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on the intranetwork throughput are studied. The throughput of ALOHA is also analyzed and compared with that of O-SAM and
D-SAM. By a distance-weighted throughput, a comparison of long distance transmission versus short distance transmission is also
presented. The study of D-SAM reveals an important insight into the MSH-DSCH protocol adopted in IEEE 802.16 standards.
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1. Introduction

We consider large-scale ad hoc wireless networks of low
mobility within a time interval. Depending on applications,
this time interval can be on a time scale of minutes, hours,
days, or even longer. Such networks include many types of
rapidly deployable wireless networks. There are two types
of traffic in ad hoc networks. One is internetwork traffic
where traffic flows through one or more gateways (also
known as access points) to or from a backbone network.
The other is intranetwork traffic where traffic stays within
the ad hoc network. For internetwork traffic, the aggregated
network throughput is obviously upper bounded by the
capacity of the gateways. By either throughput or capacity,
we mean network spectral efficiency in terms of bits/s/Hz
(bits per second per Hertz). More specifically, we will
use bits-hop/s/Hz/node and bits-meter/s/Hz/node as the
fundamental intranetwork throughput measure [1, 2], which
will be explained later. The internetwork traffic will not be
considered in this paper.

For intranetwork traffic, the achievable network
throughput has been a topic of research by information

theorists for many years. A well-known result on this subject
is the scaling law shown in [1]. This is also a subject reviewed
in [2]. It is arguable that if a network is large in terms
of the number of nodes relative to the logarithm of the
available transmission power from each node, the network
throughput in bits-hop/s/Hz/node (i.e., bits-hop per second
per Hertz per node) is upper bounded [2]. Here, bits-hop
means the (averaged) number of bits transported from one
node to any of its adjacent nodes, and “per node” means
“per every source node.” This measure of throughput is
also a per-link network throughput. If the network node
density is denoted by ρ, then the distance per hop is in the
order of 1/ρ for 1D network, 1/ρ1/2 for 2D network, and
1/ρ1/3 for 3D network. If we denote the upper bound of
the per-link network throughput by c, then the distance-
weighted network throughput in bits-meter/s/Hz/node
is upper bounded by c/ρ for 1D network, c/ρ1/2 for 2D
network, and c/ρ1/3 for 3D network. Here, bits meter means
the number of bits transported over one meter distance. In
this paper, we will only consider 2D networks. The above
expression c/ρ1/2 for 2D network is equivalent to the capacity
scaling law shown in [1] for a 2D network of arbitrary
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Figure 1: The throughput in bits-meter/s/Hz/node of a large
network of 245 nodes on square grid versus p and q in the SAM
protocol [2]. The node density is one. The SNR at each receiver is
40 dB. The channel coefficients are constant.

topology where total n nodes are inside a unit-area disk and
hence ρ = n. It is further shown in [1] that if the network
topology is random, then the averaged network throughput

has an extra penalty factor in the form of 1/
√

logn. Since
[1], there have been new findings on the capacity scaling
laws of large-scale ad hoc networks in various alternative
settings [3–9]. It should be noted that although representing
a theoretical challenge to the above-stated scaling law, a
result shown in [10] requires extremely-large-scale virtual
multiple-input-multiple-output (MIMO) channels and is
highly infeasible according to our analysis.

The capacity scaling laws as discussed above only reveal
the effect of the network size. The exact throughput of a
large network depends on a wide range of factors. Among
them, medium access control (MAC) is critically important.
Most of the existing MAC schemes for ad hoc networks are
variations of the two basic forms: ALOHA [11] and CSMA
(carrier sense multiple access). With CSMA, a node can
transmit a packet only when there is no other concurrent
cochannel transmission within a large radius. The per-link
throughput of CSMA diminishes to zero as quickly as the
inverse of the number of nodes within the carrier sensing
radius. It is useful to note however that CSMA is adopted in
IEEE 802.11 standards [12] for small single-hop networks.
With ALOHA, each node initiates a packet transmission
randomly. This packet can be received successfully if the
intended receiver is ready and the interference is not too high.
Because concurrent cochannel transmissions are allowed
by ALOHA, the per link throughput of ALOHA does not
reduce to zero as the node density increases. In other
words, with ALOHA, the capacity scaling law c/ρ1/2 in bits
meter/s/Hz/node holds for networks of regular topologies. A
throughput analysis of ALOHA for large network is available
in [13]. The throughput shown in [13] was not maximized
over the target SINR ξ. As shown in [14], ξ affects the
network throughput significantly and can be optimized
in practice. In this paper, we distinguish between signal-

to-interference-and-noise ratio (SINR) and signal-to-noise
ratio (SNR).

For many potential applications, ad hoc networks have
low mobility during operations, which allows cooperations
that are not exploited by ALOHA. In [2], the synchronous
array method (SAM) was proposed. The essence of SAM is
to partition all links in the network into multiple interleaved
subsets of links where each subset of links with desired
spacing between them corresponds to a set of concurrent
cochannel transmissions. As an example, Figure 1 illustrates
the impact of the spacing between concurrent cochannel
transmissions on the network throughput. For this figure,
all nodes are on the square grid. For square topology, the
spacing or sparseness is measured by p and q which are
the vertical and horizontal spacing units between concurrent
cochannel transmitters [2]. Also for this figure, the target
SINR ξ (i.e., the required SINR value for a packet to be
received successfully) is optimized for each pair of p and
q, the channels are nonfading (complex Gaussian fading
channels will be considered in the sequel of this paper),
and single omnidirectional antenna is used on each node.
We see that the impact of the sparseness is significant. For
regular topologies such as square, triangle, and hexagon,
the sparseness can also be measured by the ratio fs of the
total number of nodes in the network over the number
of nodes that are receiving (or transmitting) in each time-
frequency slot. In Figure 1, p = 2 and q = 3 are optimal.
The corresponding fs is six. Depending on network topology,
antenna properties, and channel fading characteristics, the
optimal value of fs varies. But for regular topologies and
omnidirectional antennas, the optimal value of fs has been
found mostly in the range of four, five, and six [14]. If CSMA
is applied, the sparseness of concurrent cochannel transmis-
sions would be very large and the network throughput would
be far below the peak value shown in Figure 1. The idea of
using concurrent cochannel transmissions to improve the
network efficiency is gaining more attention [15].

The analysis in [14] shows that the throughput of SAM is
significantly (about two times) higher than that of ALOHA.
In [16], an opportunistic SAM (O-SAM) was proposed
that allows concurrent cochannel transmissions to be locally
adaptive to channel gain variations. This idea is similar to
one used in a channel-state-dependent ALOHA [17] for
a single-hop network. But the context for O-SAM is a
multihop network rather than a single-hop network. Since
the strongest channel gain within each local area is exploited
each time, the throughput of O-SAM is much improved. The
effect of using multiple antennas is also considered in [18].
However, all of the existing throughput analyses of ALOHA,
SAM, and O-SAM are under a full loading condition where
each node always has a packet waiting to be transmitted at
any time.

In this paper, we will present several new contributions.
The first is a comparison of ALOHA and O-SAM under a
more general loading condition. This condition is modeled
as the probability ζ that each node has a packet for
transmission at any given time. We will reveal that the (ξ
optimized) throughput of ALOHA is lower than that of O-
SAM unless ζ is small (e.g., less than 10%). The second is a
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Figure 2: Optimal subnet partitions of large networks on regular
topologies for O-SAM: the upper left is square, the upper right is
hexagon, and the lower is triangle. The sparseness factor fs is five
for the square and triangle topologies and four for the hexagonal
topology. The black nodes are concurrent cochannel receivers. One
of the blank nodes in each subnet can be a transmitter in that
subnet.

comparison of longer-distance transmission versus shortest-
distance transmission in terms of the distance-weighted
throughput in bits-meter/s/Hz/node, which shows that the
former is worse than the latter unless ζ is very small (e.g.,
less than 1%). The third is an analysis of O-SAM for the case
of multiple antennas on each node, which is an extension of
that in [16, 18]. The forth is an introduction and evaluation
of a distributed SAM (D-SAM) which allows all concurrent
cochannel transmissions to be scheduled in a distributed and
dynamic way. The essence of D-SAM is similar to that of
MSH-DSCH in IEEE 802.16 standards [19]. However, there
has been no prior study of the fundamental throughput of
MSH-DSCH in large networks. The understanding of D-
SAM for large networks can serve this purpose. The study
shown in [20] focuses on the dynamic of control packet
exchanges, which as explained later does not reveal the
fundamental throughput of a network of low mobility. By
simulation, we will show the effect of a cooperative radius
R on the throughput of D-SAM. Within the radius R
centered at a receiver, only the desired transmitter is allowed
to transmit a data packet. It is important to note that the
cooperative radius R is smaller than an eavesdropping radius
Re. The latter defines the maximum distance between any
two nodes which can eavesdrop each other. Furthermore, a
carrier sensing radius Rc would be much larger than the
eavesdropping radius Re. This study interestingly supports
that the two-hop rule adopted in MSH-DSCH (i.e., all
interfering transmitters to a receiver are kept two hops away
from the receiver) is a good choice for regular or near-
regular topologies under a full load condition. This study also
provides a corresponding guidance for choosing a proper
packet spectral efficiency, which is not available in IEEE
802.16.

The principle of D-SAM differs from that of a distributed
and cooperative link scheduling (DCLS) algorithm shown
in [21]. The former is based on the distance information of

neighboring nodes. But the latter is based on calibration of
actual SINR for each link. For environment where distance
does not well reflect signal attenuation, DCLS could be a
better alternative. A detailed comparison between D-SAM
and DCLS is not yet available.

Whenever feasible, analysis is given. Otherwise, only sim-
ulation is provided. We will measure network throughput by
bits-meter/s/Hz/node. All numerical examples to be shown
are useful fundamental benchmarks for large networks.

The reminder of this paper is organized as follows. In
Section 2, we extend O-SAM presented in [18] by taking into
account the loading probability ζ . In Section 3, we analyze
the network throughput of O-SAM, where the single-input-
single-output (SISO), single-input-multiple-output (SIMO),
and multiple-input-multiple-output (MIMO) channels are
all considered. In Section 4, we present D-SAM in detail. In
Section 5, we revisit the slotted ALOHA with consideration
of the loading probability ζ . In Section 6, we evaluate and
compare the network throughput of ALOHA, O-SAM, and
D-SAM.

2. Opportunistic SAM

2.1. Subnet Partitions. As mentioned before, the essence of
SAM proposed in [2] is to partition all links in the network
into multiple interleaved subsets of links where each subset
of links with desired spacing between them corresponds to
a set of concurrent cochannel transmissions. An equivalent
description of SAM is that in any given time-frequency slot,
the entire network is partitioned into contiguous subnets and
each subnet consists of a receiving node, a transmitting node
and possibly several idle nodes. In different time-frequency
slots, the corresponding partitions of subnets are relatively
shifted from each other.

Figure 2 illustrates the partitions of subsets for square,
triangle and hexagonal topologies. For opportunistic SAM
(O-SAM), each receiving node is chosen to be at the center
of each subnet, and the transmitting node in each subnet is
opportunistically selected from other nodes in the subnet.
This is different from SAM in [2] which will also be referred
to as centralized SAM (C-SAM) where both receiving and
transmitting nodes in each subnet are predetermined.

For the O-SAM protocol shown next and the Gaussian
fading channels, the subnet partitions shown in Figure 2 have
been found to be optimal among other possible partitions.
It is useful to note that except for the hexagonal topology,
the subnet partitions shown in this figure are not exactly the
same as the optimal ones for C-SAM as shown in [14]. But
the fact that the optimal subnet partition for the hexagonal
topology is the same for both C-SAM and O-SAM makes
the hexagonal topology more interesting. This is because the
throughput gain by O-SAM via opportunistic selection of
transmitters is no longer compromised by altering the subnet
partition from the optimal one determined by C-SAM. This
advantage will be illustrated numerically later.

2.2. The Protocol. The O-SAM protocol is described next.
Without loss of generality, we can focus on a single
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time-frequency frame. For a large network, almost all subnets
can be treated like a subnet in the center of the network. We
will refer to such a subnet as subnet 0 and any other subnet
as subnet j with j = 1, 2, . . . , S. We let I0 denote the set of the
indices of all potential transmitting nodes that have packets
to transmit to the receiver in subnet 0. We let n0 be the total
number of nodes, other than the receiver, in subnet 0. Since
ζ is the probability that a node has a packet to transmit to
another node, the probability that I0 contains k nodes is

ζk(1− ζ)n0−k. Note that the set I0 is a random set in each
time-frequency frame.

2.2.1. SISO Channels. If the channel between every two
nodes is modeled as SISO channel, the channel coefficient
from the ith node in I0 to its receiver is denoted by h0,0(i). The
corresponding channel gain is v0,0(i) = |h0,0(i)|2. The index
of the node with the strongest gain in subnet 0 is denoted by
i0,max = arg maxi∈I0v0,0(i). The index of the node selected for
transmission in subnet 0 is

k0 =
{
i0,max if v0,0(i0,max) ≥ θ,

{∅} otherwise.
(1)

Here, no node is selected for transmission in subnet 0 if
the gain of the node with the strongest gain in the subnet
is less than a prespecified threshold θ. The reason behind
the use of θ is that if the strongest gain in a subnet is too
small, abandoning packet transmission in this subnet causes
little loss of information in this subnet and at the same time
reduces interference to other subnets. A significant impact of
θ on the network throughput under a full load condition was
illustrated in [16].

The O-SAM protocol (1) requires each subnet to know
the channel gains of all potential transmitting nodes in
the subnet. This requires channel estimation and associated
exchanges of control packets. This task is feasible if the
channel coherence time is relatively long. In fact, for
networks of low mobility, the channel coherence time can
be very large (e.g., many milliseconds). In this case, only
a small fraction (e.g., a few micro seconds) of the channel
coherence time needs to be spent for channel estimation.
Clearly, the more coordinated is the channel estimation in all
subnets, the less time is needed. We will not further address
the implementation issues of channel estimation for O-SAM.

On the other hand, if the channel gains do not change
over time, there is no opportunity to be exploited by O-SAM
and the protocol (1) is not meaningful. But random changes
in channel gains can be induced artificially if they are not
present naturally. To induce random channel gains, one can
use multiple transmit antennas on each node and choose a
transmit beam vector for each node randomly from frame to
frame. This technique also applies to the SIMO and MIMO
cases discussed below. The key is to compress the dimension
of the channel responses randomly at the transmitter side.

2.2.2. SIMO Channels. If each transmitting node uses one
antenna and each receiving node uses multiple antennas,
we have a SIMO channel between each transmitter and its
receiver. In this case, we define the O-SAM protocol as (1)

except that we use v0,0(i) = ‖h0,0(i)‖2 where h0,0(i) is the
channel response vector between the ith node in I0 and its
receiver.

We will skip the MISO case since it is similar to the SIMO
case.

2.2.3. MIMO Channels. If each node has multiple transmit
antennas and multiple receive antennas, we have a MIMO
channel between each transmitter and its receiver. In this
case, we define the O-SAM protocol as (1) except that
v0,0(i) = λmax(H0,0(i)HH

0,0(i)) where λmaxdenotes the largest
eigenvalue and H0,0(i) is the channel response matrix
between the ith node in I0 and its receiver. The use of λmax

implies that the principal stream of each MIMO channel
is used but all other streams are ignored. Because of the
interference between concurrent cochannel transmissions,
the inclusion of the nonprincipal streams of each MIMO
channel into the O-SAM protocol would make the through-
put analysis intractable to us at this stage. For this reason, we
only consider the principal stream of each MIMO channel.

3. Throughput Analysis of Opportunistic SAM

For throughput analysis, we assume that all elements in
channel coefficients, channel response vectors, and channel
response matrices are independent and identically dis-
tributed (i.i.d.) complex Gaussian random variables. This
implies in particular that the channel coefficient between any
receive antenna and any transmit antenna is independent of
all other channel coefficients.

3.1. SISO Channels. For SISO channels, the signal y0 received
by the receiving node in subnet 0 can be written as

y0 = h0,0x0 +
∑

j>0

h0, jx j +w0, (2)

where xj is the transmitted signal from the transmitter
in subnet j, h0, j is the channel coefficient between the
transmitter in subnet j and the receiver in subnet 0, and w0

is white Gaussian noise with zero mean and variance σ2. We
assume that h0, j is complex Gaussian random variable (from
frame to frame) with zero mean and variance E|h0, j|2 = d−α0, j .
Here, α is the path loss exponent and d0, j is the distance
between the transmitter and the receiver. For convenience
of analysis, we assume that all nodes transmit with the same
power P, that is, E|xj|2 = P. Hence, the instantaneous SINR
at the receiver in subnet 0 is

SINR = v0,0P∑
j>0v0, jP + σ2

, (3)

where v0,0 = |h0,0|2 and v0, j = |h0, j|2. We assume that the
instantaneous SINR at each receiver is not known to the
desired transmitter, which is due to random transmissions
from other subnets. We also assume that for a large
network, almost all the subnets are statistically equivalent
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to each other. Then, the network throughput in bits-
meter/s/Hz/node can be expressed as

CO-SAM =
β

L
√
ρ
RξPd, (4)

where Rξ = log2(1 + ξ) is the packet spectral efficiency, and
Pd = Pr {SINR ≥ ξ} is the probability of a successful packet
detection. Also, L is the node population in each subnet. As
illustrated in Figure 2, L = 5 for the square and triangle
topologies, and L = 4 for the hexagonal topology. Finally,
β is a conversion factor from bits/hop/s/Hz/node to bits-
meter/s/Hz/node. As shown in [14], we have β = 0.785 for
square topology, β = 0.689 for hexagonal topology, and β =
0.975 for triangle topology. Strictly speaking, the expression
(4) is the network throughput for the interior region of the
network. For large networks, (4) is a tight lower bound on
the network throughput for the entire network.

From the O-SAM protocol, it is clear that the instan-
taneous SINR in each time-frequency frame is a random
variable that depends on θ and ζ , and hence the network
throughput is effected by ξ, θ, and ζ .

In order to evaluate the network throughput (4), we need
a more explicit form of Pd, which is derived next:

Pd = Pr{SINR ≥ ξ, v0,0 ≥ θ}

= Pr

{
v0,0 ≥ ξ

(
σ2

P
+
∑

j>0

v0, j

)
, v0,0 ≥ θ

}

= Pr

{∑

j>0

v0, j ≤ v0,0

ξ
− σ2

P
, v0,0 ≥ θ

}

=
∫∞

max(ξσ2/P,θ)

(∫ y/ξ−σ2/P

0
fvI (x) dx

)
fv0,0 (y) dy,

(5)

where fv0,0 (y) is the probability density function (pdf) of v0,0,
and fvI (x) is the pdf of vI =

∑
j>0v0, j . Note that the condition

v0,0 ≥ θ in the above expression is important. The impact of
θ on the network throughput is significant and illustrated in
[16] (under the full load condition). In this paper, we will not
further illustrate the effect of θ. Unless mentioned otherwise,
θ is optimally chosen to maximize the network throughput.

In order to evaluate Pd shown in (5), we need to
obtain the expressions of the two pdf functions fv0,0 (y) and
fvI (x). We start with fv0,0 (y). Since |h0,0(m)|2 is exponentially
distributed with the mean D0,0(m) = d−α0,0 (m), where d0,0(m)
is the distance between the transmitter and receiver in subnet
0 and α is the path loss exponent, it follows that

Pr{v0,0 ≤ y} =
∏

m∈I0
Pr{v0,0(m) ≤ y}

=
∏

m∈I0

(
1− exp

{ −y
D0,0(m)

})
U(y),

(6)

where U(y) is the unit step function. The above expression
is not ready to use since I0 is a random set. Alternatively and
equivalently, we can think of a node that has no packet to

transmit as if it is a node that has zero channel gain with
respect to the receiver. Following this thinking, we can write

Pr{v0,0 ≤ y} =
n0∏

m=1

{(
1− exp

{ −y
D0,0(m)

})
ζ + (1− ζ)

}
U(y)

=
n0∏

m=1

(
1− ζ exp

{ −y
D0,0(m)

})
U(y),

(7)

where n0 is the number of potential transmitters in subnet
0. The pdf fv0,0 (y) follows readily from the derivative of
Pr{v0,0 ≤ y} shown in (7), that is,

fv0,0 (y) =
n0∑

k=1

(
δ(y) + ζ

1
D0,0(k)

exp
{ −y
D0,0(k)

})

×
n0∏

m=1,m /=k

(
1− ζ exp

{ −y
D0,0(m)

})
U(y),

(8)

where δ(y) is the Dirac’s delta function.
To derive the pdf fvI (x) where vI =

∑
j>0v0, j , we start with

the following:

Pr{v0, j ≤ x} =
{
Pj +

nj∑

l=1

Pj,lPr{|h0, j(l)|2 ≤ x}
}
U(x)

=
{
Pj +

nj∑

l=1

Pj,l

(
1− exp

{ −x
D0, j(l)

})}
U(x),

(9)

where Pj is the probability that there is no transmission in
subnet j, and Pj,l is the probability that the lth node in
subnet j transmits. We have used nj to denote the number
of potential transmitters in subnet j. In (9), we also used the
property that |h0, j(l)|2 is exponentially distributed with the
mean D0, j(l) = d−α0, j (l), where d0, j(l) is the distance between
the lth transmitter in subnet j and the receiver in subnet 0. It
follows that

Pj = 1−
∑

l

P j,l

P j,l = ζ·Pr
{
vj, j(l) ≥ θ, max

k /=l, k∈I j
v j, j(k) ≤ vj, j(l)

}

= ζ
∫∞
θ

1
Dj, j(l)

e−x/Dj, j (l)
∏

k /=l, k∈{1,2,...,nj}
(1− ζe−x/Dj, j (k)) dx,

(10)

where we have used the technique used for (7). Then, the pdf
fv0, j (x) follows readily from the derivative of (9), which is a
superimposed-exponential, that is,

fv0, j (x) = Pjδ(x) +
nj∑

l=1

Pj,l
1

D0, j(l)
e−x/D0, j (l)U(x). (11)

Since vI is the sum of the independent random variables
v0, j for all j > 0, the pdf of fvI (x) is the convolution of fv0, j (x)
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for all j > 0. Assume that fvI (x) is negligible for x ≥ T . We
can write the Fourier series expansion of fvI (x) as follows:

fvI (x) =
K∑

k=−K
gk exp

(
υ

2πk
T

x
)

, (12)

where υ = √−1 and

gk = 1
T

∫ T
0
fvI (t) exp

(
− υ2πk

T
t
)
dt

= 1
T

∏

j>0

(
Pj +

nj∑

l=1

Plj
1 + υ(2πk/T)D0, j(l)

)
.

(13)

We will assume that gk is negligible for k > K .
With fv0,0 (x) and fvI (x) as shown above, Pd in (5) can be

readily computed.

3.2. SIMO Channels. For SIMO channels where there are nr
receiving antennas at each node, the signal received by the
receiver in subnet 0 has the following expression:

y0 = h0,0x0 +
∑

j>0

h0, jx j + w0. (14)

Here, xi denotes the signal transmitted from subnet i.
hi, j ∈ Cnr×1 is the channel coefficient vector between the
transmitter in subnet j and the receiver in subnet i. The
entries in hi, j are assumed to be independent and identically
distributed complex Gaussian random variables with zero
mean and variance d−αi, j (kj) where kj is given by (15) and
di, j(kj) is the distance between the transmitter in subnet j
and the receiver in subnet i, α is the path loss exponent.
wi is the complex noise vector at the receiver in subnet i,
and assumed to have zero mean and the covariance matrix
E{wH

i wi} = σ2Inr where Inr denotes the nr × nr identity
matrix. We also assume that all the nodes in the network
transmit with the same power P, that is, E{xHi xi} = P.

It is important to note that based on the O-SAM
protocol, hi, j = hi, j(kj) where

kj = arg
(

max
k∈I j , ‖h j, j (k)‖2≥θ

‖h j, j(k)‖2
)
. (15)

Also recall that hi, j(k) is the channel response vector from
the kth potential transmitter in subnet j to the receiver in
subnet i.

A sufficient statistics of y0 is given by r0 = hH0,0y0. The
SINR in r0 is

SINR = hH0,0h0,0∑
j>0(|hH0,0h0, j|2/‖h0,0‖2) + σ2/P

= v0,0∑
j>0v0, j + σ2/P

,

(16)

where v0,0 = hH0,0h0,0 and v0, j = |hH0,0h0, j|2/‖h0,0‖2.
Given any h0,0, hj(l)

.= hH0,0h0, j(l)/‖h0,0‖ is a linear
combination of the elements of h0, j(l) which are i.i.d.
complex Gaussian random variable, and hence hj(l) is a

complex Gaussian variable. Each element of h0, j(l) has zero
mean and the variance D0, j(l) = dα0, j(l) where d0, j(l) is the
distance between the lth node in subnet j and the receiver
in subnet 0. Furthermore, one can verify as in [22] that
hj(l) has zero mean and the variance D0, j(l). It follows that
v0, j(l) = |hj(l)|2 for j > 0 is independent of h0,0 and is
exponentially distributed with mean D0, j(l), that is,

fv0, j (l)(y) = 1
D0, j(l)

exp
( −y
D0, j(l)

)
U(y), j > 0. (17)

Since v0, j = v0, j(kj) with kj given by (15), v0, j for j > 0 is
also independent of h0,0.

Therefore, with the above description of v0,0 and v0, j , the
throughput expression (4) and the probability-of-detection
expression (5) are also valid for the case of SIMO channels
except that the expressions of the pdf fv0,0 (y) of v0,0 and the
pdf fvI (x) of vI =

∑
j>0v0, j need to be revised as follows.

To find fv0,0 (y), we first write

Pr{v0,0 ≤ y} =
n0∏

m=1

{ζPr(‖h0,0(m)‖2 ≤ y) + (1− ζ)}U(y).

(18)

It is known that ‖h0, j(l)‖2 is Chi-square or gamma dis-
tributed with 2nr degrees, that is,

f‖h0, j (l)‖2 (x) = xnr−1

(nr − 1)!Dnr
0, j(l)

e−x/D0, j(l)U(x). (19)

Therefore,

Pr{v0,0 ≤ y} =
n0∏

m=1

{
ζ
∫ y

0

xnr−1

(nr − 1)!Dnr
0,0(m)

e−x/D0,0(m) dx

+ (1− ζ)
}
U(y)

=
n0∏

m=1

{
ζ

(
1− e−y/D0,0(m)

nr−1∑

k=0

yk

Dk
0,0(m)k!

)

+ 1− ζ
}
U(y)

=
n0∏

m=1

{
1− ζe−y/D0,0(m)g

(
y

D0,0(m)

)}
U(y),

(20)

where g(y) = ∑nr−1
k=0 (yk/k!). The pdf fv0,0 (y) is simply given

by the derivative of (20). If all potential transmitters in each
subnet have the same distance to the receiver in the same
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subnet, that is,Dj, j(m) = D for all j and allm, the pdf fv0,0 (y)
can be shown to be

fv0,0 (y) = ∂

∂y
Pr{v0,0 ≤ y}

=
n0∑

μ=1

(
n0

μ

)
(−1)μ+1ζμe−(μ/D)ygμ−1

(
y

D

)

× μynr−1

Dnr (nr − 1)!
U(y) + (1− ζ)n0δ(y)

= n0

[
1− ζe−y/Dg

(
y

D

)]n0−1 ζe−y/D ynr−1

Dnr (nr − 1)!
U(y)

+ (1− ζ)n0δ(y).
(21)

We now derive the pdf fvI (x) of vI =
∑

j>0v0, j where
v0, j = |hH0,0h0, j|2/‖h0,0‖2. Since the pdf of v0, j(l) is the same as
that for the SISO channels, all expressions for the pdf fvI (x)
are the same as for the SISO case except that Pj,l needs to be
revised as follows:

Pj,l = ζ·Pr
{
‖h j, j(l)‖2 ≥ max

k /=l
‖h j, j(k)‖2, ‖h j, j(l)‖2 ≥ θ

}

= ζ
∫∞
θ

xnr−1

(nr − 1)!Dnr
j, j(l)

e−x/Dj, j (l)

×
∏

k /=l

(
1− ζe−x/Dj, j (k)

nr−1∑

q=0

xq

Dj, j(k)qq!

)
dx,

(22)

where we have used (19). IfDj, j(l) = D for all j and all l, then
Pj,l becomes independent of l, and Pj,l can be simplified as

Pj,l = ζ
∫∞
θ

xnr−1

(nr − 1)!Dnr
e−x/D

(
1− ζe−x/D

nr−1∑

q=0

xq

Dqq!

)n0−1

dx.

(23)

3.3. MIMO Channels. For MIMO channels, the received
signal model in subnet 0 is given by

y0 = H0,0x0 +
∑

i>0

H0,ixi + w0, (24)

where Hi, j ∈ Cnr×nt is the channel coefficient vector between
the transmitter in subnet j and the receiver in subnet i. The
entries in Hi, j are assumed to be independent and identically
distributed complex Gaussian random variables with zero
mean and variance d−αi, j (kj) with kj defined by (25). xi is the
complex vector signal transmitted from subnet i. wi is the
complex noise vector at the receiver in subnet i, and assumed
to have zero mean and the covariance matrix E{wH

i wi} =
σ2Inr , where Inr denotes the nr × nr identity matrix. We also
assume that all the nodes in the network transmit with the
same power P, that is, tr{E{xixHi }} = P. We further assume
that nr = nt .

Based on the O-SAM protocol, Hi, j = Hi, j(kj) where

kj = arg
(

max
k∈I j , λmax(Hi, j (k))≥θ

λmax(Hi, j(k))
)
. (25)

Denote the singular value decomposition (SVD) of Hi,i

as Hi,i = Ui,iΛ
1/2
i,i VH

i,i where Λi,i is a diagonal matrix of
nonnegative entries in a descending order. Then, we can
transform (24) to the following:

ỹ0 = Λ1/2
0,0 x̃0 +

∑

i>0

H̃0,ix̃i + w̃0, (26)

where ỹ0 = UH
0,0y0, x̃i = VH

i,ixi, H̃0,i = UH
0,0H0,iVi,i and w̃0 =

UH
0,0w0.

Under the O-SAM protocol, we only use the principal
stream of each MIMO link. In this case, only the first entry of
the vector x̃i is nonzero, which is denoted by xi. Therefore, a
sufficient statistics of the vector ỹ0 is given by its first element,
which is denoted by y0, and (26) is equivalent to the scalar
equation

y0 = λ1/2
maxx0 +

∑

j>0

h0, jx j +w0, (27)

where λmax is the largest eigenvalue of H0,0HH
0,0, and h0, j is the

upper-left entry of H̃0, j which is complex Gaussian with zero
mean and variance d−α0, j (kj).

The SINR in y0 is given by

SINR = v0,0∑
j>0v0, j + σ2/P

, (28)

where v0,0 = λmax, and v0, j = |h0, j|2 which is exponentially
distributed with the mean D0, j(kj) = d−α0, j (kj).

Assuming that d0,0(m) = 1 for allm = 1, 2, . . . ,n0, the cdf
(cumulative distribution function) of λmax is known [23] to
be

Fλmax (x) = 1∏nr
j=1Γ( j)2 det |(γi+ j−2)|, (29)

where (γi+ j−2) is a nr × nr matrix with element γi+ j−2 =∫ x
0ω

i+ j−2 exp(−ω) dω and Γ( j) = ( j − 1)!.
The expressions (4) and (5) still hold for the MIMO case

except that fvI (x) and fv0,0 (y) need to be revised as follows.
We know that

Pr{v0,0 ≤ y} =
n0∏

m=1

{ζFλmax (y) + (1− ζ)}

= {ζFλmax (y) + (1− ζ)}n0 .

(30)

Then, fv0,0 (y) is given by the derivative of (30).
The expressions for fvI (x) are the same as those for the

SISO and SIMO cases except that

Pj,l = 1
nj

(1− Pj),

Pj = (1− ζ + ζFλmax (θ))nj .

(31)
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Figure 3: Frame structure of the distributed SAM protocol, which resembles that of MSH-DSCH in IEEE 802.16.

4. Distributed SAM

The (centralized) SAM shown in [2] and the opportunistic
SAM shown in Section 2 all require a subnet partition in
a centralized fashion. The dimension of each subnet or
the spacing between concurrent cochannel transmissions is
critical for network throughput. In this section, we present
a distributed SAM (D-SAM) that encapsulates an essence
of SAM in that all concurrent cochannel transmissions are
properly spaced from each other. But D-SAM forms subnets
in each time frame in a distributed and dynamic fashion. D-
SAM also works with random network topology.

In D-SAM, time is slotted into frames of equal duration
as shown in Figure 3. Each frame is further divided into
control subframe and data subframe. Assuming that the
data subframe is much longer than the control subframe,
the network spectral efficiency is dominated by the spectral
efficiency in each data subframe. A control subframe is used
for each node to compete for data transmission opportunity
in a data subframe. Each control subframe consists of a group
of M contention slots. For analysis of maximal achievable
throughput, we will assume without loss of generality that
each data subframe consists of a single data slot.

At the beginning of each frame, D-SAM allows each node
to randomly initialize a choice for one of the M contention
slots if the node has a packet to transmit to another node.
If the node has packets to be transmitted (separately) to
multiple neighboring nodes, the node chooses multiple
contention slots, one slot for each receiver. During a chosen
contention slot, the node contends for the upcoming data
subframe by starting a handshaking process with its intended
receiving node. The handshaking involves three packets:
request-to-sent (RTS), clear-to-sent (CTS), and ACK. If the
handshaking is successful, the upcoming data subframe is
reserved for data transmission between the transmitter-and-
receiver pair. During each contention slot, the handshaking
packets are received by neighboring nodes so that these
nodes are aware of the reservation status of the upcoming
data frame. For each frame and each neighborhood in a
predetermined range, the data subframe can only be reserved
for one transmitter-and-receiver pair. This means that the
first contention slot has the highest priority, the second
contention slot has the second priority, and so on. In the next
frame, the contention process repeats without memory of the
previous contentions, which ensures fairness.

More details of D-SAM are as follows. We assume
that each node k maintains a neighborhood list Nk which
contains the identifications of all its neighboring nodes
inside a cooperative range R. The range R is an important
parameter for the performance of D-SAM. The ith node in
Nk is indexed by Nk(i). The neighborhood list at each node
can be established at the startup of the network. For networks
of low mobility, this startup is feasible. We assume that every
node can be set to one of three states for the upcoming data
subframe: T , R, and S. Here, T stands for transmitting, R for
receiving, and S for standby. We denote the state of node k as
Sk and the state of Nk(i) as SNk(i).

(1) Initialization: At the beginning of each frame, set
every node to state S, that is, Sk = S for all k. Then, we allow
that every node k generates a “contention request vector” vk
that randomly maps each neighboring node in list Nk to one
of M contention slots if node k has traffic load intended to
those neighbors. Here, we assume that M is larger than the
size of every neighbor list, that is, M ≥ |Nk| for all k. The
ratio of M over |Nk| affects the probability of handshaking
collisions. The larger is the ratio, the lower is the probability
of handshaking collisions. We denote the mth element of vk
as vk(m), which is

vk(m) =

⎧⎪⎪⎨
⎪⎪⎩

j if node k has traffic to node j, and j
is mapped into contention slot m,

0 otherwise.
(32)

In other words, the value of vk(m) is the index of the
receiving node for which the transmitting node k wants to
contend during the contention slot m for the upcoming
data subframe. If vk(m) = 0, it means that, in the mth
contention slot, node k will not contend for the upcoming
data subframe.

(2) In contention slot m: each node k will first check its
contention request vector. If vk(m) = 0, node k eavesdrops
ongoing handshaking within the neighborhood of range
R. (Naturally, we assume that the eavesdropping range
Re from each node is larger than the cooperative range
R. Furthermore, the carrier sense range Rc, although not
considered in this paper, would be even larger than Re.)
If node k hears any CTS or ACK packet, it retrieves the
information from the packet and resets the states of the nodes
in Nk accordingly. If vk(m) = j where j > 0, node k will try to
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finish the following three-way RTS-CTS-ACK handshaking
with node j.

(i) RTS:

Node k sends an RTS packet to node j which contains
the identity of node k, if the following conditions are
satisfied:

(a) Sk = S;

(b) SNk(i) /=R for all i.

(ii) CTS:

If node j has successfully received the RTS packet
from node k and the following conditions are
satisfied:

(a) S j = S;

(b) SN j (i) = S for all i;

(c) vj(m) = 0,

then node j resets S j = R and SN j (ik) = T where ik is
the index for node k in the table N j , and sends a CTS
packet back to node k.

(iii) ACK:

If node k has successfully received the CTS packet
from node j, the node k resets Sk = T and SNk(i j ) = R
where i j is the index of node j in the table Nk, and
sends back the ACK packet.

During any contention slot, if there is a collision of
control packets within the radius R, the operation in that slot
is abandoned. But the collision of control packets at a receiver
due to transmitters outside the radius R is assumed to be
resolvable by using coding with relatively high redundancy. If
the ratio of M over the number of nodes within the radius R
is large, the probability of collision of control packets is small.
As long as the control packets are much smaller than the data
packets (i.e., the control subframe is much smaller than the
data subframe), the network spectral efficiency is dominated
by the throughput in the data subframe. This assumption will
be our basis for throughput evaluation of D-SAM.

The idea of using control subframe for scheduling is not
new, which can be traced back to the bit map concept as well
as the work shown in [24]. But the study of the impact of the
cooperative radius R on the network throughput is new and
important for large-scale ad hoc networks.

Figure 4 illustrates a snapshot of the concurrent cochan-
nel transmission pairs for a square network, which was
determined by D-SAM for data transmission. The radius
R = da was chosen, where da is the spacing between two
nearest neighbors. The number of contention slots was M =
8. The full traffic loading condition, that is, ζ = 1, was
assumed.

For D-SAM, we evaluate the network throughput in bits-
meter/s/Hz/node as follows:

CD-SAM = E

{
1
N

N∑

n=1

dnRξsn

}
, (33)
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Figure 4: A snapshot of concurrent cochannel transmissions
determined by the D-SAM protocol for a network in a regular
square grid. R = da, M = 8, and ζ = 1 were used, where da is the
minimum distance between two adjacent nodes. The black nodes
are the receiving nodes, and the grey nodes are the transmitting
nodes.

where E denotes expectation, N is the total number of nodes
in the network, dn is the distance between the nth receiving
node and its transmitting node, Rξ is the packet spectral
efficiency as defined before, sn ∈ {0, 1}, and sn = 1 if
and only if a packet is intended for the nth node and the
corresponding SINR is no less than ξ. In the simulation,
the expectation is replaced by the average over many time
frames. Each time frame also corresponds to an independent
realization of Gaussian random channels. The distance
weighting in (33) is different from the conversion formulas
(from bits-hop/s/Hz/node to bits-meter/s/Hz/node) derived
in [14] because the former does not take into account the
fact that a typical multihop route between source node
and destination node is not a straight line due to topology
constraint. However, for regular topologies, the weighting
used in (33) is slightly larger than that used in [14]. For an
arbitrary topology, (33) represents an upper bound on the
throughput in bits-meter/s/Hz/node.

5. Loading Adaptive ALOHA

Slotted ALOHA (or ALOHA for short) is a useful benchmark
for throughput comparison. The protocol of ALOHA is as
follows. In each time slot or frame, if a node A has a packet
to deliver to a neighboring node B, then the nodeA transmits
the packet to the node B with a transmission probability ε. If
the node B is not transmitting in the same time slot, the node
B attempts to receive the packet from the node A.

The throughput of ALOHA can be shown as follows.
Since each node has the probability ζ to have a packet for
its neighbor, the effective probability for a node to choose
to transmit is ζε. Hence, the throughput of ALOHA in bits-
meter/s/Hz/node for networks of regular topologies is given
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by the following expression [14]:

CALOHA =
β
√
ρ

(1− ζε)ζεRξPd. (34)

Here, as defined before, Rξ is the packet spectral efficiency,
and Pd = Pr{SINR ≥ ξ} is the probability of packet
detection. However, the statistics of SINR for ALOHA is
different from that for SAM.

Note that the above expression (34) is for “per node”
throughput, that is, in terms of bits-meter/s/Hz/node. (It is
per every source node.) If there are total N nodes where N is
large, the aggregated network throughput in bits-meter/s/Hz
isN times the expression (34). This expression has taken into
account statistically all possible transmission patterns, which
include the scenarios where multiple nodes are transmitting
to a common receiver. When a node is in the receiving
mode, it tries to decode the information from each of its
neighboring nodes (say, nodes A and B). When the receiving
node tries to decode the information from node A, the signal
from node B (if any) will be treated as noise, and vice
versa. A simple way to understand (34) is to first consider
the network throughput in terms of bits-hop/s/Hz/node
[2], which corresponds to the (averaged) throughput for
each pair of neighboring nodes. The probability that each
pair of neighboring nodes forms a transceiver is given by
(1 − ζε)ζε. Given that a pair of neighboring nodes forms a
transceiver, the amount of information transferred between
them is RξPd. Hence, (1−ζε)ζεRξPd is the throughput in bits-
hop/s/Hz/node. The factor β/√ρ converts the throughput
from bits-hop/s/Hz/node to bits-meter/s/Hz/node, see [14].
Also note that the expression (34) assumes one type of
multiuser detection at each receiving node. However, the
packets from multiple transmitters are not jointly encoded.

For throughput analysis of ALOHA, we will only consider
SISO channels. Then, given that a node transmits a packet
and one of its neighboring nodes receives the packet, the
signal received by the receiving node can be modeled as

y0 = h0x0 +
∑

j>0

hjxjuj +w0, (35)

where x0 is the desired signal, h0 is the channel coefficient
between the desired transmitter-receiver pair, xj for j > 0
is the interfering signal from node j, hj for j > 0 is the
channel coefficient between the interfering node j and the
receiving node, and w0 is the noise. We assume Gaussian
fading channels and Gaussian noise. Here, uj ∈ {0, 1} are
i.i.d. binary random variables with Pr{uj = 1} = ζε. Then,
the instantaneous SINR in y0 in each time slot is

SINR = g0P

σ2 +
∑

j>0gjujP
, (36)

where P is the transmitted power from each transmitting
node, σ2 is the noise variance, gi = ‖hi‖2 is an exponentially
distributed random variable with the mean μi = d−αi , and di
is the distance between the node i and the receiver.

Unlike (5), we now have

Pd = Pr{SINR ≥ ξ}

= Pr
{

g0

σ2/P +
∑

j>0gjuj
≥ ξ

}

= E{gi ,ui, i>0}

[∫∞
(σ2/P+

∑
j>0gjuj )ξ

1
μ0
e−x/μ0 dx

]

= E{gi ,ui, i>0} exp
{
−

(σ2/P +
∑

j>0gjuj)ξ

μ0

}

= exp
{
− σ2ξ

Pμ0

}∏

j>0

Egi,ui

{
exp

(
− giuiξ

μ0

)}

= exp
{
− σ2ξ

Pμ0

}∏

j>0

Eui

{
1

1 + uiμiξ/μ0

}

= exp
{
− σ2ξ

Pμ0

}∏

j>0

[
ζε

1
ξμj/μ0 + 1

+ (1− ζε)
]
.

(37)

The above analysis is similar to one in [13]. Since ζ and ε
always appear in the product form ζε, given that all other
parameters are fixed, there is an optimal choice for the
product, which is to be denoted by p∗. Assuming that each
node knows the traffic loading condition as measured by ζ ,
then a loading adaptive ALOHA should adopt the following
transmission probability:

ε =

⎧⎪⎪⎨
⎪⎪⎩

1 ζ ≤ p∗,

p∗

ζ
ζ > p∗.

(38)

For the throughput comparison shown next, we will use the
loading adaptive ALOHA.

6. Throughput Evaluation

In this section, we will illustrate and compare the throughput
of O-SAM, D-SAM, and ALOHA. We will use the following
list of assumptions. All network topologies to be considered
have the unit node density ρ = 1. All channel coefficients
are independent realizations of complex Gaussian random
variables from frame to frame. We choose the path loss
exponent α = 4 unless specified otherwise. By SIMO, we
mean 1 × 4 SIMO, and by MIMO, we mean 4 × 4 MIMO.
For O-SAM, we will consider a large network of 245 nodes
on three regular grids as shown in Figure 2. The subnet
partitions shown in this figure are already optimized for O-
SAM under the full load condition. For the Fourier series
expansion (12) and (13), we choose K = 500 and T =
50. These values were confirmed to be sufficiently large.
For D-SAM, we will consider the three regular topologies
as well as 20 random topologies. Each random topology
consists of 300 nodes positioned by the two-dimensional
Poisson random process. We will use M = 60 with which
the probability of control packet collision is negligible as
observed in simulations. For ALOHA, we will only consider
the square topology and SISO channels.
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Figure 5: Throughput of O-SAM versus load probability ζ and
SNR. We used ρ = 1, square topology, and SISO channels.
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Figure 6: Throughput comparison of O-SAM, D-SAM, and
ALOHA. We used ρ = 1, SNR = 40 dB, square topology, and SISO
channels.

Figure 5 shows the throughput of O-SAM versus SNR
and the traffic load probability ζ . For each pair of SNR and
ζ , the throughput was maximized over ξ (the target SINR)
and θ (the channel gain threshold). The square topology as
shown in Figure 2 was used. The Gaussian SISO channels
were considered. This figure is to highlight the fact that the
network throughput is saturated to a constant when SNR is
large. In the sequel, we will choose SNR = 10log10(P/σ2) =
40 dB unless otherwise specified.

Figure 6 compares the throughput of O-SAM, D-SAM,
and ALOHA versus the traffic load probability ζ . For each ζ ,
the throughput of O-SAM was maximized over both ξ and
θ, and the throughput of D-SAM was maximized over ξ and
R (the cooperative range). The square topology as shown in
Figure 2 and the Gaussian SISO channels were considered.
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Figure 7: Throughput of ALOHA with different transmission
ranges: 1-hop, 2-hop, and 3-hop ranges. We used ρ = 1, square
topology, and SISO channels. The transmission power for each of
the three cases is adjusted so that the SNR (excluding interference)
at every receiver is 40 dB.

We see that as long as ζ > 10%, both O-SAM and D-SAM
yield higher throughput than ALOHA. In other words, only
when the traffic load is low, does ALOHA yield a higher
throughput. Also note that the transmission probability of
ALOHA is optimized for each ζ . But the spacing for O-SAM
and the cooperative radius for D-SAM are optimized only
for ζ = 1. If those parameters are optimized for each ζ ,
the throughput curves for O-SAM and D-SAM would be
higher for ζ < 1. As expected, the throughput of D-SAM is
lower than that of O-SAM. This is because the concurrent
cochannel transmissions for D-SAM are not as ideal as those
for O-SAM. This figure shows that the throughput of D-
SAM is about two thirds of that of O-SAM in the full load
condition.

Figure 7 illustrates the throughput of ALOHA for 1-hop,
2-hop, and 3-hop distance transmissions. Note that bits-
meter/s/Hz/node is a distance-weighted throughput unit. By
2-hop distance transmission, for example, we mean that
the transmission distance between the transmitter and the
receiver equals two times the shortest distance between two
adjacent nodes. For each of the three cases, we adjusted the
transmission power P such that the SNR of the received
signal is kept at 40 dB. This means that the transmission
power used for 2-hop distance transmission is 2α times
higher than that for 1-hop distance transmission, and the
transmission power used for 3-hop distance transmission is
3α times higher than that for 1-hop distance transmission.
The same square topology as shown in Figure 2 and the
Gaussian fading SISO channels were considered. For each
ζ , the throughput was maximized over ξ. We see that only
when the traffic load is very low (that is, ζ < 1%), is the
throughput of 2-hop distance transmission better than that
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Figure 8: Ratios of throughput: 2-hop range over 1-hop range, and
3-hop rang over 1-hop range. All conditions are the same as for
Figure 7.

of 1-hop distance transmission. In order for 3-hop distance
transmission to be better than 2-hop distance transmission,
the traffic load probability ζ needs to be less than 0.4%.

In Figure 8, we show the ratio of the “2-hop distance”
throughput over the “1-hop distance” throughput and the
ratio of the “3-hop distance” throughput over the “1-hop
distance” throughput. These ratios are lower than one unless
the traffic load probability ζ is very small. When ζ approaches
zero, the two ratios become two and three, respectively.

Figures 7 and 8 suggest that for peer-to-peer networks,
the shortest distance transmission is the most efficient in
both spectrum and energy unless the traffic load is extremely
low.

Figure 9 compares the throughput of O-SAM and D-
SAM for each of SISO, SIMO, and MIMO cases. For O-SAM,
the throughput was maximized over ξ and θ. For D-SAM,
the throughput was maximized over ξ and R. The square
network was considered. This figure illustrates that multiple
antennas can significantly improve the network throughput.

Figure 10 compares the throughput of O-SAM and D-
SAM for each of the three topologies: square, triangle, and
hexagon. A useful observation is that O-SAM with the
hexagonal network has a much higher throughput than all
other situations. It is also useful to note here that the optimal
subnet partition of the hexagonal network for O-SAM as
shown in (2) is identical to that for C-SAM as shown in
[14]. Hence, for the hexagonal topology, the throughput
gain due to the opportunistic transmitter selection is not
compromised by any change of subnet partition. This is
not the case for the other two topologies. Although the
throughput of D-SAM is not as high as that of O-SAM, D-
SAM works with any topology.

Figure 11 illustrates the ξ-optimized throughput of D-
SAM versus the cooperative range R. It is interesting to
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Figure 9: Throughput of O-SAM and D-SAM for SISO, SIMO,
and MIMO channels. We used ρ = 1, SNR = 40 dB, and square
topology.
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Figure 10: Throughput of O-SAM and D-SAM for different
network topologies. We used ρ = 1, SNR = 40 dB, and 4×4 MIMO
channels.

observe that for all three regular topologies, the optimal
cooperative range R∗ satisfies da ≤ R∗ < db. Here, da is
the shortest distance between two adjacent nodes, and db is
the shortest distance between two nodes that are two hops
apart. Clearly, when R < da, the throughput for the regular
topologies should be zero. We also see that for the regular
topologies, the throughput in the interval da ≤ R < db
is essentially constant where the variations due to random
subnet partitions and random channel realizations are small
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Figure 11: Throughput of D-SAM versus the cooperative range R.
We used ρ = 1, ζ = 1, SNR = 40 dB, and SISO channels.

−10 −5 0 5 10

x

−10

−8

−6

−4

−2

0

2

4

6

8

10

y

Figure 12: A snapshot of subnet partition of a random network by
D-SAM with R = 0.8. The black nodes are the receivers, and the
grey nodes are the transmitters. We used ρ = 1 and ζ = 1. Each
circle shown has the radius 0.8.

and not perceivable from this figure. Under da ≤R < db, the
corresponding optimal target SINR is ξ∗ ≈ 4.

Given ρ = 1, we have da = 1 and db =
√

2da = 1.41
for square; da =

√
2/
√

3 = 1.07 and db =
√

3da = 1.85 for

triangle; and da =
√

4/(3
√

3) = 0.877 and db =
√

3da = 1.52
for hexagonal [14]. We will restrict da and db to be defined as
above only for the regular topologies.

As observed in our simulation, this optimal condition
da ≤ R∗ < db also holds for α = 3. This observation
interestingly supports the two-hop rule adopted in MSH-
DSCH of IEEE 802.16. But the corresponding ξ∗ decreases
as the path loss exponent α decreases. We found that ξ∗ is
somewhere between 1.5 and 2 when α = 3. Note that the

spectral efficiency of each packet is governed by the value of
ξ, that is, Rξ = log2(1 + ξ).

Figure 11 also shows that for R < da, the throughput of
the random topologies is nonzero, and furthermore it peaks
at R = 0.8. It is important to note that the throughput
under R < da is not very meaningful. This is because when
R < da, the distance between many adjacent nodes is larger
than R so that there is no direct link between them. In fact,
under R = 0.8, many nodes are not even connected with
others, which is illustrated in Figure 12. In such a case, the
expression defined in (33) is only a very loose upper bound
on the network throughput.

The detailed insights from each simulation example
have been presented above. Our overall observations are
summarized in the next section.

7. Conclusion

We have presented a further development of synchronous
array method (SAM) as a medium access control scheme
for stationary ad hoc wireless networks. We have focused on
intranetwork throughput enhancement for a large network
where any node can be a source node or a destination node.
We have used the distance-weighted throughput measure:
bits-meter/s/Hz/node. We have presented and evaluated
two SAM-based schemes: O-SAM and D-SAM. These two
schemes require different levels of centralization and coop-
eration within the network.

With O-SAM, the subnet partition within each time
frame needs to be predetermined. Provided that the channel
coherence time is sufficiently long, local channel estimation
is feasible which allows opportunistic exploitation of channel
gains within each subnet. The exchange of local information
(other than large data packets) can be done via ALOHA-
based protocols. In order to induce variations of channel
gains, multiple antennas (and a transmit beam vector
randomly selected for each frame) can be used at each node.
The throughput of O-SAM has been shown to be much
higher than that of D-SAM.

With D-SAM, the subnet partition within each time
frame is decided by the network locally and dynamically as
governed by the cooperative radius (which is smaller than
the eavesdropping radius and the carrier sense radius). For
networks of sufficiently long channel coherence time, the
spectral overhead for exchanges of control packets can be
affordable or even negligible compared to the exchanges
of data packets. In this case, the network throughput is
primarily affected by the subnet partition in each time
frame. The cooperative radius R has a major effect on
the size of each subnet and hence the network throughput.
For networks of regular topologies and full traffic load,
the optimal value of R has been shown to be anywhere
between da and db where da is the shortest distance between
two adjacent nodes and db is the shortest distance between
two nodes that are two hops apart. This result interestingly
supports the two-hop rule adopted in MSH-DSCH in IEEE
802.16.

We have also compared the throughput of O-SAM and
D-SAM with the throughput of ALOHA under a varying
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probability ζ of traffic load. It has been shown that ALOHA
yields lower throughput than O-SAM and D-SAM unless
ζ is small, for example, less than 10%. We have further
examined the effect of the distance of each transmission
on the distance-weighted throughput. We have found that
the shortest distance transmission leads to the highest
throughput unless ζ is very small, for example, less than 1%.
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