (62)

= 1 − �(z; r, θ), (63)

And then∫ R

0

∫ 2π

0
�(z; r, θ)dθrdr

= 2π

(1 + εz
β(M−1) )

M−1

∫ R

0
e
− zrα

βPT rdr

= 2πβ
2
α

α(‖h‖2)
2
α (1 + ε PT

M−1
‖h‖2

β )M−1

∫ Rα ‖h‖2

β

0
e−y y

2
α −1 ydy

= 2πβ
2
α

α(‖h‖2)
2
α (1 + ε PT

M−1
‖h‖2

β )M−1
γ
( 2
α

,
Rα‖h‖2

β

)
. (64)

which is (29).

APPENDIX H
PROOF OF (30)

P[SABn > Rs |dABn ,�E ]
= P[max

e∈�E
SN RAEe <

SN RABn

β
+ (

1

β
− 1)]

= P[max
e∈�E

(1 − ε)PT X4

dα
AEe

+ ε PT
M−1 X4,4

<
(1 − ε)PT X2,n

βdα
ABn

+ (
1

β
− 1)]

≈ P[max
e∈�E

X4

dα
AEe

+ ε PT
M−1 X4,4

<
X2,n

βdα
ABn

] (for large PT )

And then

P[max
e∈�E

X4

dα
AEe

+ ε PT
M−1 X4,4

<
X2,n

βdα
ABn

]

=
∏

e∈�E

P[ X4

X2,n
<

dα
AEe

+ ε PT
M−1 X4,4

βdα
ABn

]

=
∏

e∈�E

∫ ∞

0
fX4,4(x)F X4

X2,n

(
dα

AEe
+ ε PT

M−1 X4,4

βdα
ABn

)
dx

=
∏

e∈�E

∫ ∞

0
fX4,4(x)

⎡
⎣1 −
(

1 + dα
AEe

+ ε PT
M−1 X4,4

βdα
ABn

)−M
⎤
⎦ dx

=
∏

e∈�E

⎛
⎝1 −
∫ ∞

0
fX4,4(x)

(
1 + dα

AEe
+ ε PT

M−1 x

βdα
ABn

)−M
⎞
⎠
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=
∏

e∈�E

(
1 − 1

( ε PT
(M−1)βdα

ABn
)M

U(M, 2,
(M − 1)βdα

ABn

εPT

+ (M − 1)dα
AEe

εPT
)
)
, (65)

where U denotes the confluent hypergeometric function of
the second kind [42]. After applying Campbell’s theorem [38]
and setting dAEe = r , we have

P[SAB > Rs |dABn ]
= exp

(− 2πρE (
(M − 1)βdα

ABn

εPT
)M

×
∫ ∞

0
U(M, 2,

(M − 1)βdα
ABn

εPT
+ (M − 1)rα

εPT
)rdr
)
.

(66)

Further simplification can be done by using proof as shown
in subsection VI-B:(

(M − 1)βdα
ABn

εPT

)M ∫ ∞

0
U(M, 2,

(M − 1)βdα
ABn

εPT

+ (M − 1)rα

εPT
)rdr

= 1

α

(βdα
ABn

)M B(M − 2
α , 2

α )

( ε PT
M−1 )M− 2

α

U(M − 2

α
, 2 − 2

α
,

(M − 1)βdα
ABn

εPT
). (67)

B. Proof of (67)

Using the change of variables c = (M−1)βdα
ABn

ε PT
, we can write

(
(M − 1)βdα

ABn

εPT
)M
∫ ∞

0
U(M, 2,

(M − 1)βdα
ABn

εPT

+ (M − 1)rα

εPT
)rdr

= cM

�(M)

∫ ∞

r=0

∫ ∞

t=0
e
−(c+ (M−1)rα

εPT
)t

t M−1(1 + t)2−M−1dtrdr

= cM

�(M)

∫ ∞

t=0

(
e−ct t M−1(1 + t)1−M

∫ ∞

r=0
e
− (M−1)rα

εPT
t
rdr

)
dt .

Using another change of variables x = (M−1)rα

ε PT
t , the above

becomes

( ε PT
M−1 )

2
α cM�( 2

α )

α�(M)

∫ ∞

0
e−ct t M− 2

α −1

× (1 + t)2− 2
α −M+ 2

α −1dt

= ( ε PT
M−1 )

2
α cM�( 2

α )�(M − 2
α )

α�(M)

1

�(M − 2
α )

×
∫ ∞

0
e−ct t M− 2

α −1(1 + t)2− 2
α −M+ 2

α −1dt

= ( ε PT
M−1 )

2
α cM B(M − 2

α , 2
α )

α

× U(M − 2

α
, 2 − 2

α
,
(M − 1)βdα

ABn

εPT
). (68)

APPENDIX I
PROOF OF (31)

When ε = 0, we have

P[SABn > Rs |dABn ,�E ]
= P[max

e∈�E

PT X4

dα
AEe

<
PT X2,n

βdα
ABn

+ 1

β
− 1]

≈ P[max
e∈�E

X4

dα
AEe

<
X2,n

βdα
ABn

] (for large PT )

=
∏

e∈�E

P[ X4

X2,n
<

dα
AEe

βdα
ABn

], (69)

where X4
X2,n

follows an F-distribution, i.e., f X4
X2,n

(x) = M(1 +
x)−(M+1) and F X4

X2,n

(x) = 1 − (1 + x)−M . Then,

P[SABn > Rs |dABn ,�E ]=
∏

e∈�E

(
1−(1+ dα

AEe

βdα
ABn

)−M ). (70)

After applying the Campbell’s theorem [38] and setting
dAEe = r and dABn = x , we have

P[SABn > Rs |dABn ] = exp

(
− 2

α
πρEβ

2
α d2

ABn

× B(M − 2

α
,

2

α
)

)
. (71)

The computation of averaged SOP requires the PDF of the
distance of the nth nearest user. The following lemma is known
[35]:

Lemma 4: The PDF of dABn is

fdABn
(x) = exp(−ρU πx2)

2ρn
U πnx2n−1

�(n)
. (72)

It now follows from this lemma and (71) that

P[SAB > Rs] =
∫ ∞

0
exp

(
− 2

α
πρEβ

2
α x2 B(M − 2

α
,

2

α
)

)

× exp(−ρU πx2)
2ρn

U πn x2n−1

�(n)
dx

= 1(
1 + ρE

ρU

2
αβ

2
α B(M − 2

α , 2
α )

)n .

APPENDIX J
PROOF OF (34)

By definition, we have

LIe (s) = E�EIe

[
exp(−s

∑
e∈�

|h Ai∗ Ee |2
dα

AEe
PT

+ dα
AEe

dα
BEe

m X2

)
]

= E�

[ ∏
e∈�

E[exp(−s He)]
]
, (73)

where He = 1
fe

|h Ai∗ Ee |2
dα

BEe
PJ

+X2

= 1
fe
Xe. From Lemma 1 or (18)

with M = 1, we know fXe (xe) = e
− dα

BEe
PJ

xe

(
1

(1+xe)2 +
dα

BEe
PJ

1+xe

)
.
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Then,

E[e−s He]
=
∫ ∞

0
e−she fHe (he)dhe =

∫ ∞

0
e−s xe

fe fXe (xe)dxe

=
∫ ∞

0
e−

(s+
dα

AEe
PT

)

fe
xe

(
1

(1 + xe)2 + dα
B Ee

PJ

1

(1 + xe)

)
dxe

=
∫ ∞

0
e−K (s)xe

(
1

(1 + xe)2 + (K (s) − s

fe
)

1

(1 + xe)

)
dxe

=
∫ ∞

0

e−K (s)xe

(1 + xe)2 dxe + (K (s) − s

fe
)

∫ ∞

0

e−K (s)xe

(1 + xe)
dxe

= 1 − eK (s)K (s)E1(K (s)) + (K (s) − s

fe
)eK (s)E1(K (s))

= 1 − s

fe
E1(K (s))eK (s), (74)

where E1(a) = ∫∞
0

e−ax

1+x dx and K (s) = s+ dα
AEe
PT

fe
. So we get:

LIe (s) = E�

[∏
e∈�

E[exp(−s He)]
]

= E�

[∏
e∈�

1 − s

fe
E1(K (s))eK (s)]

= exp

[
− ρE

∫ R

0

∫ 2π

0

s

fe
E1(K (s))eK (s)dθrdr

]
.

(75)
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