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Abstract—In this paper, we propose an algorithm for detecting
the number of Gaussian sources received by an array of
a number ( ) of sensors. This algorithm is based
on the minimum description length (MDL) principle using the
outer-products of the array output. We show that as long as the
covariance matrix of the array output has the full rank , the co-
variance matrix of a vectorized outer-product of the array output
has the full rank -squared, which meets a validity condition
of the MDL algorithm. We show by simulation that the MDL
algorithm can perform substantially better than some relevant
algorithms. A necessary identifiability condition is also obtained,
for uncorrelated sources.

Index Terms—Array output, detection, MDL, outer-product, re-
dundancy array.

I. INTRODUCTION

D ETECTION and estimation of a number of sources using
a smaller number of sensors are an important research

topic. There are two sub-categories of this topic: signals with
Gaussian properties and signals with non-Gaussian properties.
For signals with Gaussian properties, one must exploit array
configurations [1]–[4]. For signals with non-Gaussian proper-
ties, one could exploit the structures of the higher-order statis-
tics of array outputs [5]–[7]. The contribution of this paper falls
into the first category where only the second-order statistics are
utilized and the exploitation of array configuration is essential.
The works in [1]–[3] addressed an issue known as minimum

redundancy of arrays while the recent work [4] applied the no-
tion of nested arrays. A nested array is a special type of redun-
dancy array and is able to provide all covariance lags. It pos-
sesses the advantage of easy construction, as compared with
minimum redundancy arrays [8]. The concept of subspace tech-
niques such as MUSIC and ESPRIT was applied in [4] to the
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outer-products of the array output for the estimation of the an-
gles (-of-arrival) of plane wave sources impinging on a nested
array.
In this paper, we consider the detection of the number of

sources onto a non-uniform linear array (NLA) of a number
( ) of sensors. The notation of the NLA in this

paper is confined to either a nested array or a minimum redun-
dancy array. The detection algorithm used in [4] is based on
the eigen-thresholding (ET) approach proposed in [9]. The se-
quential noise-subspace equalization (SNSE) algorithm in [3]
can also be used for such a problem. The SNSE algorithm trans-
forms the augmented Toeplitz covariance matrix (defined by [1,
(7)]) into a set of positive definite Toeplitz matrices and deter-
mines the number of sources using the likelihood ratios of those
matrices. Both methods require a threshold to separate a subset
of small values from another subset of large values. Generally
speaking, the thresholds for the two methods depend on un-
known parameters such as angles, source powers and the noise
variance.
To overcome this shortcoming, in this paper, we propose a

detection algorithm based on the minimum description length
(MDL) principle proposed in [11], using a likelihood function
of the outer-products of the array output. This method eliminates
the need for a threshold. It requires more computations than the
ET algorithm, but is more computationally efficient than the
SNSE algorithm. We will show by simulation that the MDL
algorithm performs far better than the two algorithms over a
wider range of the number of snapshots (of the array output).
The most existing MDL-based algorithms are developed for

the detection of sources, using uniform linear arrays (ULAs).
In [20], Wax and Kailath derived an MDL criterion using the
eigenvalues of the covariance matrix of the array output. In [22],
Wu and Yang used the Gershgorin radii for the signal and noise
subspace eigenvalues of a unitary transformed covariance ma-
trix of the array output, to implement three algorithms. Among
them, one algorithm can provide substantial improvement to
the MDL algorithm in [20]. Recently, Huang and So [24] pro-
posed an MDL criterion based on the linear shrinkage principle,
aiming to improve detection accuracy of the MDL algorithm
in [20] for large arrays. To handle coherent sources, Wax and
Ziskind in [21] constructed signal- and noise-subspace projec-
tion matrices and used them to split the array measurement into
the components in the two subspaces. They finally derived an
MDL criterion which is represented using the eigenvalues of the
covariance matrix of the noise subspace component. In that al-
gorithm, a multi-dimensional search is needed to determine the
maximum likelihood estimates of angles for the two projection
matrices. To reduce the computational load of the algorithm in
[21], Huang et al. in [23] proposed a scheme without requiring
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angle estimates and eigen-decomposition. That scheme calcu-
lates the covariance matrix of the noise subspace component
using a set of orthogonal matched filters. Those matched filters
were derived from arraymeasurement only and the noise covari-
ance matrix becomes a diagonal matrix due to the orthogonality
between those matched filters. Their MDL criterion was imple-
mented using those diagonal elements.
A common feature of the algorithms mentioned in the pre-

vious paragraph, is that they all require separable signal and
noise subspaces. For NLAs with fewer sensors than sources, the
covariance matrix (denoted by ) of the array output does not
satisfy this requirement because the signal subspace expands
into the noise subspace. In [16], to find the angles of sources
when there are more sources than sensors, the covariance ma-
trix (denoted by ) of a virtual ULA is constructed from the
elements of corresponding to distinct covariance lags. The
virtual ULA contains more sensors than sources. Hence the con-
ventional MUSIC can be applied.
In this paper, we also apply the algorithms in [22] and [24]

to an estimate of and compare their performances with that
of our proposed MDL algorithm in simulation. However, one
should note that those algorithms no longer possess the property
of the minimum description length for either the array output or
the virtual array output. In contrast, our method is still of the
minimum description length for the virtual array output. Since
only independent sources are considered in this paper, the al-
gorithm in [21] will not be considered. For of a virtual
ULA, the corresponding array measurement does not seem to
be readily found. Thus the algorithm in [23] will not be consid-
ered either.
The non-iterative algorithms in [22], [24] and [9] are also

compared, with respect to computational complexity. Our anal-
ysis shows that the proposed MDL algorithm requires more
computation than the algorithms in [22] and [9], but still offers
computational advantage over the algorithm in [24].
Identifiability for parameter estimation is also investigated.

An identifiability condition is derived for uncorrelated sources
in terms of the number of sources and the number of sensors in
the array. This condition provides a guide on the choice of array
size for unique parameter estimation.
The paper is organized as follows. Section II presents

the measurement model and a probability density function.
Section III reveals an equivalence between the method in [4]
and that in [1] for angle estimation, formulates the MDL algo-
rithm and presents the identifiability condition. In Section IV,
we provide a detailed analysis on computational complexity
for the MDL algorithm, the ET, SNSE, Gershgorin-radii-based
and linear-shrinkage MDL (LSMDL) algorithms, and present
simulation results to compare their performances. Section V
proves the full rank property of the covariance matrix of the
outer-products of the array output. Section VI concludes the
paper.
For readers’ convenience, some frequently used vectors and

matrices are listed below:

the identity matrix;
the -th column of ;

an matrix by deleting the first rows
of ;

an matrix containing the first columns of
;

the matrix with all elements equal to zero.

. . .
(1)

. . . (2)

(3)

Note that , and are permutation matrices.

II. MEASUREMENT MODEL

Consider an -sensor non-uniform linear array, where the
-th sensor is located at the position for ,

for and is chosen for convenience.
far-field narrow-band plane wave sources are incident onto the
array, from distinct angles . The angle is measured
from the normal of the (linear) array and .
Then the array manifold vector takes up the following form:

(4)

where is the center wavelength of the waves and the super-
script denotes the transpose, and we can write the -th snap-
shot of the array output as

(5)

where is the total number of snapshots,
is an array manifold ma-

trix, is an 1 source vector containing the received
complex envelops of the waves, and is an 1
measurement noise vector.
We assume that (a) ’s are white both spatially and tempo-

rally; (b) ’s are white temporally; (c) and are indepen-
dent. Also, the source vector and noise vector are complex cir-
cular Gaussian of zero mean, and hence

(6)

(7)

where is the noise variance, is the source covariance ma-
trix, stands for the statistical expectation, the superscript
denotes the conjugate transpose, if and
if . The components in are allowed to be correlated
(i.e., has non-zero off-diagonal elements and is of full rank)
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or even coherent (i.e., is rank deficient). It then follows that
is also complex circular Gaussian1 with zero mean and

(8)

where

(9)

is the measurement covariance matrix of the NLA.
The unknown parameters that determine the statistics of the

measurement in (5) comprise the angles , the free
parameters in and . We will use the column vector to
denote those parameters. The free parameters in consists of
the real diagonal elements, and the real parts
and the imaginary parts of the complex elements
in the lower triangle of . Let be the -th element
of . Then the parameter vector can be represented as

(10)

where denotes the real part of a complex number and the
imaginary part of a complex number. The number of sources,
, is a special unknown parameter that is not included as an

element in .
We denote the outer product of the measurement by
and the vectorization of all the columns of by .

Obviously, the mean of is .
Note that since is conjugate symmetric, there are redun-

dant elements in the real part and imaginary part of . By
removing all those redundant elements, we have the following
(sufficient) ( -dimensional) vector of real data:

(11)

with its mean equal to

(12)

Let

(13)

Then the covariance matrix of can be written as

(14)

Denote

(15)

(16)

1If is relaxed to be non-Gaussian, for the MDL algorithm in Section III
to hold, it has to be a second-order stationary process and satisfy the condition
(98).

Recall the facts:

(17)

(18)

(19)

(20)

where and are two complex numbers and the superscript
denotes the conjugation. It then follows that

(21)

As shown in Appendix A, we can also write and as

(22)

(23)

where denote the Kronecker product as defined by [15, (13.1)]
and

...
...

...
(24)

Note that is also a permutation matrix.
Furthermore, we have proved that always has the full rank
. This property is crucial to the formulation of the probability

density function of the outer-products of the array output. Since
the results in the proof are not directly used in the next two
sections, to avoid disruption to reading flow, the proof of the
full rank property will be postponed to Section V.
Note that , , are independent and identically

distributed. Let

(25)

Then has the mean vector and the covariance matrix .
Applying the multivariate central limit theorem (e.g., see The-
orem 1.2.17 on [12, p.19]), we know that when is sufficiently
large, becomes approximately a Gaussian distributed
vector with the mean vector and the covariance matrix .
Conditioned on , an asymptotic probability density function
involving , , can be written as

(26)

where stands for the determinant of a matrix. Note that both
and are functions of .
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III. THE PROPOSED ALGORITHM

A. Parameter Estimation

Strictly speaking, the MDL algorithm requires the maximum
likelihood (ML) estimates of the parameters in . Since the like-
lihood function (26) of is highly nonlinear, there does not
seem to exist a computationally efficient approach for the ML
parameter estimation. As an alternative, in simulation, was
estimated, as shown next, by using the root-MUSIC algorithm
[13] based on an NLA with sensors. Such an algorithm was
developed for nested arrays in [4] and for minimum redundancy
arrays in [1].
Assume that the sensors of an NLA are located at in-

teger multiples of a smallest spacing . Then the covariance
lags generated by this array will lie in the full range of

where depends on the array geometry
in a complicated manner for a minimum redundancy array
and is an explicit function of for a nested array. The -th
covariance lag is (i.e., the -th element of )
where . Note that there can be multiple identical
elements in corresponding to the -th covariance lag. Denote
the -th covariance by for . Note
that . All the non-redundant covariance lags
in can be stacked in a vector as

Define

(27)

(28)

Then, according to [4, (11)], for uncorrelated sources, one can
write the following -dimensional vector

(29)

where is the source power
vector and is the -th column of . (Uncorrelated
Gaussian sources are independent sources.)
Define as the subvector of consisting of the elements

at the positions , for .
The MUSIC algorithm in [4] is based on the noise subspace of

. According to the definition of , it is
easy to see that

...
...

...

(30)

Then

(31)

where the second equality of (31) follows from the fact that
. In fact, in (30) is the augmented (Toeplitz) co-

variance matrix defined in [1] and was shown there that, for un-
correlated sources, where is a
submatrix of (consisting of the

rows of ). This result coincides with Theorem 2 in [4]
which proves that

(32)

In the MUSIC algorithm based on the noise subspace (the
set of the eigenvectors corresponding to the smallest
eigenvalues of ), for and
their conjugates are the roots of a polynomial located on the
unit circle. For the unique determination of angles from , it
is necessary that so that for

are located on the upper half of the unit circle.
In this paper, we choose . (One should note that for
the ESPRIT algorithm based on the signal subspace (the set of
the eigenvectors corresponding to the largest eigenvalues of
), the range of is relaxed to be .)
In Theorem 2 of [4], it was mentioned that, to apply the

MUSIC, the following condition should be satisfied

(33)

This is because, if , there is no noise subspace for the
matrix in (32), and hence the MUSIC can
not be applied. When (33) is met, there will be a non-empty
noise subspace for . Because resembles
the array manifold of a virtual ULA, by the argument in the
paragraph after [19, (3.6)], one knows that the MUSIC angle
solution will be unique in this case.
In practice, is not available and has to be estimated. Let

(34)

be an estimate of , using snapshots of measurement. The
elements in corresponding to the -th lag are no longer iden-
tical. In [1], an estimate of the -th lag is chosen as the average
of those elements in . This process is called redundancy aver-
aging in the literature. Define selection matrices for

, where the th element of , if
and otherwise. Note that .

Then an estimate2 of can be written as

(35)

for where is the Frobenius norm of a matrix and
is actually equal to the number of 1’s in (i.e., the number of

-th covariance lags in ). Note that the estimated covari-
ances are still conjugate symmetric:

(36)

2In [4], the estimation of was not described. One can also estimate
by using [10, (29)].
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for . An estimate of in (30) is given by

...
...

...

(37)
Then one can form an estimate of as

(38)

and obtain estimates of the eigenvalues and eigenvectors of .
Note that the second equality of (38) is due to the fact that
.
Let the eigenvalues of be

(arranged in non-ascending order), and the corresponding or-
thonormal eigenvectors be . Based
on the estimated noise subspace (i.e., the set of
eigenvectors corresponding to the smallest eigenvalues
of ), in [4], the (polynomial-rooting) MUSIC algorithm was
employed to find estimates of the angles as . The
noise variance can then be estimated by

(39)

And the source covariance matrix can be estimated by

(40)

where is the signal subspace of ,
is a diagonal matrix containing the signal

subspace eigenvalues, is the left
pseudo-inverse of and is evaluated by using the
estimated angles. Finally, an estimate of the measurement

covariance matrix is given by

(41)

where is evaluated by using the estimated angles.
If (i.e., the noise-only case), the noise variance is

estimated as

(42)

and the measurement covariance matrix as

(43)

Remark: For angle estimation, the method in [1] uses the
noise subspace of to formulate a MUSIC algorithm. From
(38), one can see that the noise subspaces used by the two
MUSIC algorithms are identical, thus both yield the same
estimates of angles. The eigenvalues of and also have
one-to-one correspondence. If one rearranges the eigenvalues
of in non-ascending order of their absolute values, the
signal subspace and noise subspace of can be constructed
from the eigen-decomposition of . Thus the method in [4]
can be regarded as the one based on the second order statistics
of the array output.

B. Detection Algorithm

In the development of (26), and particularly for a full-rank
, is allowed to be non-diagonal. Furthermore, (26) itself

does not include any constraints to force to be diagonal.
Hence, in this paper, the Hermitian matrix is parameterized
in terms of (free) real numbers. Thus the unknown param-
eters include the angles, the real numbers in and
the noise variance. (One should note that a diagonal (i.e.,
for uncorrelated sources) is required by all the existing sub-op-
timal methods in [1]–[4].) Let denote the hypothesis that the
number of sources is . Then according to the MDL principle
[11] and the MUSIC identifiability condition (33), the proposed
MDL algorithm based on (26), estimates the number of sources
as

(44)

where is an estimate of under , and

is the value of (in

(26)), calculated from estimates and of and
respectively, under .

According to (12)–(14), and require an estimate
of the covariance matrix (41) (and (43)), Under , if that es-

timate is denoted by , one can obtain via (12) as

(45)

and an estimate of via (22) as

(46)

Replacing with in (79) leads to an estimate of
. can then be constructed by substituting with

in (95).
The determination of is summarized as follows:
Step 1: Step 1: Construct the signal subspace

for (i.e., the eigenvectors
corresponding to the largest eigenvalues of )
and the noise subspace
(i.e., the eigenvectors corresponding to the
smallest eigenvalues of ).

Step 2: Step 2: For , determine the angles
via the MUSIC applied onto

and obtain an estimate of and an esti-
mate of using the estimated angles.

Step 3: Step 3: Estimate the noise variance for as

(47)

and the source covariance matrix for
as

(48)

where .
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Step 4: Step 4: Calculate the estimated measurement covari-
ance matrix for

(49)

and for

(50)

C. Identifiability Condition for Uncorrelated Sources
In this subsection, we present a necessary identifiability con-

dition of all the parameters (in particular angles) from in (29)
for uncorrelated sources3, in terms of and .
From (27)–(29), it is easy to see that the bottom ele-

ments of are not independent of its top elements. The
two groups are conjugate to each other because the powers are
positive. So we can concentrate on the top elements and
the middle element of . Let be a subvector of containing
the top elements and represent a submatrix of con-
taining the top rows. Then the top equations of in
(29) can be written as

(51)

(52)

Applying the well-known Carathéodory theorem ([18, p. 56])
to (51), one knows that the angles and source powers can be
uniquely determined from the elements in , if

. From the uniqueness of source power solutions, one can
further uniquely determine from (52). Hence, given , the
identifiability of all the parameters is established if

(53)

Equation (53) is the minimum identifiability condition for any
method (including theMUSIC) based on the data vector . One
should note that somemethods may require values of smaller
than for identifiability. Equation (53) also indicates the
maximum value on the number of uncorrelated sources which
can be resolved by any method based on . By comparing (33)
with (53), it is clear that the MUSIC achieves the full potential
of resolvability provided by .
Conditioned on , the probability density function for ,

, can be written as

(54)

where is also a function of . Then identifiability also implies
that the maximum likelihood estimate (MLE) given by (54) is
consistent, for uncorrelated sources.
For uncorrelated sources, one can represent the source covari-

ance matrix using the source powers in . Let us repa-
rameterize the function (54) as following

(55)

where , and denote the
unknown parameter sets of angles, powers and noise variance,

3Identifiability conditions for correlated or coherent courses remain to be a
challenge.

respectively, under . Also denote the negative log-likelihood
function (after dropping constants) by

(56)

Then

(57)

where one should keep in mind that is parameterized by
its diagonal elements only. As ,

(58)

It can be shown that any optimal , under , satisfy

(59)

where and are parameterized using and
respectively. Equation (59) follows from the result that

is minimized by .
Our argument on identifiability ensures that there are unique

satisfying (59) and ,
and (which also implies ). Hence,

this proves that exhibits a unique global
minimum at . Let

. By a continuity argument, it can
be shown that converges to .
The following theorem summarizes the result on identifia-

bility, emphasizing that the ML estimation in particular can be
used to consistently estimate the identifiable parameters (for un-
correlated sources).
Theorem 1: Consider the independent and identically dis-

tributed data vectors , with the probability den-
sity function in (54) where the matrix is defined in (9) and
in (9) is a diagonal matrix. If , the angle parameters
are identifiable. In particular, the MLE angle estimates ,
computed using , , can recover as , since
it satisfies

(60)

The theorem implies that for a nested array or a minimum
redundancy array, up to uncorrelated sources can
be uniquely identified in the limit of large .

IV. EXPERIMENTAL STUDY

In this section, we show a simulation that compares the MDL
algorithm against the ET, SNSE, Gershgorin-radii-based and
LSMDL algorithms, using the 2-level nested array in [4, Fig. 1].
The array has sensors at positions , ,

, , , where is the spacing
of the inner array as defined in [4, Subsection III.B]. (Note that
in [4], the position of the first sensor is not chosen as the phase
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reference point. But the phase differences between sensors re-
main unchanged.) For this 2-level nested array,

(61)

The number of sources is and the values of the eight an-
gles are , , , 0 , 15 , 30 , 45 , 60 . The sources
are uncorrelated and have unity powers. The signal-to-noise
ratio is defined as . Before simulation re-
sults are presented, those existing algorithms will be briefly de-
scribed, their computational complexity analyzed, and some re-
lated issues discussed.

A. Noise Variance Estimation

An estimate of the noise variance is needed in the ET algo-
rithm. We first investigate the statistical properties of the esti-
mate of the noise variance given in (39). The values of the mean
and the standard deviation of for various SNR values
are recorded in Table I, which were calculated from 5000 runs
of simulation with of the measurement in
each run.
From Table I, one can see that as the SNR increases, the es-

timates of the noise variance tend to be more biased and their
standard deviations increase. We further investigate the cause of
bias by fixing and varying . The values of the
mean and the standard deviation of for different
values were recorded and listed in Table II, which were calcu-
lated from 5000 runs of simulation. According to Table II, the
cause of large bias shown earlier is likely due to insufficiently
large .
In simulation, we used . The ET algorithm, is based

on [9, (3.5)], which requires an unbiased estimate of the noise
variance. In favor of the ET algorithm, we considered SNR
within the range of for which the standard de-
viation remains at a low level and the absolute value of the bias
is 10 times smaller than the standard deviation.

B. ET Algorithm

The ET algorithm applies a threshold (see [9, (3.12)]) to test
whether an eigenvalue belongs to the noise subspace or signal
subspace, under . The threshold is given by

(62)

Note that from the expression (62), one can see that is de-
fined only for . Thus the detection range of the ET algo-
rithm is restricted to . Then the ET estimate of is
given by

(63)

The threshold (62) contains a parameter , which was used to
control the probability of correct detection in [9]. Its value needs
to be determined, for our example, so that the probability of cor-
rect detection for the ET algorithm is optimized. The threshold
(62) should be always positive, thus

(64)

TABLE I
MEAN AND STANDARD DEVIATION (SD) OF THE NORMALIZED NOISE

VARIANCE ESTIMATES FOR VARIOUS SNR’S.

TABLE II
MEAN AND STANDARD DEVIATION (SD) OF THE NORMALIZED NOISE
VARIANCE ESTIMATES FOR DIFFERENT VALUES OF .

Under the condition of (64), one can easily verify that the
threshold is a monotonically increasing function of . Hence,
one can expect that as increases, the threshold becomes
larger, which tends to over-estimate the dimension of the noise
subspace and hence under-estimate the dimension of the signal
subspace. As decreases, the opposite is true. Fig. 1(a) & (b)
show the probabilities of correct detection, over-detection and
under-detection of the number of sources versus , for the ET
algorithm at , 0 dB respectively. Here, we used
1000 runs of simulation with . From the figure, one
can see that when , 100% correct detection was achieved
at both SNR values.

C. SNSE Algorithm

The implementation of the SNSE algorithm involves the
setup of step size and stopping criteria, etc., which depend on
source parameters and array size. For readers’ convenience, a
more detailed review of the SNSE algorithm is needed and it is
included in Appendix H to help understand the setup.
We next determine the value of in (125). The probability

of correct detection for the SNSE algorithm is shown in Fig. 2
versus when , 0 dB and , 2000. It is
obvious that gives the highest probability of correct
detection.

D. Gershgorin-Radii-Based Algorithms

In [22], three algorithms were proposed, based on the AIC,
MDL and a heuristic criteria, as described in [22, Section IV].
They will be called the MGAIC, MGMDL, and MGDE algo-
rithms as in [22]. In all our simulation examples, the MGAIC
algorithm performed much worse than the other two. Thus it
will not be considered in the comparison with the proposed
algorithm.
Decompose as

(65)

where is a submatrix constructed from the first
rows and columns and is a column vector con-
taining the top elements of the -th column of . Let
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Fig. 1. Probabilities of correct detection, over-detection and under-detection
versus for the ET algorithm. . (a) . (b)

. Eight sources were present.

Fig. 2. Probabilities of correct detection versus for the SNSE algorithm.
, 0 dB. Eight sources were present.

contain orthonormal eigenvectors of
where is an eigenvector corresponding to the eigen-

value for with .
Further define

(66)

Then the matrix was shown [22] to have the fol-
lowing form

...
...

...
. . .

...
...

(67)

where . The magnitudes of
are the Gershgorin radii for signal and noise

eigenvalues.
The MGMDL algorithm basically tests the equality of the

last few eigenvalues of . This algorithm requires an esti-
mate of the noise variance (see [22, (37)]). According to (31) of
the same reference, it is defined only when . Thus
the detection range of the MGMDL algorithm is .
The MGDE algorithm uses a pre-selected threshold to sep-
arate the signal-eigenvalue radii from the noise-eigenvalue
radii. The threshold is chosen in the same way as that in [22]:

. As noted in the sentence fol-
lowing [22, (40)], the detection range of the MGDE algorithm
is .

E. LSMDL Algorithm

Let be an

matrix where is an matrix denoting the

orthogonal subspace of , under . (The determination

of is described in Step 2 of the procedure for calculating

, in Section III.B.) Denote the eigenvalues of by
(arranged in non-ascending order) and define

the following parameters

(68)

(69)

(70)

(71)

Then the main idea of the LSMDL algorithm can be considered
as the equality test of (which are the eigen-

values of the matrix ). The
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definition of in (69) requires that . Thus the
detection range of the LSMDL algorithm is .

F. Computational Complexity

In this subsection, the time complexity of the MDL algorithm
and those in Section IV.B, Section IV.D, Section IV.E will be
analyzed. The SNSE algorithm in Section IV.C is iterative. Its
computational load depends on stopping criteria and does not
seem to be easily found. Thus the SNSE algorithm will not fur-
ther considered in this subsection.
1) MDL Algorithm:
(Step 1) To construct the signal subspace and the noise
subspace of , an EVD of is performed first, and re-
quires a computational load of flops. The notation

defines a group of polynomial functions which
have the same highest order but different coefficients for
the highest order term . All those functions share the
same limiting ( ) rate of growth. The term “flop”
stands for floating-point operation. A flop is defined as ei-
ther of a floating-point addition, subtraction, multiplication
and division. In this paper, to simplify analysis, the eval-
uation of a fundamental function (such as trigonometric,
exponential and square-root functions) is also counted as a
flop.
(Step 2) To use the MUSIC, the matrix is
required. If one chooses , this matrix can
be computed as a rank-1 matrix update for each , starting
from a null matrix. For a given , the updated rank-1 ma-
trix requires multiplications to calculate and

additions for it to be added to the existing
matrix. The factor (1/2) is due to the conjugate symmetry
property of this matrix. From , the MUSIC
polynomial can be constructed using addi-
tions. To find the roots inside the unit circle for this poly-
nomial, a computational load of flops is required.
Angles are calculated from the roots closest to the unit
circle via trigonometric function evaluations and then
the array manifold matrix can be formed using
multiplications. is computed from estimated angles
using exponential function evaluations.
(Step 3) The noise variance estimate requires
square root evaluations, additions and 1 divi-

sion. To find , is computed first, with
multiplications and

additions. The calculation of the inverse of

requires flops and the pseudo-inverse is

calculated as the product of
with multiplications and

additions. To calculate in
(48), one can first compute which requires

multiplications and additions. The diag-

onal structure of in and the Her-
mitian property of can be exploited next, to obtain
this matrix with multiplications
and additions.

TABLE III
COMPUTATION COUNT OF FUNCTION CALCULATION IN THE

MDL ALGORITHM WHERE

(Step 4) can be directly obtained from some rows
in . in (49) can be calculated with

multiplications and
additions.

The likelihood function (26) requires and . Since
in (3) is a permutation matrix, then according to (45), the

calculation of from only requires row permutation.
Permutation is much faster than floating-point operations, and
thus it is not counted towards computational load. is cal-
culated from based on (95).

in (46) is also Hermitian. By direct multiplication,
multiplications are needed for each block. Thus the com-
putational load to obtain from is
multiplications. According to the analysis after Theorem 4 in
Section V, can be calculated from , using

additions/substractions and 1 division.
and both are also required in the likelihood

function (26). Each evaluation requires flops. Using

, can be calcu-
lated, at the cost of subtractions, multiplications
and additions.
For the MDL algorithm, a summary of the computational

loads of the above functions along with their respective totals
summed over is presented in Table III.
Thus the overall computational load for the MDL algorithm is

flops.
2) LSMDL Algorithm: The LSMDL algorithm also needs the

first five functions in Table III.
is the next function to be calculated. In our simula-

tion, it is determined as the set of orthonormal eigenvectors,
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TABLE IV
COMPUTATION COUNT OF FUNCTION CALCULATION IN THE LSMDL

ALGORITHM WHERE

associated with the smallest eigenvalues of the matrix
. The corresponding EVD requires flops.

can be calculated using
multiplications and

additions.
The eigenvalues of are needed in (68)–(71).

They can be calculated in flops.
For the LSMDL algorithm, a summary of the computational

loads of the above functions along with their respective totals
summed over is presented in Table IV.
Thus the overall computational load for the LSMDL algorithm
is flops.
3) Other Two Algorithms: The major computation in Ger-

shgorin-radii-based algorithms involves the EVD of and
the calculation of . An EVD of (intro-
duced in (65)) requires a load of flops. The coef-
ficients can be calculated using
multiplications and additions. Thus the com-
putational load of Gershgorin-radii-based algorithms is
flops.
The ET algorithm requires an EVD of and the calculation

of for . The calculation of requires
multiplications and additions for each .

Therefore the computational load of the ET algorithm is
flops.
4) Concluding Remark: It is now obvious that Gersh-

gorin-radii-based algorithms and the ET algorithm are much
more computationally efficient than the MDL and LSMDL
algorithms. When , the term “ ” dominates the
term “ ” in (61) and one can approximate with

. In this case, the computational loads of the MDL and
LSMDL are and flops, respectively. Hence for
a sufficiently large , the proposed MDL algorithm is more
efficient than the LSMDL algorithm.

G. Comparative Study

Now we compare the performance of the MDL algorithm
with that of the ET, SNSE, MGDE, MGMDL and LSMDL al-
gorithms for and . The probabilities of correct
detection using all the algorithms versus the number of snap-
shots are shown in Fig. 3, for , , 0 dB.

Fig. 3. Probabilities of correct detection versus for the ET, SNSE, MGDE,
MGMDL, LSMDL and MDL algorithms. and . (a)

. (b) . (c) . Eight sources were present.

The MDL algorithm can provide 100% correct detection for
at all the three SNR values. The other five algorithms

have poorer performances than the MDL algorithm for most
values. The ET algorithm requires much higher SNR values to
achieve 100% correct detection.
One should note that the scenario considered in this simula-

tion is very challenging. There are only 6 data in each snapshot.
This is why a minimum of 800 snapshots are needed for the per-
fect detection performance of theMDL algorithm. If the number
of sensors increases, this minimum value can be reduced.
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Fig. 4. Probabilities of correct detection versus for the MDL algorithm, with
, and 0 dB respectively. Eleven sources were present.

The MGMDL and LSMDL algorithms do not provide 100%
correct detection at all the three SNR values. Detection fail-
ures of these two algorithms are related to over-estimation for

. These two algorithms have another interesting be-
havior that both perform better at a low SNR value than at a
high SNR value. Our further investigation reveals that the noise
eigenvalues of and the noise eigenvalues

tend to be more widely spread as the SNR
increases. The spread is measured by ratios and

respectively. As a consequence, more noise eigen-
values were mistaken as the signal eigenvalues, leading to more
over-estimation, at a high SNR value.
The performance of the MGDE algorithm does not vary sig-

nificantly with SNRs. However it is still unable to provide 100%
correct detection even when at all the three SNR
values.
Finally, we demonstrate that the proposed algorithm can cor-

rectly detect the maximum number of sources.
For , this maximum value is 11. In this example, the
number of sources is and the values of the eleven an-
gles are , , , , , 0 , 15 , 20 , 30 ,
45 , 60 . Probabilities of correct detection for the MDL algo-
rithm are shown in Fig. 4. From this figure, it is obvious that the
proposed MDL algorithm can still achieve 100% correct detec-
tion as long as is large enough.

V. FULL RANK PROPERTY OF

In this section, we show that the matrix (defined in (14))
has the full rank .
While the proof shown in this section is crucial for this paper,

readers may find it helpful to skip this section for the first time
reading.
Lemma 1: is an permutation matrix satisfying

(72)

and

(73)

for , where ( ) is defined in the last paragraph
of Section I. Furthermore, is its self inverse and symmetric:

(74)

Proof: See Appendix B.
Note that when left-multiplying a matrix with , the opera-

tion swaps the -th row with the -th
row of that matrix and when right-multiplying a matrix with
, the operation swaps the -th column with the

-th column of that matrix.
Theorem 2: Through , and are related to each

other by

(75)

(76)

Proof: See Appendix C.
From (75), and

, and can be rewritten as

(77)

where

(78)

(79)

Similarly, from (76), one can obtain
and , and can also be expressed as

(80)

Thus from (77) and (80), one obtains

(81)

From the second equation of (74), , which is equivalent
to . Equation (74) implies that , and
using this property, it is easy to verify that . Hence the
second equation of (81) can be written as

(82)

Combination of (82) and (80) leads to

(83)

From Lemma F1, is shown to be positive-definite. Thus
is now represented in a semi-positive (or positive) definite form.
Next, we aim to find the eigen-decomposition of . Let

(84)

(85)
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where is defined in the last paragraph of Section I. Also let

(86)

(87)

where is defined in (1), and
.

Lemma 2: Both and contain orthonormal columns,
and they are orthogonal complements to each other.

Proof: See Appendix D.
Theorem 3: and are the matrices of the orthonormal

eigenvectors of corresponding to the eigenvalues 1 and
respectively, i.e.,

(88)

(89)

Proof: See Appendix E.
Since and altogether contain orthonormal

columns in the -dimensional space, then from Lemma 2,
one can write

(90)

Using (90) along with Theorem 3, one knows that the eigen-
decomposition of can be written as

(91)

Based on (90) and (91), one obtains that
and and

(92)

where

(93)

Plugging (92) into (83) gives another expression of :

(94)

Substitution of (94) into (14) leads to

(95)

Note that is square. The next theorem shows that both
and are of the full rank .
Theorem 4: (1) is of full rank , and (2) is

of full rank .
Proof: See Appendix F.

Therefore, the (square) matrix has been shown to have the
full rank .
The structure of (94) and the properties of thematrices , ,
can be used to develop an efficient procedure to calculate

from .
From (79) and (93), one obtains

(96)

and knows that can be obtained by taking real and
imaginary parts of relevant blocks of .

is a matrix with elements and
only contains two nonzero elements in each column.
Thus can be calculated using

additions and 1 divi-
sion. Note that each row of only contains a nonzero
element 1 or and is a permutation matrix. Then
also has one nonzero element in each row. Thus further com-
putations only involve sign change for some elements and
row/column permutation. Sign change and permutation are
much faster than floating-point operations, and thus are not
counted towards computational load.
In summary, the calculation of from requires

additions/substractions and 1 division.

VI. CONCLUSIONS

We have developed an MDL-based detection algorithm using
the outer-products of the array output for a nested array or a
minimum redundancy array. We have applied some of the prop-
erties of a nested array shown in [4] for estimating the unknown
parameters (other than the number of sources) that govern the
probability density function of a vectorized outer-product of
the array output. With a nested array of sensors, the MDL
algorithm can detect up to uncorrelated
Gaussian sources. The resulting MDL detection algorithm has
been shown, via simulation results, to substantially outperform
the ET detection algorithm applied in [4], the SNSE detection
algorithm in [3] and the other detection algorithms proposed in
[22] and [24]. Computationally, the proposed MDL algorithm
is more efficient than that in [24] when is large enough.

APPENDIX A
EXPRESSIONS OF TWO COVARIANCE MATRICES

Derivation of : Note that
. The -th

block of is . Then
. The -th block of

is . Since , . Then
the -th block of is equal to

. Then the -th block of is given by

(97)

It is shown that (see [16], for example), for any four jointly
distributed Gaussian random variables , , , with zero
means, the following equation

(98)

holds. Using the Gaussianity of the measurement and (8),

(99)

Thus from (99) and (97), and (22) is
proved.

Derivation of : Note that
. The -th

block of is .
The -th block of is
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. Then the -th
block of is given by

(100)

In a similar way to (99), one obtains

(101)

then . Using defined in (24), (23) is
proved.

APPENDIX B
PROOF OF LEMMA 1

The following Lemma B1 is easy to prove. It will used exten-
sively in this and later appendices.

Lemma B1: if and if .
Proof of (72): The column vector has the structure:

where only appears in
the -th segment. (Each segment has elements.) Right-mul-
tiplying it to gives

(102)

where only the -th segment is nonzero and equal to . Thus
(72) is proved.

Proof of (73): The result can be proved similarly.
Proof of (74): The -th block of is equal

to . From Lemma B1, one knows that:
when , the block is ; when , the block is equal
to . Thus . Similarly one can
prove that . Thus the first equation is proved. The
second equation is obvious by the definition of .

APPENDIX C
PROOF OF THEOREM 2

The following lemma is obvious from the definitions of
and in (15) and (16).

Lemma C1: (1) ; (2) .
Proof of Theorem 2: Denote . Then

the -th row of can be written as (because ).
According to (22), the -th row of is
. According to (23), the -th row of is

. Further using (73) of Lemma 1, (76) is proved.
Using Part (1) of Lemma C1, the -th column

of is . Using Part (2) of Lemma C1,
the -th column of is .
From the above two results and (72) of Lemma 1, (75) is proved
as well.

APPENDIX D
PROOF OF LEMMA 2

Note that the first nonzero blocks of have dimensions
and the second one . Another representation of

using , helps to understand the proof.
Orthonormal Columns of :
Case 1: . In this case,

(103)

where and . From

Lemma B1, and , then
.

Case 2: . In this case,

(104)

Case 3: . This part can be proved by transposing
(103).

Further note that

(105)

and

(106)

Thus and the columns of are orthonormal.
Orthonormal Columns of : Due to a similar structure

of , (103) and (104) still hold true for . It can then be
similarly shown that satisfies .

Orthogonality of and :
Case 1: . In this case, the expression of
differs from (103) only in the sign for the last term, and
thus the result is zero.
Case 2: . In this case,

(107)

Case 3: . The result can still be proved to be zero as
in the case of .

By the same argument as in (105), one can prove that

(108)

Combination of (107), (108) and the conclusion of Case 3,
proves that .
Note that there are orthonormal (independent) vectors in
and orthonormal (independent) vectors in . Since

, thus and are complements in a -dimen-
sional space.
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APPENDIX E
PROOF OF THEOREM 3

Eigenvectors With Respect to the Eigenvalue 1: Let be
the -th row block of (containing -st to -th
rows). Then

(109)

Equation (109) will be analyzed for three different cases.
Case 1: . In this case, from Lemma B1,
and , and then

... (110)

Case 2: . In this case, from Lemma B1,
and , and then

(111)

Case 3: . In this case, also based on Lemma B1,
both and , and then

... (112)

Combining (110), (111), (112) along with (84) proves that
. Additionally, it is easy to verify that

. Thus (88) is proved.
Eigenvectors With Respect to the Eigenvalue :

(113)

By comparing (109) and (113), one can see that the analysis for
this part differs only in the negative sign of the second term in
(113). Therefore one can also prove (89).

APPENDIX F
PROOF OF THEOREM 4

Proof of Part (1): Note that

(114)

The top-left block is a matrix and the bottom one is a
matrix.

has the following structure:

(115)

for and

(116)

where ( ) is the -th column of the
identity matrix and .
Let us divide the rows of into block rows

with the first block row containing the first rows,
the second block row containing the following rows,
and so on, until the last block row containing the last row
only. According to the structures of (115) and (116), the
-th ( ) column of has non-zero seg-
ment which falls within the -th block row; and
therefore for the -th block row, contains non-zero
column segments . Those column
segments are all the (independent) columns of . Let

. Then has the same rank of
as the matrix

(117)

which is a column exchanged version of it and has a full rank
of . From (105) and (106),

; and .
Hence the top-left block (square) matrix of (114) has a full rank
of .

has the block (which is zero) and
has the same structure as . Thus the bottom-right

block (square) matrix of (114) has a full rank of .
Hence, is of full rank .
The following lemma is needed for the proof of Part (2).
Lemma F1: is of full rank and is positive definite.
Proof: Since has a full rank, by Corollary 13.11 of [15],
is of full rank. Let the eigenvalue decomposition (EVD)

of be where is a diagonal matrix containing
positive eigenvalues of and contains the corresponding
orthonormal eigenvectors. Then the EVD of can be written
as . Further from the full rank
property of , one knows that is positive definite.

Proof of Part (2): Wewill first show that is of full rank
. According to Lemma F1, can be written as

where is an complex matrix with full rank. Let

(118)

Then one can write . In a similarly way to the
proof of the full column rank of the matrix in [17, (65)], it can
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be shown that has a full rank. So does . Further note that
has a full column rank of . Thus is of full rank
.

APPENDIX G
A COMPACT EXPRESSION OF

Let be an matrix. Define
and the (real) matrix

...
...

...
... (119)

Form (35)–(37), one can write

(120)

For the 2-level nested array in [4], and
. By MATLAB evaluation, it is found that has 42 negative
eigenvalues. Thus the estimated augmented covariance matrix

for this type of array is generally in-definite.

APPENDIX H
IMPLEMENTATION OF THE SNSE ALGORITHM

The SNSE algorithm consists of five steps (in the last para-
graph of [3, p. 966]) which are implemented by the iterative
minimization procedures [3, (68), (51), (62) and (39)]. Each
minimization procedure includes two nested loops: the inner-
loop ( -loop) and the outer-loop ( -loop). in the -loop is the
step size of the maximum perturbation. Each loop is allowed to
iterate depending on certain stopping criteria, which are gener-
ally application dependent. Thus in this appendix, the choice of
stopping criteria is described.
For the convenience of the exposition in the remaining part

of this appendix, the five steps of the SNSE algorithm are sum-
marized below where all equation numbers referred to are from
[3]:
Step 1: From , solve the linear programming (LP)

problem (68)–(72) to obtain the positive definite
Toeplitz matrix as given in (72). (To our un-
derstanding, in (71) is a typo. It was replaced
by (an estimate of the noise variance) in our
implementation.)

Step 2: From , solve the LP problems (51)–(55) and
(62)–(66) to obtain the Toeplitz matrix .

Step 3: From , solve the LP problem (68)–(72) to obtain
the Toeplitz matrix .

Step 4: From , solve the LP problems (51)–(55)+(59)
and (62)–(67) to obtain the positive definite Toeplitz
matrix .

Step 5: From , solve the LP problem (39)–(42) to obtain
the Toeplitz matrices , for ,
and .

The main idea of the SNSE algorithm is to introduce a small
perturbation to an existing Toeplitz matrix as described in [3,
(26)], so that the noise eigenvalues of the updated Toeplitz ma-
trix (on the left-hand side of [3, (26)]), have a smaller span, as

compared with that for the existing matrix. Due to this reason,
the -loop should be performed for small ’s. If a large is used,
those minimization procedures may finish with a feasible solu-
tion, but the perturbation to the Toeplitz matrix can become too
large and the updated eigenvalues may not be close to those as
indicated by the minimization. (In that case, we found in sim-
ulations, that the span of the noise eigenvalues is not reduced.)
Thus in our implementation, the initial value of is chosen as
the minimum absolute value of all the elements of the starting
Toeplitz matrix in a step.
According to [3, (45)], the eigenvalues calculated from the

updated Toeplitz matrix should be close to that indicated by the
first order perturbation. This means that eigenvalue increments
(perturbations) should be small enough. This requirement can be
used as a stopping criterion of the -loop. In our implementation,
the -loop stops iteration if the increment ratio is smaller than
, where the increment ratio is defined as the norm of the vector

of the eigenvalue increments against the norm of the vector of
the existing eigenvalues. If the increment ratio is greater than ,
the -loop is iterated with the current being halved. The -loop
is iterated until the norm of the difference between the Toeplitz
matrices obtained in two successive -loops is less than . The
matrices obtained in all the -loops are compared and the one
with the largest likelihood ratio is chosen as the final Toeplitz
matrix in each step. Both the -loop and the -loopwere repeated
for no more than 10 times. Through extensive simulation inves-
tigation, we found that and can provide better
Toeplitz matrices (in the likelihood ratio sense) and maintain the
first-order approximation at the same time.
In the first four steps, the increment ratio is defined for all the

eigenvalues of the matrix

(121)

where is the inverse square-root of , stands for
transformation from an Toeplitz matrix to an mea-
surement covariance matrix and is a Toeplitz matrix given by
any of those minimization procedures. The transformation is
defined as

(122)

where are the covariance lags of and co-
variance lags satisfy the property for . In
Step 5, only the last eigenvalues of the Toeplitz matrix

were involved in the noise eigenvalue equalization. Thus in
Step 5, the increment ratio is defined for the last eigen-
values of the Toeplitz matrices for . The
likelihood ratio of a Toeplitz matrix is defined as

(123)

where are the eigenvalues of the corresponding ma-
trix defined in (121). in [3, (59), (67), (71) and (72)] is the
noise variance estimate. It was chosen as in Steps 1–4 and
was given by (39) with being replaced by under in
Step 5.
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Based on the aforementioned initial value of and stopping
criteria for the -loop and the -loop, and the angles in the fol-
lowing section, we ran 1000 simulations and discovered, from
a statistical point of view, that (1) did not signifi-
cantly improve ; and (2) was very close to

. Thus in our further simulation examples (as presented
in the following section), Step 3 and Step 4 were omitted; and

in Step 5 is replaced by obtained in Step 2. Note that
is not guaranteed to be positive definite. Whenever it is not

positive definite, the loading operation as given by the second
expression of [3, (72)] is applied to , The loading opera-
tion only slightly affects the likelihood ratio values of . The
matrix transformation sequence is thus given by

, and .
Let the eigenvalues of be (or-

ganized in non-ascending order) and define the admissible set
of the hypothesized number of sources by

(124)

The detection step of the SNSE algorithm produces an estimate
of the number of sources as

(125)

and if the solution given by (125) is null. In
[3], was determined based on an over-estimation probability.
We found that, for very large (say, ), the under-es-
timation probability is very low, and over-estimation accounts
for almost all incorrect detections; but for not very large (say,

), the under-estimation probability is not negligible,
and thus in simulation, we chose to achieve a maximum prob-
ability of correct detection. Note that the detection range of the
SNSE algorithm is .
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