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Abstract—Unconditional secrecy (UNS) of a wireless transmis-
sion scheme refers to the minimum amount of secrecy of the
scheme subject to eavesdropping by eavesdropper (Eve) with
any number of antennas and any noise level. For each coherence
period of wireless channels, the UNS achievable is known to
be limited by the entropy of user’s reciprocal channel state
information (subject to a proper level of quantization). While
UNS rate may be too limited for environment with low mobility, it
is possible to design physical layer encryption methods to increase
the computational complexities that Eve has to overcome in order
to break further secrecy beyond UNS. In this paper, we quantify
the UNS of several classic transmission schemes and examine
the complexity needed to break further secrecy beyond UNS of
these schemes. We also provide a UNS and complexity analysis
of a recently proposed physical layer encryption scheme called
randomized reciprocal channel modulation (RRCM), and show
an example where the complexity may exceed Eve’s capability.

Index Terms—Network security, end-to-end security, privacy,
physical layer security, unconditional secrecy.

I. INTRODUCTION

Communications and data storages via the Internet and
Clouds have become indispensable to our lives. Information
security is of paramount importance. One of the important
security issues is privacy. For the best possible protection of
privacy for communications between two parties, they must
share their own secret keys. But establishing the shared secret
keys initially (without a prior secret key, without physical
contact but only through wireless transmissions) is a challenge.

To achieve the above goal, there are many physical layer
security methods [1]-[12] which can be grouped under ei-
ther secret information transmission (SIT) or secrecy key
generation (SKG). The SIT schemes include beamforming,
artificial noise, cooperative relaying and many varieties of
optimizations for maximal secrecy rates of SIT. But unlike
SKG schemes, only a limited number of SIT schemes can
handle the challenge arising from eavesdropper (Eve) with a
large number of antennas, e.g., see [1]-[2]. Many SIT schemes
shown in the literature would have zero secrecy if Eve is
allowed to have a large number of antennas. We call a secrecy
“unconditional secrecy (UNS)” if it is achieved subject to Eve
having an unlimited number of antennas and zero noise.

Achieving a positive UNS is possible via either SKG or
SIT if the users exploit their own (reciprocal) channel state
information (CSI) while Eve’s receive CSI is independent of
user’s CSI. This principle has been widely recognized. But
subject to a finite consumption of transmit power (also finite

978-1-7281-5478-7/20/$31.00 ©2020 IEEE

number of antennas on cach user and finitc number of states
of reconfigurable antennas or other cooperative devices for
users), the UNS of both SKG and SIT schemes is finite within
each coherence period of CSI [13]. For wireless environment
with low mobility, the coherence period is long and hence the
effective UNS rate in bits/s/Hz can be too limited.

While the strict rate of UNS is limited within each coher-
ence period, a virtual rate of UNS can be significant if Eve fails
to overcome a computational complexity at the physical layer
created by some physical layer encryption method [14]. One
advantage of physical layer encryption (PLE) over network
layer encryption (NLE) is that once Eve fails to hack PLE,
the secret information is generally not possible to hack later
at network layer due to discarded physical layer data. NLE is
also known to be vulnerable to quantum computing.

In this paper, we examine the strict amount of UNS of a
few prior SIT schemes and also show how easily Eve with a
sufficient number of antennas and negligible noise can limit
their virtual UNS. (A virtual amount of UNS is the sum of
the strict UNS and any further secrecy beyond the strict UNS.
The strict UNS is also referred to as UNS.) Furthermore, we
examine a new scheme called randomized reciprocal channel
modulation (RRCM) [14] and show how much complexity that
Eve has to overcome to “limit the virtual UNS of RRCM” or
in other words to “break any secrecy beyond UNS”.

II. CONVENTIONAL MIMO BEAMFORMING
Consider a MIMO channel from Alice to Bob

ye(k) = Hxa(k) + wp(k) (1

where H € CV2*Na s the reciprocal channel matrix known
to both Alice and Bob (via training up to a proper level of
quantization) but unknown to Eve. The signal received by Eve
with negligible noise is

yE(k) = Gaxa(k) ()

where G 4 € CV#*Na js known to Eve (due to training pilot
from Alice) but unknown to Alice and Bob. Assume that Alice
computes the SVD H = "7 oyu, vl = USVH with r =
min(N4, Np) and applies x4 (k) = Vca(k) where c4(k) €
C"*!' for all k are symbol vectors. We know that Bob can
successfully decode all information in ¢ 4 (k) for all k£ provided
that the data rate in the ith element of c4(k) is less than the
capacity of the ith subchannel.
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At the same time, Eve with Ngp > N4 is able to recover
x4 (k) for all k. But without knowing V, Eve is unable
to retrieve all information from c4 (k). However, among all
possible random guesses of ca(k) for 1 < k < r (for
example), there is a correct one. With this correct guess, Eve
knows a correct choice of V by solving the linear equations
xa(k) = Veu(k) for 1 < k < r. Therefore, x4 (k) for any
k > r no longer contains further secret from Eve.

In other words, the strict UNS of the above scheme in each
coherence period is no more than the entropy of 72 symbols
in ca(k) for 1 < k <r. Also, the computational complexity
for Eve to obtain V mainly involves a linear matrix equation
and is in the order of O(N47?).

III. RANDOMIZED MISO BEAMFORMING

In [11], a randomized MISO beamforming is introduced
for a MISO user channel where N4 > Np = 1. Namely, the
user’s channel can be described by

yp(k) = hTx (k) + wg(k) 3)

where h is known to Alice (through a pilot from Bob) but
unknown to Bob, x4 (k) = wyca(k) and wy, € CNax1 s
randomly chosen for each k subject to hTwy = ||h||. With
ca(1) (for example) as a training symbol (i.e., known to all),
Bob can obtain |h|| and hence decode the information in
ca(k) for all k > 1 from yp(k) = ||h|lca(k) + wp(k).

At the same time, Eve with N > N4 antennas and
negligible noise receives

yE(k) = Gaxa(k) = Gawgca(k) “4)

where G4 € CV=*Na is unknown to Eve (or anyone else).
With unknown G 4wy, Eve is unable to decode all information
in CA(k‘).

But if Eve has guessed ca(2),---,ca(/N4) correctly (in
addition to the known c4 (1)), then Eve can compute a vector
q € CNex1 guch that gy g (k) = ca(k) for 1 <k < N4 or
equivalently q G ywj, = 1 for 1 < k < N,4. Assuming that
w1, -+, Wy, are linearly independent of each other, q"G4

is unique and hence equals to hT||_111|\' Then Eve can use the

same q to obtain qy (k) = ca(k) for all k > Ng4.
Therefore, the strict UNS of the scheme in [11] is no more
than the entropy of N4 — 1 symbols from Alice, and the
computational complexity for Eve to obtain the equalization
vector q is (easy to prove) in the order of O(N ENi).

IV. ARTIFICIAL NOISE FROM MULTI-ANTENNA
TRANSMITTER

An artificial noise scheme was introduced in [12] where the
transmitted signal vector from a multi-antenna Alice has the
following form x4(k) = Vis(k) + Van(k) where s(k) €
Cr*1 with r; < r is a signal vector, n(k) € CWNa=—r1)x1
is an artificial noise meant to jam Eve, Vi = [vy,-+-, v, ]
and V; consists of Ny — r; orthogonal complement vectors
of V. The signal received by Bob is

yB(k) = HXA(k) + WB(k)
—USis(k) - UsSon(k) + we(k) ()

where U;, Us, ¥; and ¥ are corresponding partitions of U
and . Because of U¥ Uy = 0, the artificial noise n(k) has
zero impact on Bob’s ability to decode the information from
Alice.

Note that Alice knows the user’s MIMO channel matrix H
due to a previous pilot from Bob. But for Bob to estimate
s(k) from y(k), Bob first needs to know U; X, which can
be achieved by choosing s(k) for k = 1,--- ,r; to be pilot
vectors from Alice.

Now consider Eve with Ny antennas and negligible (self)
noise. Corresponding to x4 (k) from Alice, the signal received
by Eve is

yE(k’) = GAVls(k) + GAVQH(k) (6)

where G4, V7 and V5, are all unknowns to Eve. But in
multipath-rich environment, the entries in G 4 can be modelled
to be ii.d. with zero mean and variance 0%. Then with
Ny > 1 and N > N,, we have NLEGQIGA ~ o2In,,
and hence G4 V7 and G4V have approximately orthogonal
ranges.

Since s(1),--- ,s(r1) are pilot vectors from Alice, Eve can
compute Q € CV#*"1 such that

Q"yp(k) ~ s(k) (7

for 1 <k <ry,ord ;1 |Q¥ypr(k) —s(k)|? is minimized.
For large Np, there exists a Q € range(G4 V1) such that
QHG4V, =~ I, and QG 4V, ~ 0 and hence (7) holds.
The solution space of Q to (7) is large due to large Ng. The
minimum norm solution is given by Q" = S(YZYg)"'Yg
where 8 = [s(1),--- ,s(r1)] and Y = [yp(1), - ,ye(ri)].

Therefore, the strict UNS of the artificial noise scheme
is zero, and the complexity for Eve to obtain an accurate
equalizer Q is in order of O(r?Np).

V. RANDOMIZED RECIPROCAL CHANNEL MODULATION
(RRCM)[14]

Consider the case of N4 = ni‘ >4 and N =1 (although
the RRCM principle as shown below is applicable for any
N4 > 1 and Np > 1). Using a pilot from Bob, Alice obtains
the channel vector h = [hy, -, hy, |7,

Then, Alice computes Dy = diag[ms1,--- ,ms n,] for
1 < s < S as follows. Define Hy € C"4*"4 with (Hy),; =
h(i—1)na+1Ms,(i—1)n4+1- Denote the SVD of Hy as

na
H, =) oV, =UZ V] ®)
i=1
where the first element of the vector u; , is normalized to be
real. Also let
rs = Ul,sejul‘s 9)

where (11, 1s the phase of the first element of v ;. For each s,
Alice chooses a sufficiently random 7, to hide the information
of ¢4 in r4c,, and also chooses randomly all other components
in Uy, ¥, and V (subject to some bound constraint on each
diagonal entry of 3 for reliable reception at Bob). Then
Alice determines D, = diag[ms1,---,ms n,| from H.
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(Any realization of D could be rejected if any of its diagonal
entrics is too small.)

Then, Alice sends a pure and several randomized pilots
VPriy,,vVPrDily,, - ,v/PrDsly, so that Bob can ob-
tain h and all entries in H,. Hence, Bob can use (8) and (9)
to compute r; for 1 < s < S.

Following the randomized pilots, Alice also sends v/Prr,cs
for 1 < s < S from the antenna corresponding to the strongest
channel, and then Bob receives y5 s = v/ PrhmazTsCs +WB s
where Ny = argmaxp, |h;|. All channel estimation errors
(if not too large) can be lumped into wp s. Since Bob knows
h and r,, Bob can decode all information in ¢, for all s
(assuming that the information rate in c; is so controlled that
the probability of detection error is negligible).

Now consider Eve with Ng > 2 and negligible noise. Due
to the pilots from Alice, Eve knows its receive channel matrix
G4 and also G4D; for all s. Hence, Eve knows m, ; for
all s and . Corresponding to the information symbols from
Alice, Eve receives y i s = garscs where g4 is one of the N4
columns in G4 and can be identified by Eve. Consequently,
Eve knows rsc, for all s. In order to decode the information
in ¢s, Eve must first determine 7.

Assume that Eve has guessed correctly ¢g for 1 < s < Sy
and hence knows 7, for 1 < s < Sj. In order to determine
rs for s > Sy, Eve now must determine h using r, for 1 <
s < Sy via (8) along with the conditions Uf U; =1,, and
VHV, =1,,. One can verify that the total number of real
unknowns (i.e., those in h and all other unknowns in the SVD
equation (8)) is Nynx = 2n% + 2(n% — 1)Sp and the total
number of effective real equations is Negy, = 2n1245’0. For
a finite number of solutions of h, it is necessary (but not
sufficient) that N, < Ny, or equivalently Sy > n?.

Hence, the strict amount of UNS of RRCM is no less
than the entropy of n% symbols from Alice. Note that (8)
is nonlinear. If Eve uses exhaustive search to find h, Eve
has to compute the ng X ng SVD for cach choice of h.
With IV, to be the number of quantization levels for each real
element2 in h, the number of these choices is in the order of
(’)(Nq2 "4). Alternatively, Eve may apply the Newton’s method
to search for h as shown in Appendix VII-A. The complexity
per iteration of the Newton’s algorithm is in the order of

Unlike the previous schemes, RRCM forces Eve to solve a
nonlinear inverse problem to obtain user’s CSI. Further insight
is shown next.

VI. SIMULATION OF EVE’S COMPLEXITY TO BREAK
RRCM

A. Using the Newton’s Method

1) Four Channel Unknowns: Consider Ny = 4 and Ng =
1. It follows that

— hlms,l
s h3ms,3

hamg 2

H
hamg 4

(10)

where each element of h = [hy,---,hy]’ was randomly
chosen from CN(0,1), and my = [my 1, ,m 4] for each

s was so chosen that r, defined via (8) and (9) is sufficiently
random (and the singular values have sufficient distances
from each other). Assume that Eve has correctly guessed

cs for s = 1,---,5p and hence Eve now knows r, for
s =1,---,5). We simulated the Newton’s method to find
h using 75 for s = 1,---,5y. For Sy = 4, the Newton’s

method yielded correct solutions of h from 94% of 100
random initializations of h. (Note that the correct solutions
of h include those that may be different from h but yield the
same 74 via the SVD (8) for all s including s > Sj.) But for
So = 5, the Newton’s method yielded a correct solution of h
from each of 100 random initializations.

We also tested a phase-only modulation where r, = e/#1.s,
In this case, the number of unknowns is no larger than the
number of equations if and only if Sy > 8. It is somewhat
expected that using rs for s = 1,---, S5y with Sy < 7, the
Newton’s method did not find any correct solution of h. But
for Syp = 8, the Newton’s method yielded a correct solution
of h (valid for all s) from 1 out of 500 random initializations.
Furthermore, we found that the Newton’s method has a very
poor convergence property for the phase-only modulation.

2) Nine Channel Unknowns: Consider Ny =9 and Ng =
1. In this case, Hy is 3 x 3 and h is 9 x 1. The necessary
condition on Sy for a finite number of solutions of h is
now Sy > 9. But with Sy = 9, the Newton’s method with
1000 random initializations of h did not even converge to a
reasonable solution of h that is valid for 1 < s < Sy. In other
words, the Newton’s method could not handle this case in our
simulation.

This is apparently due to the nonlinearity of the problem.
And an effective degree of nonlinearity for each unknown in
(8) increases as the dimension of h increases. (For a set of n
arbitrary second-order polynomial equations with n unknowns,
for example, the number of possible solutions from these
equations could be up to 2".)

B. Using Exhaustive Search

Since the Newton’s method could not handle the case with
9 channel unknowns, we now consider the exhaustive search
over a discrete space Sp, of the 9 x 1 complex vector h. For
each h € &, we need to compute the SVD (8) for s =

1,---,50 with Sy = 9. (A correct solution of h might be
found with a nonzero probability if the consequent 75 for s =
1,---,5Sy from (9) match the “known” r,; for s =1,---,.5¢.)

With N, quantization levels for each real component in h, we
have |Sp| = N, qlg. To obtain an estimate of how the required
computational time varies with N, we used our PC with 11.1
Gigaflops to compute the 3 x 3 SVD (8) for all realizations
of h with Ny = 2 and for s = 1,---,9. We recorded this
time as T5. Then the required time for /N, can be estimated

18
by Ty, = %”B—Tz, which is illustrated in Fig. 1. Also shown
in this figure is the time required if a supercomputer with 50
Petaflops is applied here. For easy reference, we have also
marked the times for 1 day, 1 year and 1 decade.
We see that with just N, = 8 (or 3 bits for each real
component of h), finding h using the exhaustive search could
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Fig. 1. Computation Time Required for exhaustive Search

require more than a decade on our PC or more than a day on
a supercomputer. With a randomized exhaustive search, the
averaged time required to find a correct solution of h can be
reduced by a factor, but the order of complexity O(N, qu 4) as
discussed before does not change.

Subject to Eve’s failure to obtain a correct solution of h
(and hence r4 for any s > Sy) based on random guesses of ¢,
for s =1,---, 95, all information in ¢4 for all s transmitted
from Alice to Bob remains secure from Eve with any number
of antennas and any noise level.

VII. CONCLUSION

In this paper, we have examined the unconditional secrecy
(UNS) of several classic information transmission schemes
subject to eavesdropping by Eve with unlimited number of
antennas and/or negligible noise. We showed that the con-
ventional MIMO beamforming method for Alice with N4
antennas and Bob with Np antennas can provide an UNS
no more than the entropy of r symbol vectors from Alice
where r = min(Na, Ng), a randomized MISO beamformer
for Ny > Np = 1 can provide an UNS no more than the
entropy of Ny — 1 symbols from Alice, and the artificial
noise scheme for any N4 and Np can provide only zero UNS.
And the complexity for Eve to break the secrecy beyond the
UNS for any of the above schemes is shown to be highly
feasible. We also examined a new scheme called randomized
reciprocal channel modulation (RRCM) proposed in [14]. For
a MISO user channel with Ny > N = 1, the UNS of
RRCM can be up to the entropy of N4 transmitted symbols
from Alice. Furthermore, we found via simulation that for
N4 > 9 the computational complexity for Eve to break the
secrecy beyond the UNS of RRCM is infeasible on a PC
with 11 Gigaflops or even on a supercomputer depending on
the delay requirement. The potential applications of RRCM
as physical layer encryption include satellite communications
where network layer encryption is increasingly threatened by
quantum computing (due to Shor’s algorithm).

APPENDIX

A. The Newton’s method applicable by Eve

Let H, € CM*N be such that (Hy); ; = ms; jhi; with
M < N. The SVD of H; is denoted by

H, =U,x, VI (11)

with U, € CMXM v, ¢ CNXM gpd B, ¢ RM*M,
Also VEV, = I, and UFU,; = I,;. The number of
real equations in the SVD for s = 1,---,5 iS Negy =
2MNS + 2M?28, and the number of real unknowns in the
SVD is Ny, = 2M NS +2M?S where the first row of either
U; or V; has zero phases.

Let ry = o,e#s where o, is a singular value of H, and i,
is a phase of one of the elements in Uy or V.

We can write H;, = My ® H. If H consists of K < M N
complex unknowns and rg for s = 1,--- .5 is known, then
we need S > K in order to determine H from r, for s =
1,---,5.

By partial differentiation, we have

M, 6 0H = 90U =, VT 1 U0, VH L UZ0VE (12)

We know that vec(My ® 0H) = vec(M;) ® vec(OH) =
m; © 0h = Dy 0h where D, ; = diag(mg);
vec(OUZ, V) = (Vi @ 1))0us; vec(U,08,VH) =
(ViIn)vec(U03,) = (VieIy)Dy s0os where Dy s =
diag((Ug)1,- -+, (Ug)ar); and vec(UyE,0VH) = (Iy ®
U,3,)P,0v: where P,vy = vec(VT). Therefore, (12) is
equivalent to
Dm,sah :(V:ES ® IM)aus + (VZ ® IM)DU,S&as
+ (Iy ® U X,)P,0vE. (13)

Also by partial differentiation, we have OVEV, +
VIOV, =0 which is equivalent to

(VI @Iy)Pov:i+ Iy @ VEov, =0, (14)
Similarly, we have
(Ul @ In)P,0ut + Iy @ UNou, =0.  (15)

where P, u, = vec(UT).

Let x = [x!' x1 x2' x11"" where x; = [R(h)?,3(h)"7,

X2 = [}R(ul)Tv 8(ul)Tv e »%(US)Tv %(US)T]T’
x3 = [R(vy)", S(vi)", - R(vs)T.S(vs)T]T, and
x4 = [o], -+ ,0L]". The above differential equations are
equivalent to
Yox =0 (16)
where
Yii Yig Yi3 Y4
Y=| 0 Y., 0 0 (17)
0 0 Yss O
~R(Dp1)  S(Dmi)
—3Dm,1) —R(Dpm1)
Y, = (18)

—R(Dp,s)  H(Dm.s)
R —R(Dyy,s)
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Y172 = d’iag(YLQ,h T 7Y1»27S) (19)

Vi, - | RViIZ 0Ly —S(ViZ,2Ly) ] 0
1,2, (Vi @ly) R(VIZ,@1y)

Y1’3 = diag(Y1,3,1a e 7Y1»3»S) (21)

Voo _[ ROne USSP, S(Iy 0 US,)Py)
1,3, NIy @ U, E,)P,) —R((Iy @ U,E,)P,)
(22)
Yia=diag(Y1,41,---,Y145) (23)
_ | R(Vi®In)Dus)
Vi = | Svi o1pe | 9
Yoo = diag(Yo2,1, -+, Y22.5) (25)
v R(UT @ I)P, + (Iy @ U),
225 = Q((UT @ Iy)Py, + (I @ UM)Y),
%((UT @Iy )Py — (I ®UH)) 26)
R(—(UT @ Iy)P,, + (I @ U))
Y33 =diag(Ys3,1,---,Y335s) 27
Y R(VE @Iy)P, + Iy © VH)),
335 7 (VI @ Iny)Py + (Iny @ V),
R(— (VZ ® Im)Pv + Iy @ VE) |-

It is important to note that for each and every known element
in x, we should remove the corresponding elements in 0x and
also remove the corresponding columns in Y.

Then the linear approximation for the SVD equations
around X = X,, 1S

f(x) ~ f(x,) + Y(x—x,) (29)
where
7 (x) = [£] (x).£] (%), 5 (x)] (30)
£ (x) = [f] 1 (x), - £ 5(x)] 31
_ H

o SRR e
f) (x) = [f2Tl (x), - f2 5(x)] (33)

[ R(vec(UHU, — i
£2.4(x) = I %EvecEgHg —}ﬁgg ] (34
£ (x) = [£1(x), -, 5 5(x)] (35)

vece H — i
faa) = | A(reel x ) (36)

The Newton’s algorithm to search for X, such that (x4, ) =
01is

Xpi1 =% — (YIY) 'Y E(x,) (37)

Note that x has N, = 2(MNS + M2S + K — S) real

elements, and f(x) has Ny = 2(M NS + 2M?8S) real entries
but with 202 S redundant entries. The redundance comes from

the symmetry of UYU, =I,; and VIV, = I,,;. Removing
the redundant entries can save computational time.

To remove the redundance, we should remove the elements
in f24(x) corresponding to those below the diagonal of
R(UHU, — Ijs) and those on and below the diagonal of
3(UHU, — 1)), and we should also remove the elements
in f3 4(x) corresponding to those below the diagonal of
R(VEV, — 1)) and those on and below the diagonal of
I(VEV, — 1p). Consequently, we must also remove the
corresponding rows in Y in the Newton’s algorithm.

Also note that after each iteration for x, an estimate of h
should be retrieved from a corresponding part of x and be used
via (8) to reset the other part of x. This operation substantially
improves the convergence property of the Newton’s algorithm.

For each iteration, the computational complexity of the
Newton’s algorithm is dominated by the N, X N, inverse
(Y7TY)~! which has the complexity order O(N2).
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